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ABSTRACT 

Software testing is the process of exercising a software component using a selected set of test cases, with the intent of (i) 

revealing defects, and (ii) evaluating quality. This paper proposes Genetic Algorithm Technique in program path coverage for 

optimizing software testing. Test data generation is a key problem in software testing and its automation will improve the 

efficiency and effectiveness of software testing. We used Genetic Algorithm technique for improving the efficiency of software 

testing by identifying the error prone path in a program. We do this by using Genetic Algorithms approach that optimize and 

select the program path which are weighted in accordance with the error prone path. Genetic Algorithm can present a robust non-

linear search technique and also better quality of solution and therefore reduction in cost in software testing industry.  Exhaustive 

software testing is not feasible. Only the selective parts of the software are tested. Therefore design of a set of test cases is 

required in such a manner that it can find out as many faults as possible. 
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1. INTRODUCTION  

Software testing is as old as the hills in the history of digital 

computers. The testing of software is an important means 

of assessing the software to determine its quality. Since 

testing typically consumes 40~50% of development efforts, 

and consumes more effort for systems that require higher 

levels of reliability, it is a significant part of the software 

engineering. With the development of Fourth generation 

languages (4GL), which speeds up the implementation 

process, the proportion of time devoted to testing increased. 

As the amount of maintenance and upgrade of existing 

systems grow, significant amount of testing will also be 

needed to verify systems after changes are made [6]. 

Despite advances in formal methods and verification 

techniques, a system still needs to be tested before it is 

used. Testing remains the truly effective means to assure 

the quality of a software system of non-trivial complexity 

[1], as well as one of the most intricate and least understood 

areas in software engineering [5]. Testing, an important 

research area within computer science is likely to become 

even more important in the future.   

 

 

 

 

 

Now more and more critical applications are implemented 

globally. This increased expectation for error-free 

functioning of software has increased the demand for 

quality output from software vendors. Software Testing is 

the process used to help and identify the correctness, 

completeness, security, reliability & quality of developed 

software. It is one of the major phases in all the phases of 

Software Development Life Cycle.  The potential cost 

savings from handling software errors within a 

development cycle, rather than the subsequent cycles, has 

been estimated at nearly 40 billion dollars by the National 

Institute of Standards and Technology. This figure 

emphasizes that current testing methods are often 

inadequate, and hence reduction of software bugs and 

errors is an important area of research with a substantial 

payoff [2].  
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Therefore reducing the efforts, time and ultimately the cost 

of software development had always been a challenge for 

both the software industry and academia. The automatic 

generation of test data using Genetic Algorithms (GA) has 

been studied by [11]. Here the use of GA is explored to 

automatically generate test data that covers the most error-

prone path. GA are commonly applied to search problems 

within AI. They maintain a population of structures that 

evolve according to rules of selection, mutation and 

reproduction. Translating these concepts to the problem of 

test data generation, the population is set of test data. Each 

element in the set (e.g. a group of data items used in one 

run of the program) is an individual [8]. The fitness of an 

individual corresponds to the coverage of an error-prone 

path of the program under test. 

 

 

 

 

1.1 Genetic Algorithms 

The most popular technique in evolutionary computation 

research has been the genetic algorithm. In the traditional 

genetic algorithm, the representation used is a fixed-length 

bit string. Each position in the string is assumed to 

represent a particular feature of an individual, and the value 

stored in that position represents how that feature is 

expressed in the solution. Usually, the string is “evaluated 

as a collection of structural features of a solution that have 

little or no interactions”. The analogy may be drawn 

directly to genes in biological organisms. Each gene 

represents an entity that is structurally independent of other 

genes. The main reproduction operator used is bit-string 

crossover, in which two strings are used as parents and new 

individuals are formed by swapping a sub-sequence 

between the two strings. Another popular operator is bit-

flipping mutation, in which a single bit in the string is 

flipped to form a new offspring string 

 

 

 

 
 

Figure 1: Bit-string crossover of parents a & b to form offspring c & d 
 

 

 

A variety of other operators have also been developed, but 

are used less frequently (e.g., inversion, in which a 

subsequence in the bit string is reversed). A primary 

distinction that may be made between the various operators 

is whether or not they introduce any new information into 

the population. Crossover, for example, does not while 

mutation does. All operators are also constrained to 

manipulate the string in a manner consistent with the 

structural interpretation of genes. For example, two genes 

at the same location on two strings may be swapped 

between parents, but not combined based on their values. 

Traditionally, individuals are selected to be parents 

probabilistically based upon their fitness values, and the 

offspring that are created replace the parents. For example, 

if N parents are selected, then N offspring are generated 

which replace the parents in the next generation. In nature, 

an individual in population competes with each other for 

virtual resources like food, shelter and so on. Also in the 

same species, individuals compete to attract mates for 

reproduction.  

 

 

Due to this selection, poorly performing individuals have 

less chance to survive, and the most adapted or “fit” 

individuals produce a relatively large number of 

offspring’s. It can also be noted that during reproduction, a 

recombination of the good characteristics of each ancestor 

can produce “best fit” offspring whose fitness is greater 

than that of a parent. After a few generations, species 

evolve spontaneously to become more and more adapted to 

their environment. In 1975, Holland developed this idea in 

his book “Adaptation in natural and artificial systems”. He 

described how to apply the principles of natural evolution 

to optimization problems and built the first Genetic 

Algorithms. Holland’s theory has been further developed 

and now Genetic Algorithms (GAs) stand up as a powerful 

tool for solving search and optimization problems. Genetic 

algorithms are based on the principle of genetics and 

evolution. 
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Comparison of natural evolution and genetic algorithm 

terminology 

Natural evolution         Genetic algorithm 
Chromosome                  String 

Gene                               Feature or character 

Allele                              Feature value 

Locus                              String position 

Genotype                        Structure or coded string 

Phenotype            Parameter set, a decoded structure 

 

 

2. CONVENTIONAL OPTIMIZATION AND 

SEARCH TECHNIQUES 
 

The basic principle of optimization is the efficient 

allocation of scarce resources. Optimization can be applied 

to any scientific or engineering discipline. The aim of 

optimization is to find an algorithm, which solves a given 

class of problems. There exist no specific method, which 

solves all optimization problems. Consider a function, 

   

X1,Xu]       [0,1]: …………………(1) 

where, 

   

 

For the above function, F can be maintained by decreasing 

€ or by making the interval of [X1,Xu] large. Thus a 

difficult task can be made easier. Therefore, one can solve 

optimization problems by combining human creativity and 

the raw processing power of the computers. 

The various conventional optimization and search 

techniques available are discussed as follows: 

 

2.1 Gradient-Based Local Optimization Method 
When the objective function is smooth and one need 

efficient local optimization, it is better to use gradient based 

or Hessian based optimization methods. The performance 

and reliability of the different gradient methods varies 

considerably. 

 

2.2 Random Search 
Random search is an extremely basic method. It only 

explores the search space by randomly selecting solutions 

and evaluates their fitness. This is quite an unintelligent 

strategy, and is rarely used by itself. Nevertheless, this 

method sometimes worth being tested. It doesn’t take much 

effort to implement it, and an important number of 

evaluations can be done fairly quickly. For new unresolved 

problems, it can be useful to compare the results of a more 

advanced algorithm to those obtained just with a random 

search for the same number of evaluations. Nasty surprises 

might well appear when comparing for example, genetic 

algorithms to random search. It’s good to remember that 

the efficiency of GA is extremely dependant on consistent 

coding and relevant reproduction operators. Building a 

genetic algorithm, which performs no more than a random 

search happens more often than we can expect.  

If the reproduction operators are just producing new 

random solutions without any concrete links to the ones 

selected from the last generation, the genetic algorithm is 

just doing nothing else that a random search. 

Random search does have a few interesting qualities. 

However good the obtained solution may be, if it’s not 

optimal one, it can be always improved by continuing the 

run of the random search algorithm for long enough. A 

random search never gets stuck in any point such as a local 

optimum. Furthermore, theoretically, if the search space is 

finite, random search is guaranteed to reach the optimal 

solution. Unfortunately, this result is completely useless. 

For most of problems we are interested in, exploring the 

whole search space takes far too long an amount of time. 

 

2.3 Stochastic Hill Climbing 
Efficient methods exist for problems with well-behaved 

continuous fitness functions. These methods use a kind of 

gradient to guide the direction of search. Stochastic Hill 

Climbing is the simplest method of these kinds. Each 

iteration consists in choosing randomly a solution in the 

neighborhood of the current solution and retains this new 

solution only if it improves the fitness function. Stochastic 

Hill Climbing converges towards the optimal solution if the 

fitness function of the problem is continuous and has only 

one peak (unimodal function). 

 

On functions with many peaks (multimodal functions), the 

algorithm is likely to top on the first peak it finds even if it 

is not the highest one. Once a peak is reached, hill climbing 

cannot progress anymore, and that is problematic when this 

point is a local optimum. Stochastic hill climbing usually 

starts from a random select point. A simple idea to avoid 

getting stuck on the first local optimal consists in repeating 

several hill climbs each time starting from a  different 

randomly chosen points. This method is sometimes known 

as iterated hill climbing. By discovering different local 

optimal points, it gives more chance to reach the global 

optimum. It works well if there is not too many local 

optima in the search space. But if the fitness function is 

very “noisy” with many small peaks, stochastic hill 

climbing is definitely not a good method to use. 

Nevertheless such methods have the great advantage to be 

really easy to implement and to give fairly good solutions 

very quickly. 

 

2.4 Simulated Annealing 

Simulated Annealing was originally inspired by formation 

of crystal in solids during cooling i.e., the physical cooling 

phenomenon. As discovered a long time ago by iron age 

blacksmiths, the slower the cooling, the more perfect is the 

crystal formed. By cooling, complex physical systems 

naturally converge towards a state of minimal energy. The 

system moves randomly, but the probability to stay in a 

particular configuration depends directly on the energy of 

the system and on its temperature. 
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2.5 Symbolic Artificial Intelligence (AI) 

Most symbolic AI systems are very static. Most of them 

can usually only solve one given specific problem, since 

their architecture was designed for whatever that specific 

problem was in the first place. Thus, if the given problem 

were somehow to be changed, these systems could have a 

hard time adapting to them, since the algorithm that would 

originally arrive to the solution may be either incorrect or 

less efficient. Genetic algorithms (or GA) were created to 

combat these problems. They are basically algorithms 

based on natural biological evolution. The architecture of 

systems that implement genetic algorithms (or GA) is more 

able to adapt to a wide range of problems. 

 

3. A SIMPLE GENETIC ALGORITHM 
 

An algorithm is a series of steps for solving a problem. A 

genetic algorithm is a problem solving method that uses 

genetics as its model of problem solving. It’s a search 

technique to find approximate solutions to optimization and 

search problems. Basically, an optimization problem looks 

really simple. One knows the form of all possible solutions 

corresponding to a specific question. The set of all the 

solutions that meet this form constitute the search space. 

The problem consists in finding out the solution that fits the 

best, i.e. the one with the most payoffs, from all the 

possible solutions. If it’s possible to quickly enumerate all 

the solutions, the problem does not raise much difficulty. 

But, when the search space becomes large, enumeration is 

soon no longer feasible simply because it would take far 

too much time. In this it’s needed to use a specific 

technique to find the optimal solution. 

 

Genetic Algorithms provides one of these methods. 

Practically they all work in a similar way, adapting the 

simple genetics to algorithmic mechanisms. GA handles a 

population of possible solutions. Each solution is 

represented through a chromosome, which is just an 

abstract representation. Coding all the possible solutions 

into a chromosome is the first part, but certainly not the 

most straightforward one of a Genetic Algorithm. A set of 

reproduction operators has to be determined, too. 

Reproduction operators are applied directly on the 

chromosomes, and are used to perform mutations and 

recombinations over solutions of the problem. Appropriate 

representation and reproduction operators are really 

something determinant, as the behavior of the GA is 

extremely dependant on it. 

 

Frequently, it can be extremely difficult to find a 

representation, which respects the structure of the search 

space and reproduction operators, which are coherent and 

relevant according to the properties of the problems.  

Selection is supposed to be able to compare each individual 

in the population. Selection is done by using a fitness 

function. Each chromosome has an associated value 

corresponding to the fitness of the solution it represents. 

The fitness should correspond to an evaluation of how good 

the candidate solution is.  

The optimal solution is the one, which maximizes the 

fitness function. Genetic Algorithms deal with the problems 

that maximize the fitness function. But, if the problem 

consists in minimizing a cost function, the adaptation is 

quite easy. Either the cost function can be transformed into 

a fitness function, for example by inverting it; or the 

selection can be adapted in such way that they consider 

individuals with low evaluation functions as better. Once 

the reproduction and the fitness function have been 

properly defined, a Genetic Algorithm is evolved according 

to the same basic structure. It starts by generating an initial 

population of chromosomes. This first population must 

offer a wide diversity of genetic materials. The gene pool 

should be as large as possible so that any solution of the 

search space can be engendered. Generally, the initial 

population is generated randomly. 

 

Then, the genetic algorithm loops over an iteration process 

to make the population evolve. Each iteration consists of 

the following steps: 

i. SELECTION: The first step consists in selecting 

individuals for reproduction. This selection is 

done randomly with a probability depending on 

the relative fitness of the individuals so that best 

ones are often chosen for reproduction than poor 

ones. 

ii.  REPRODUCTION: In the second step, offspring 

are bred by the selected individuals. For 

generating new chromosomes, the algorithm can 

use both recombination and mutation. 

iii. EVALUATION: Then the fitness of the new 

chromosomes is evaluated. 

iv. REPLACEMENT: During the last step, 

individuals from the old population are killed and 

replaced by the new ones. 

 

4. STEPS FOR AUTOMATIC TEST DATA  

    GENERATION  

 

Test-data selection, and consequently generation, is all 

about locating test-data for a particular test criterion. Test 

data generation for path testing consists of four (4) basic 

steps: 

1. In this step, the source program is transferred to a 

graph that represents the control flow of the program. 

2. Target path selection: In path testing, paths are 

extracted from the control flow graph, and some paths 

might be very meaningful and need to be selected as 

target path for testing.  

3. Test case generation and execution: In this step, the 

algorithm automatically creates new test cases to 

execute new path and leads the control flow to the 

target path. Finally, a suitable test case that executes 

the target paths could be generated. 

4. Test result evaluation: This step is to execute the 

selected path and to determine the test criteria is 

satisfied. 
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5. METHODOLOGY 

 

This section describes generation of test data using GA that 

achieve a certain level of coverage of the program. Our 

approach uses a weighted Control Flow Graph (CFG) 

technique. Path testing searches the program domain for 

suitable test cases that covers every possible path in the 

software under test. However, it is generally impossible to 

achieve this goal due to following reasons [10].  

 

� A program may contain an infinite number of 

paths when the program has loops.  

� The number of paths in a program is exponential 

to the number of branches in it and many of them 

may be unfeasible.  

� The number of test cases is too large, since each 

path can be covered by several test cases.  

 

Since it is impossible to cover all paths in software, the 

problem of path testing selects a subset of paths to execute 

and find test data to cover it. Here a program is viewed as 

control flow graph. It is a simple notation for the 

representation of control flow. The control flow of a 

program can be represented by a directed graph with a set 

of nodes and a set of edges [10], [11]. Each node represents 

a statement. The edges of the graph are then possible 

transfers of control flow between the nodes. A path is a 

finite sequence of nodes connected by edges. An 

independent path is any path through the program that 

introduces at least one new set of processing statements or 

a new condition. When stated in terms of a flow graph an 

independent path must move along at least edge that has 

not been traversed before the path is defined. 

 

6. CONTROL FLOW GRAPH 
 

Input - CFG of code Assign weights to edges of CFG – 

More weights are assigned to edges that are more error 

prone. Firstly weight is assigned to initial node of CFG. If 

the CFG contains large number of edges then large weight 

is assigned to first node, otherwise small weight such as 10 

is assigned. Then on the basis of this initial node weights 

are assigned to other nodes. Incoming weight is divided and 

distributed to all the outgoing edges of the node. More 

weight is given to branches and loops and less weight is 

given to edges of sequential path. The CFG for test 

function is shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

0testFunc(int k, int j){ 

1       int r; 

2if(k==0)   

3        return0 

4    if(k>j){ 

5            r = j; 

6            j = k; 

7            k = r; 

        } 

8        r=j%k; 

9        while(r!=0){ 

10         j = k; 

11         k =r; 

12        r=j%k; 

      }   

13    return k 

      } 

 

Figure 2 Control Flow Graph for Test function. 

 

 

6.1 Initialization  

An initial test set is generated randomly in the space of 

possible input values. 

 

6.2 Selection 

The selection of parents for reproduction is done according 

to a probability distribution based on the individual’s 

fitness values. First the fitness value is calculated using the 

Fitness function proposed in the algorithm. Weights are 

used to determine the relative contribution of a path to the 

fitness calculation. Thus, more weight is assigned to a path 

which is more “critical”. Criticality of the path to test data 

generation is based on the fact that predicate, loop and 

branch nodes are given preference over sequential nodes 

during software testing. The fitness function we are using 

here is 

F =  .....................................(2) 

Where, wi = weight assigned to i-th edge on the path under 

consideration. 

Higher weights are assigned to the edges of path 

corresponding to the critical section of the code for 

example loops, branch statements, control statements etc. 

for which testing is essential. After all the fitness function 

values are calculated, the probability of selection pj for 

each path j, so that 

pj = Fj/   ...................................(3)     

Where, j=1 to n 

    n= initial population size 

Then cumulative probability ck is calculated for each path 

k with equation: 

ck= ...................................(4) 
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6.3  Crossover  

Crossover probability (Cp) is decided. It is an adjustable 

parameter. For each parent selected, a random real number 

r is generated in the range [0, 1]; if r < Cp then select the 

parent for crossover. After that, the selected data is 

formatted randomly. Each pair of parents generates two 

new paths, called offspring. For the problem in hand, one 

point crossover is suitable.  

 

 

6.4 Mutation  
Mutation probability (Mp) is decided. It is an adjustable 

parameter. To perform mutation, for each chromosome in 

the offspring and for each bit within the chromosome, 

generate a random real number r in the range [0, 1]; if r < 

Mp then mutate the bit. These major components including 

the fitness function will evolve test data to better ones, 

trying to find a candidate that covers the target path. The 

crossover process tries to create better test data from fitter 

ones, while mutation introduces diversity into population, 

avoiding being stuck at local optima solutions. 

 

According to [11], GA improves the search from one 

generation to the next, and performs better than random 

testing, where the search was absolute random and does not 

show improvement through the generations. Double 

crossover is more successful in path coverage. Also 

selecting parent for reproduction according to their fitness 

is more efficient than random selection and mutation rate is 

better adjusted with program at hand. [12] says GA requires 

up to two orders of magnitude fewer tests than random 

testing and achieves 100% branch coverage. The advantage 

of GAs is that through the search and optimization process, 

test sets are improved such that they are at or close to the 

input sub domain boundaries. According to [13], test data 

generation using GA performs better compared to random 

test data generation. 

Program          Random              Genetic Algorithms 

Binary search           53.3                 66.7 

Bubble sort 1           100                  100 

Bubble sort 2            44.4                 44.4 

Insertion sort            100                  100 

Triangle Classification 48.6             84.3 

Warshall’s Algorithm    91.7           100                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Comparative results of test data generation using 

GA and random testing  

The comparative results on small math programs with the 

goal of achieving condition decision coverage are shown in 

Table 1. Genetic search outperformed random test data 

generation by a considerable margin in most of programs 

and always performed at least as well. 

Sample 1  

Initial population: (k, j)   [(15, 4), (5, 6), (6, 2), (4, 12)] 

Fitness function used: 

Summation of weights of path traversed by a given input 

data in CFG 

For example (15, 4) will travel the path 0-1-2-4-5-6-7-8-9-

6-7-8-9-6-10-11-12-13and therefore its fitness value is 50 

Since the mating pool consists of only (15, 4) therefore this 

is the test data that should be used for the testing of the 

code during execution. 

 

Figure 3 Test Result Generation 1 

 

Figure 4 Crossover and Mutation 

Sample 2 

Initial population: (k, j) 

(12, 8), (2, 3), (6, 2), (15, 4) 

Fitness function values of input population is calculated in 

coloumn 3, then probability. Coloumn 5 show the 

cumulative probability. Random number are generated to 

simulate the GA process.    

 



Vol 7. No. 5 -  December, 2014          
African Journal of Computing & ICT 

      
© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

 

 
157 

 

 

 

Figure 5 Test Result 

 

 

7. CONCLUSION  

In software testing, the generation of testing data is one of 

the key steps which have a great effect on the automation 

of software testing. The greatest merit of genetic algorithm 

in program testing is its simplicity. Genetic algorithms are 

often used for optimization problems in which the 

evolution of a population is a search for a satisfactory 

solution given a set of constraints. In this study it was 

shown that it is possible to apply Genetic Algorithm 

techniques for finding the most error prone paths for 

improving software testing efficiency. The study conducted 

so far are based on relatively small sample and more 

research needs to be conducted with larger commercial 

samples.  Further research in this area will ultimately 

reduce the costs associated with software testing. 
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