
Vol 7. No. 5 - December, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

151

Genetic Algorithm Technique In Program Path Coverage For Improving

Software Testing

Y.K. Saheed
Department of Computer Science,

Al-Hikmah University, Ilorin, Nigeria

kayodesaheed@gmail.com

A.O. Babatunde
Department of Computer Science,

University of Ilorin, Ilorin, Nigeria

babatunde.ao@unilorin.edu.ng

ABSTRACT

Software testing is the process of exercising a software component using a selected set of test cases, with the intent of (i)

revealing defects, and (ii) evaluating quality. This paper proposes Genetic Algorithm Technique in program path coverage for

optimizing software testing. Test data generation is a key problem in software testing and its automation will improve the

efficiency and effectiveness of software testing. We used Genetic Algorithm technique for improving the efficiency of software

testing by identifying the error prone path in a program. We do this by using Genetic Algorithms approach that optimize and

select the program path which are weighted in accordance with the error prone path. Genetic Algorithm can present a robust non-

linear search technique and also better quality of solution and therefore reduction in cost in software testing industry. Exhaustive

software testing is not feasible. Only the selective parts of the software are tested. Therefore design of a set of test cases is

required in such a manner that it can find out as many faults as possible.

Keywords: Software Testing, Genetic Algorithm, Path coverage, Test Data, Software Under Test.

African Journal of Computing & ICT Reference Format:
Y.K. Saheed & A.O. Babatunde (2014) Genetic Algorithm Technique In Program Path Coverage For Improving Software Testing. Afr J. of

Comp & ICTs. Vol 7, No. 5. Pp 151-.158.

1. INTRODUCTION

Software testing is as old as the hills in the history of digital

computers. The testing of software is an important means

of assessing the software to determine its quality. Since

testing typically consumes 40~50% of development efforts,

and consumes more effort for systems that require higher

levels of reliability, it is a significant part of the software

engineering. With the development of Fourth generation

languages (4GL), which speeds up the implementation

process, the proportion of time devoted to testing increased.

As the amount of maintenance and upgrade of existing

systems grow, significant amount of testing will also be

needed to verify systems after changes are made [6].

Despite advances in formal methods and verification

techniques, a system still needs to be tested before it is

used. Testing remains the truly effective means to assure

the quality of a software system of non-trivial complexity

[1], as well as one of the most intricate and least understood

areas in software engineering [5]. Testing, an important

research area within computer science is likely to become

even more important in the future.

Now more and more critical applications are implemented

globally. This increased expectation for error-free

functioning of software has increased the demand for

quality output from software vendors. Software Testing is

the process used to help and identify the correctness,

completeness, security, reliability & quality of developed

software. It is one of the major phases in all the phases of

Software Development Life Cycle. The potential cost

savings from handling software errors within a

development cycle, rather than the subsequent cycles, has

been estimated at nearly 40 billion dollars by the National

Institute of Standards and Technology. This figure

emphasizes that current testing methods are often

inadequate, and hence reduction of software bugs and

errors is an important area of research with a substantial

payoff [2].

Vol 7. No. 5 - December, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

152

Therefore reducing the efforts, time and ultimately the cost

of software development had always been a challenge for

both the software industry and academia. The automatic

generation of test data using Genetic Algorithms (GA) has

been studied by [11]. Here the use of GA is explored to

automatically generate test data that covers the most error-

prone path. GA are commonly applied to search problems

within AI. They maintain a population of structures that

evolve according to rules of selection, mutation and

reproduction. Translating these concepts to the problem of

test data generation, the population is set of test data. Each

element in the set (e.g. a group of data items used in one

run of the program) is an individual [8]. The fitness of an

individual corresponds to the coverage of an error-prone

path of the program under test.

1.1 Genetic Algorithms

The most popular technique in evolutionary computation

research has been the genetic algorithm. In the traditional

genetic algorithm, the representation used is a fixed-length

bit string. Each position in the string is assumed to

represent a particular feature of an individual, and the value

stored in that position represents how that feature is

expressed in the solution. Usually, the string is “evaluated

as a collection of structural features of a solution that have

little or no interactions”. The analogy may be drawn

directly to genes in biological organisms. Each gene

represents an entity that is structurally independent of other

genes. The main reproduction operator used is bit-string

crossover, in which two strings are used as parents and new

individuals are formed by swapping a sub-sequence

between the two strings. Another popular operator is bit-

flipping mutation, in which a single bit in the string is

flipped to form a new offspring string

Figure 1: Bit-string crossover of parents a & b to form offspring c & d

A variety of other operators have also been developed, but

are used less frequently (e.g., inversion, in which a

subsequence in the bit string is reversed). A primary

distinction that may be made between the various operators

is whether or not they introduce any new information into

the population. Crossover, for example, does not while

mutation does. All operators are also constrained to

manipulate the string in a manner consistent with the

structural interpretation of genes. For example, two genes

at the same location on two strings may be swapped

between parents, but not combined based on their values.

Traditionally, individuals are selected to be parents

probabilistically based upon their fitness values, and the

offspring that are created replace the parents. For example,

if N parents are selected, then N offspring are generated

which replace the parents in the next generation. In nature,

an individual in population competes with each other for

virtual resources like food, shelter and so on. Also in the

same species, individuals compete to attract mates for

reproduction.

Due to this selection, poorly performing individuals have

less chance to survive, and the most adapted or “fit”

individuals produce a relatively large number of

offspring’s. It can also be noted that during reproduction, a

recombination of the good characteristics of each ancestor

can produce “best fit” offspring whose fitness is greater

than that of a parent. After a few generations, species

evolve spontaneously to become more and more adapted to

their environment. In 1975, Holland developed this idea in

his book “Adaptation in natural and artificial systems”. He

described how to apply the principles of natural evolution

to optimization problems and built the first Genetic

Algorithms. Holland’s theory has been further developed

and now Genetic Algorithms (GAs) stand up as a powerful

tool for solving search and optimization problems. Genetic

algorithms are based on the principle of genetics and

evolution.

Vol 7. No. 5 - December, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

153

Comparison of natural evolution and genetic algorithm

terminology

Natural evolution Genetic algorithm
Chromosome String

Gene Feature or character

Allele Feature value

Locus String position

Genotype Structure or coded string

Phenotype Parameter set, a decoded structure

2. CONVENTIONAL OPTIMIZATION AND

SEARCH TECHNIQUES

The basic principle of optimization is the efficient

allocation of scarce resources. Optimization can be applied

to any scientific or engineering discipline. The aim of

optimization is to find an algorithm, which solves a given

class of problems. There exist no specific method, which

solves all optimization problems. Consider a function,

X1,Xu] [0,1]: …………………(1)

where,

For the above function, F can be maintained by decreasing

€ or by making the interval of [X1,Xu] large. Thus a

difficult task can be made easier. Therefore, one can solve

optimization problems by combining human creativity and

the raw processing power of the computers.

The various conventional optimization and search

techniques available are discussed as follows:

2.1 Gradient-Based Local Optimization Method
When the objective function is smooth and one need

efficient local optimization, it is better to use gradient based

or Hessian based optimization methods. The performance

and reliability of the different gradient methods varies

considerably.

2.2 Random Search
Random search is an extremely basic method. It only

explores the search space by randomly selecting solutions

and evaluates their fitness. This is quite an unintelligent

strategy, and is rarely used by itself. Nevertheless, this

method sometimes worth being tested. It doesn’t take much

effort to implement it, and an important number of

evaluations can be done fairly quickly. For new unresolved

problems, it can be useful to compare the results of a more

advanced algorithm to those obtained just with a random

search for the same number of evaluations. Nasty surprises

might well appear when comparing for example, genetic

algorithms to random search. It’s good to remember that

the efficiency of GA is extremely dependant on consistent

coding and relevant reproduction operators. Building a

genetic algorithm, which performs no more than a random

search happens more often than we can expect.

If the reproduction operators are just producing new

random solutions without any concrete links to the ones

selected from the last generation, the genetic algorithm is

just doing nothing else that a random search.

Random search does have a few interesting qualities.

However good the obtained solution may be, if it’s not

optimal one, it can be always improved by continuing the

run of the random search algorithm for long enough. A

random search never gets stuck in any point such as a local

optimum. Furthermore, theoretically, if the search space is

finite, random search is guaranteed to reach the optimal

solution. Unfortunately, this result is completely useless.

For most of problems we are interested in, exploring the

whole search space takes far too long an amount of time.

2.3 Stochastic Hill Climbing
Efficient methods exist for problems with well-behaved

continuous fitness functions. These methods use a kind of

gradient to guide the direction of search. Stochastic Hill

Climbing is the simplest method of these kinds. Each

iteration consists in choosing randomly a solution in the

neighborhood of the current solution and retains this new

solution only if it improves the fitness function. Stochastic

Hill Climbing converges towards the optimal solution if the

fitness function of the problem is continuous and has only

one peak (unimodal function).

On functions with many peaks (multimodal functions), the

algorithm is likely to top on the first peak it finds even if it

is not the highest one. Once a peak is reached, hill climbing

cannot progress anymore, and that is problematic when this

point is a local optimum. Stochastic hill climbing usually

starts from a random select point. A simple idea to avoid

getting stuck on the first local optimal consists in repeating

several hill climbs each time starting from a different

randomly chosen points. This method is sometimes known

as iterated hill climbing. By discovering different local

optimal points, it gives more chance to reach the global

optimum. It works well if there is not too many local

optima in the search space. But if the fitness function is

very “noisy” with many small peaks, stochastic hill

climbing is definitely not a good method to use.

Nevertheless such methods have the great advantage to be

really easy to implement and to give fairly good solutions

very quickly.

2.4 Simulated Annealing

Simulated Annealing was originally inspired by formation

of crystal in solids during cooling i.e., the physical cooling

phenomenon. As discovered a long time ago by iron age

blacksmiths, the slower the cooling, the more perfect is the

crystal formed. By cooling, complex physical systems

naturally converge towards a state of minimal energy. The

system moves randomly, but the probability to stay in a

particular configuration depends directly on the energy of

the system and on its temperature.

Vol 7. No. 5 - December, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

154

2.5 Symbolic Artificial Intelligence (AI)

Most symbolic AI systems are very static. Most of them

can usually only solve one given specific problem, since

their architecture was designed for whatever that specific

problem was in the first place. Thus, if the given problem

were somehow to be changed, these systems could have a

hard time adapting to them, since the algorithm that would

originally arrive to the solution may be either incorrect or

less efficient. Genetic algorithms (or GA) were created to

combat these problems. They are basically algorithms

based on natural biological evolution. The architecture of

systems that implement genetic algorithms (or GA) is more

able to adapt to a wide range of problems.

3. A SIMPLE GENETIC ALGORITHM

An algorithm is a series of steps for solving a problem. A

genetic algorithm is a problem solving method that uses

genetics as its model of problem solving. It’s a search

technique to find approximate solutions to optimization and

search problems. Basically, an optimization problem looks

really simple. One knows the form of all possible solutions

corresponding to a specific question. The set of all the

solutions that meet this form constitute the search space.

The problem consists in finding out the solution that fits the

best, i.e. the one with the most payoffs, from all the

possible solutions. If it’s possible to quickly enumerate all

the solutions, the problem does not raise much difficulty.

But, when the search space becomes large, enumeration is

soon no longer feasible simply because it would take far

too much time. In this it’s needed to use a specific

technique to find the optimal solution.

Genetic Algorithms provides one of these methods.

Practically they all work in a similar way, adapting the

simple genetics to algorithmic mechanisms. GA handles a

population of possible solutions. Each solution is

represented through a chromosome, which is just an

abstract representation. Coding all the possible solutions

into a chromosome is the first part, but certainly not the

most straightforward one of a Genetic Algorithm. A set of

reproduction operators has to be determined, too.

Reproduction operators are applied directly on the

chromosomes, and are used to perform mutations and

recombinations over solutions of the problem. Appropriate

representation and reproduction operators are really

something determinant, as the behavior of the GA is

extremely dependant on it.

Frequently, it can be extremely difficult to find a

representation, which respects the structure of the search

space and reproduction operators, which are coherent and

relevant according to the properties of the problems.

Selection is supposed to be able to compare each individual

in the population. Selection is done by using a fitness

function. Each chromosome has an associated value

corresponding to the fitness of the solution it represents.

The fitness should correspond to an evaluation of how good

the candidate solution is.

The optimal solution is the one, which maximizes the

fitness function. Genetic Algorithms deal with the problems

that maximize the fitness function. But, if the problem

consists in minimizing a cost function, the adaptation is

quite easy. Either the cost function can be transformed into

a fitness function, for example by inverting it; or the

selection can be adapted in such way that they consider

individuals with low evaluation functions as better. Once

the reproduction and the fitness function have been

properly defined, a Genetic Algorithm is evolved according

to the same basic structure. It starts by generating an initial

population of chromosomes. This first population must

offer a wide diversity of genetic materials. The gene pool

should be as large as possible so that any solution of the

search space can be engendered. Generally, the initial

population is generated randomly.

Then, the genetic algorithm loops over an iteration process

to make the population evolve. Each iteration consists of

the following steps:

i. SELECTION: The first step consists in selecting

individuals for reproduction. This selection is

done randomly with a probability depending on

the relative fitness of the individuals so that best

ones are often chosen for reproduction than poor

ones.

ii. REPRODUCTION: In the second step, offspring

are bred by the selected individuals. For

generating new chromosomes, the algorithm can

use both recombination and mutation.

iii. EVALUATION: Then the fitness of the new

chromosomes is evaluated.

iv. REPLACEMENT: During the last step,

individuals from the old population are killed and

replaced by the new ones.

4. STEPS FOR AUTOMATIC TEST DATA

 GENERATION

Test-data selection, and consequently generation, is all

about locating test-data for a particular test criterion. Test

data generation for path testing consists of four (4) basic

steps:

1. In this step, the source program is transferred to a

graph that represents the control flow of the program.

2. Target path selection: In path testing, paths are

extracted from the control flow graph, and some paths

might be very meaningful and need to be selected as

target path for testing.

3. Test case generation and execution: In this step, the

algorithm automatically creates new test cases to

execute new path and leads the control flow to the

target path. Finally, a suitable test case that executes

the target paths could be generated.

4. Test result evaluation: This step is to execute the

selected path and to determine the test criteria is

satisfied.

Vol 7. No. 5 - December, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

155

5. METHODOLOGY

This section describes generation of test data using GA that

achieve a certain level of coverage of the program. Our

approach uses a weighted Control Flow Graph (CFG)

technique. Path testing searches the program domain for

suitable test cases that covers every possible path in the

software under test. However, it is generally impossible to

achieve this goal due to following reasons [10].

� A program may contain an infinite number of

paths when the program has loops.

� The number of paths in a program is exponential

to the number of branches in it and many of them

may be unfeasible.

� The number of test cases is too large, since each

path can be covered by several test cases.

Since it is impossible to cover all paths in software, the

problem of path testing selects a subset of paths to execute

and find test data to cover it. Here a program is viewed as

control flow graph. It is a simple notation for the

representation of control flow. The control flow of a

program can be represented by a directed graph with a set

of nodes and a set of edges [10], [11]. Each node represents

a statement. The edges of the graph are then possible

transfers of control flow between the nodes. A path is a

finite sequence of nodes connected by edges. An

independent path is any path through the program that

introduces at least one new set of processing statements or

a new condition. When stated in terms of a flow graph an

independent path must move along at least edge that has

not been traversed before the path is defined.

6. CONTROL FLOW GRAPH

Input - CFG of code Assign weights to edges of CFG –

More weights are assigned to edges that are more error

prone. Firstly weight is assigned to initial node of CFG. If

the CFG contains large number of edges then large weight

is assigned to first node, otherwise small weight such as 10

is assigned. Then on the basis of this initial node weights

are assigned to other nodes. Incoming weight is divided and

distributed to all the outgoing edges of the node. More

weight is given to branches and loops and less weight is

given to edges of sequential path. The CFG for test

function is shown in figure 2.

0testFunc(int k, int j){

1 int r;

2if(k==0)

3 return0

4 if(k>j){

5 r = j;

6 j = k;

7 k = r;

 }

8 r=j%k;

9 while(r!=0){

10 j = k;

11 k =r;

12 r=j%k;

 }

13 return k

 }

Figure 2 Control Flow Graph for Test function.

6.1 Initialization

An initial test set is generated randomly in the space of

possible input values.

6.2 Selection

The selection of parents for reproduction is done according

to a probability distribution based on the individual’s

fitness values. First the fitness value is calculated using the

Fitness function proposed in the algorithm. Weights are

used to determine the relative contribution of a path to the

fitness calculation. Thus, more weight is assigned to a path

which is more “critical”. Criticality of the path to test data

generation is based on the fact that predicate, loop and

branch nodes are given preference over sequential nodes

during software testing. The fitness function we are using

here is

F = (2)

Where, wi = weight assigned to i-th edge on the path under

consideration.

Higher weights are assigned to the edges of path

corresponding to the critical section of the code for

example loops, branch statements, control statements etc.

for which testing is essential. After all the fitness function

values are calculated, the probability of selection pj for

each path j, so that

pj = Fj/ (3)

Where, j=1 to n

 n= initial population size

Then cumulative probability ck is calculated for each path

k with equation:

ck=(4)

Vol 7. No. 5 - December, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

156

6.3 Crossover

Crossover probability (Cp) is decided. It is an adjustable

parameter. For each parent selected, a random real number

r is generated in the range [0, 1]; if r < Cp then select the

parent for crossover. After that, the selected data is

formatted randomly. Each pair of parents generates two

new paths, called offspring. For the problem in hand, one

point crossover is suitable.

6.4 Mutation
Mutation probability (Mp) is decided. It is an adjustable

parameter. To perform mutation, for each chromosome in

the offspring and for each bit within the chromosome,

generate a random real number r in the range [0, 1]; if r <

Mp then mutate the bit. These major components including

the fitness function will evolve test data to better ones,

trying to find a candidate that covers the target path. The

crossover process tries to create better test data from fitter

ones, while mutation introduces diversity into population,

avoiding being stuck at local optima solutions.

According to [11], GA improves the search from one

generation to the next, and performs better than random

testing, where the search was absolute random and does not

show improvement through the generations. Double

crossover is more successful in path coverage. Also

selecting parent for reproduction according to their fitness

is more efficient than random selection and mutation rate is

better adjusted with program at hand. [12] says GA requires

up to two orders of magnitude fewer tests than random

testing and achieves 100% branch coverage. The advantage

of GAs is that through the search and optimization process,

test sets are improved such that they are at or close to the

input sub domain boundaries. According to [13], test data

generation using GA performs better compared to random

test data generation.

Program Random Genetic Algorithms

Binary search 53.3 66.7

Bubble sort 1 100 100

Bubble sort 2 44.4 44.4

Insertion sort 100 100

Triangle Classification 48.6 84.3

Warshall’s Algorithm 91.7 100

Table 1. Comparative results of test data generation using

GA and random testing

The comparative results on small math programs with the

goal of achieving condition decision coverage are shown in

Table 1. Genetic search outperformed random test data

generation by a considerable margin in most of programs

and always performed at least as well.

Sample 1

Initial population: (k, j) [(15, 4), (5, 6), (6, 2), (4, 12)]

Fitness function used:

Summation of weights of path traversed by a given input

data in CFG

For example (15, 4) will travel the path 0-1-2-4-5-6-7-8-9-

6-7-8-9-6-10-11-12-13and therefore its fitness value is 50

Since the mating pool consists of only (15, 4) therefore this

is the test data that should be used for the testing of the

code during execution.

Figure 3 Test Result Generation 1

Figure 4 Crossover and Mutation

Sample 2

Initial population: (k, j)

(12, 8), (2, 3), (6, 2), (15, 4)

Fitness function values of input population is calculated in

coloumn 3, then probability. Coloumn 5 show the

cumulative probability. Random number are generated to

simulate the GA process.

Vol 7. No. 5 - December, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

157

Figure 5 Test Result

7. CONCLUSION

In software testing, the generation of testing data is one of

the key steps which have a great effect on the automation

of software testing. The greatest merit of genetic algorithm

in program testing is its simplicity. Genetic algorithms are

often used for optimization problems in which the

evolution of a population is a search for a satisfactory

solution given a set of constraints. In this study it was

shown that it is possible to apply Genetic Algorithm

techniques for finding the most error prone paths for

improving software testing efficiency. The study conducted

so far are based on relatively small sample and more

research needs to be conducted with larger commercial

samples. Further research in this area will ultimately

reduce the costs associated with software testing.

Vol 7. No. 5 - December, 2014
African Journal of Computing & ICT

© 2014 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

158

REFRENCES

[1] E. F. Miller, (1980) Introduction to Software

Testing Technology, Tutorial: Software Testing

& Validation

[2] G.Raghurama and Praveen Ranjan Srivastava,

Software Testing using Optimization Techniques,

a proposal for research.

[3] [Harmen-Hinrich Sthamer, (1995) The Automatic

Generation of Software Test Data Using Genetic

Algorithms, Ph.D thesis, University of

Glamorgan, Nov. 1995.

[4] Hermadi I., Lokan C. and Sarker R.,(2010)

Genetic Algorithm Based Path Testing:

Challenges and Key Parameters Second WRI

World Congress on Software Engineering, 2010

[5] J. A. Whittaker, (2000) What is Software

Testing? And Why Is It So Hard? IEEE Software,

January 2000,

[6] J. J. Marciniak,(1994) Encyclopedia of software

engineering, Volume 2, New York, NY: Wiley,

1994, pp. 1327-1358

[7] Maha Alzabidi, Ajay Kumar and A.D. Shaligram,

(2009) Automatic Software Structural Testing by

using Evolutionary Algorithms for Test Data

Generations, IJCSNS International Journal of

Computer Science and Network Security, VOL.9

No.4, April 2009.

[8] Marc Roper, Iain Maclean, Andrew Brooks,

James Miller and Murray Wood, Genetic

Algorithms and the Automatic Generation of Test

Data, University of Strathclyde, U.K.

[9] Maziyar Karbalaee Shabani, Mansour Ahmadi,

Siroos Keshavarz, Faezeh Sadat Babamir and

Seyed Mehrdad Babamir, (2010) GA based-

Software Test Data Generator, Using Dynamic

Repetition Frequency, (IJCNS) International

Journal of Computer and Network Security, Vol.

2, No. 7, July 2010.

[10] Srivastava P.R, and T. Kim T.K, (2009),

Application of Genetic Algorithm in Software

Testing International Journal of Software

Engineering and Its Applications,Vol.3,

No.4,2009,pp.87-96. Techniques, Second

Edition, IEEE Catalog No. EHO 180-0, pp. 4-16

[11] Maha Alzabidi, Ajay Kumar, and A.D.

Shaligram, (2009) “Automatic Software

Structural Testing by Using Evolutionary

Algorithms for Test Data Generations”, IJCSNS

International Journal of Computer Science and

Network Security, VOL.9, No.4, April 2009.

[12] B. Jones, H. Sthamer, D.Eyres. (1996) Automatic

Structural Testing using Genetic Algorithms.

Software Engineering Journal 11(5), september

1996, pp 299-306

[13] C. C. Michael, G. E. McGraw and M. A. Schatz,

(2001) ”Generating software test data by

evolution”, IEEE Transactions on Software

Engineering, Vol. 27, No.12, pp. 1085-1110,

2001.

