Optimum QAM-TCM Schemes Using Left-Circulate Function over GF(2^N)

Călin Vlădeanu
Telecommunications Department
University Politehnica of Bucharest
Bucharest, Romania
calin@comm.pub.ro

Safwan El Assad
IREENA
École Polytechnique de l’Université de Nantes
Nantes, France
safwan.lassad@univ-nantes.fr

Abstract—In this paper, quadrature amplitude modulation – trellis coded modulation (QAM-TCM) schemes are designed using recursive convolutional (RC) encoders over Galois Field GF(2^N). These encoders are designed using the nonlinear left-circulate (LCIRC) function. The LCIRC function performs a bit left circulation over the representation word. Different encoding rates are obtained for these encoders when using different representation wordlengths at the input and the output, denoted as N_{in} and N, respectively. A generalized one-delay GF(2^N) RC encoder scheme using LCIRC is proposed for performance analysis and optimization, for any possible encoding rate, N_{in}/N. The minimum Euclidian distance is estimated for these QAM-TCM schemes and a general expression is found as a function of the wordlengths N_{in} and N. The symbol error rate (SER) is estimated by simulation for QAM-TCM transmissions over an additive white Gaussian noise (AWGN) channel. The proposed encoders outperform the corresponding binary encoders in terms of structural complexity and the availability of a general expression for the Euclidian distance.

Keywords—Recursive convolutional GF(2^N) encoders; Left-circulate function; QAM-TCM.

I. INTRODUCTION

Channel encoded transmissions are used in all systems nowadays. Several types of channel encoding methods were proposed during the last decades. Almost all coding methods known in the literature use linear functions.

The nonlinear functions were used lately in chaotic sequence generators to increase the security of communications systems.

In [1], Frey proposed a chaotic digital infinite impulse response (IIR) filter for a secure communications system. The Frey filter contains a nonlinear function named left-circulate function (LCIRC), which provides the chaotic properties of the filter. In [2], Werter improved this encoder in order to increase the randomness between the output sequence samples. The performances of a pulse amplitude modulation (PAM) communication system using the Frey encoder, with additive white gaussian noise (AWGN) were analyzed in [3], by means of simulations. All previously mentioned papers considered the Frey encoder as a digital filter, operating over Galois field GF(2^N). Barbulescu and Guidi made one of the first approaches regarding the possible use of the Frey encoder in a turbo-coded communication system [4].

In [5], it was demonstrated that the Frey encoder with finite precision (wordlength of N bits) presented in [1] is a recursive convolutional (RC) encoder operating over GF(2^N). In [6], a new method is proposed for enhancing the performances of the chaotic PAM – trellis-coded modulation (PAM-TCM) transmission over a noisy channel. These encoders follow partially the rules proposed by Ungerboeck in [8] for defining optimum trellis-coded modulations by proper set partitioning. Using the Ungerboeck optimization procedures, GF(2^N) encoders using the LCIRC function were designed for phase shift keying – trellis-coded modulation (PSK-TCM) transmissions over a noisy channel. Two-dimensional (2D) TCM schemes using a different trellis optimization method for Frey encoder was proposed in [9]. The PSK-TCM encoders were introduced into a parallel turbo-TCM scheme in [10] and considerable coding gains were obtained. The development of optimum GF(2^N) encoders for quadrature amplitude modulation (QAM) TCM scheme is more difficult than in the case of PAM and PSK modulations, due to the larger constellations and non-uniform power per symbol.

In the present paper, a generalization of the optimum one-delay GF(4) encoder in [5] is performed, for any output wordlength N and for any possible encoding rate in quadrature amplitude modulation TCM (QAM-TCM) schemes.

The paper is organized as follows. Section II is presenting the LCIRC function definition and properties over GF(2^N), and its use for designing a rate 1 GF(4) RC encoder with LCIRC for a QPSK/4QAM-TCM transmission. The trellis optimization method is presented in Section III, first for a particular case, and then, for any output wordlength N. Therefore, in Section III, a generalized optimum GF(2^N) RC encoder scheme is proposed and an expression is provided for the minimum Euclidian distance of these encoders in a QAM-TCM transmission. The simulated symbol error rate (SER) performance is plotted in Section IV for the optimum QAM-TCM transmissions. Finally, the conclusions are drawn and some perspectives are presented in Section V.

II. DESIGN OF QAM-TCM SCHEMES WITH GF(2^N) RC ENCODERS USING LCIRC

A. Nonlinear LCIRC Function over GF(2^N)

The main component of the chaotic encoder introduced by Frey in [1] and the RC encoder presented in [5] is the
nonlinear LCIRC function. This function is determining both the chaotic properties of the encoder in [1], [2], ... Seventh Advanced International Conference on Telecommunications

Figure 1 – Rate 1 GF(4) nonlinear encoder for 2 b/s/Hz.

\[e^n[n] = x^n[n] \]

0/1/2/3

\[x^n[n] \]

0

\[x^n[n+1] \]

1/2/3/0

Legend

\[u^n[n] = 0 \]

\[u^n[n] = 1 \]

\[u^n[n] = 2 \]

\[u^n[n] = 3 \]

2/3/0/1

3/0/1/2

Figure 2 – Trellis for rate 1 GF(4) nonlinear encoder (2 b/s/Hz).

An example of a GF(4) RC encoder using LCIRC function for a QPSK-TCM scheme is presented in the next section.

B. Rate 1 GF(4) RC Encoder with LCIRC for a QPSK-TCM transmission

Let us consider a RC encoder working over GF(4) using the LCIRC function. This scheme is presented in Fig. 1. Here, all the values are represented in the unsigned form. Let us assume that \(N \) denotes the wordlength used for binary representation of each sample. The LCIRC function is used as a typical basic accumulator operation in microprocessors and performs a bit rotation by placing the most significant bit to the less significant bit, and shifting the other \(N-1 \) bits one position to a higher significance. This is the reason why the function is named left-circulate.

Considering the unsigned modulo-2\(^N\) operations for any sample moment \(n \), the LCIRC consists in a modulo-2\(^N\) multiplication by 2 that is modulo-2\(^N\) addition. For each moment \(n \), \(u[n] \) represents the input data sample, \(x[n] \) denotes the delay output or the encoder current state, and \(e[n] \) is the output sample.

The encoding rate for the encoder in Fig. 1 is the ratio between the input wordlength \(N_{in} \) and the output wordlength \(N_{out} \). Here, all the values are represented in the unsigned form. Let us assume that \(N \) denotes the wordlength used for binary representation of each sample. The encoder is composed by one delay element with a sample interval, two modulo-2\(^N\) adders, and a LCIRC block. For each moment \(n \), \(u[n] \) represents the input data sample, \(x[n] \) denotes the delay output or the encoder current state, and \(e[n] \) is the output sample.

The encoding rate for the encoder in Fig. 1 is the ratio between the input wordlength \(N_{in} \) and the output wordlength \(N_{out} \). Here, all the values are represented in the unsigned form. Let us assume that \(N \) denotes the wordlength used for binary representation of each sample. The encoder is composed by one delay element with a sample interval, two modulo-2\(^N\) adders, and a LCIRC block. For each moment \(n \), \(u[n] \) represents the input data sample, \(x[n] \) denotes the delay output or the encoder current state, and \(e[n] \) is the output sample.

The encoding rate for the encoder in Fig. 1 is the ratio between the input wordlength \(N_{in} \) and the output wordlength \(N_{out} \). Here, all the values are represented in the unsigned form. Let us assume that \(N \) denotes the wordlength used for binary representation of each sample. The encoder is composed by one delay element with a sample interval, two modulo-2\(^N\) adders, and a LCIRC block. For each moment \(n \), \(u[n] \) represents the input data sample, \(x[n] \) denotes the delay output or the encoder current state, and \(e[n] \) is the output sample.

Figure 3 – Signal constellation for QPSK-4QAM-TCM.

\[\text{LCIRC}^N (x^n) = \text{LCIRC}(\text{LCIRC}(\text{LCIRC}(\text{LCIRC}(x^n)))) = x^n \] (3)

where the superscript \(U \) denotes that all the samples are represented in unsigned \(N \)-bits wordlength, i.e., \(x^n[n], y^n[n] \in [0, 2^N-1] \), and the carry bit \(s[n] \) is estimated as following:

\[s[n] = \begin{cases}
0, & \text{if } 0 \leq x^n[n] \leq 2^{N-1} - 1 \\
1, & \text{if } 2^{N-1} \leq x^n[n] \leq 2^N - 1
\end{cases} \] (2)

We can note from (2) that besides the nonlinearity in the modulo-2\(^N\) multiplications and additions, the carry bit \(s[n] \) is determining the nonlinearity of the LCIRC function.

Applying \(N \) times consecutively the LCIRC function to an \(N \)-bits wordlength unsigned value \(x^n \), it results the original value:

Each transition in Fig. 1 is associated to an unsigned output value \(e^n[n] \in \{0, 1, 2, 3\} \). For each originating state, the values in the box, from left to right, are associated to the transitions in the descending order.

Mapping an unsigned output symbol value \(e^n[n] \) into a QAM symbol value using the set partitioning (SP) map over the \(n \)-th sample interval as in [8], a 2\(^N\) levels QAM-TCM scheme is obtained.

The signal constellation for the QPSK-TCM scheme using the encoder in Fig. 1 and the SP mapping is represented in Fig. 3.

Considering the SP mapping for the constellation in Fig. 3, it results that the QPSK-TCM signal trellis in Fig. 2 presents a minimum Euclidian distance of \(d_\text{E}^2 = 2 \Delta \), QPSK = 2\(\Delta \), offering no coding gain over the non-converted binary PSK (BPSK) signal.
III. OPTIMUM QAM-TCM SCHEMES WITH GF(2^N) RC-LCIRC ENCODERS USING LCIRC

A. Rate 1/2 Optimum GF(4) RC LCIRC Encoder for a QPSK-TCM transmission

In this section, the potential of the nonlinear LCIRC function is shown, for designing efficient encoders. Therefore, following the trellis optimization presented in [6] and [7], a simple nonlinear encoder operating over GF(4) was developed, which has a binary input. It is demonstrated that this encoder performs identically to an optimum rate 1/2 binary field RC convolutional encoder. Both encoders offer maximum coding gain for 1 b/s/Hz [8]. The scheme of the rate 1/2 optimum GF(4) encoder is presented in Fig. 4. Here, the time variable is neglected and all the values are represented in the unsigned form.

The trellis for the encoder in Fig. 4 is presented in Fig. 5 and follows all the Ungerboeck rules.

Following the SP mapping, the QPSK-TCM signal trellis in Fig. 5 presents a minimum Euclidean distance of $10\log_{10}(2.5)$ dB, while the number of transitions originating from and ending in the same state grows exponentially with the input wordlength, i.e., 2^N. Therefore, following the trellis optimization presented in Section II.A, the QPSK-TCM transmission is offering a coding gain of 4 dB over the rate 1 QPSK-TCM in Section II.A.

B. Generalized Optimum RC LCIRC Encoder for a QAM-TCM transmission

The general block scheme for a rate N_0/N optimum QAM-TCM encoder, $N_0 \in \{1, 2, \ldots, N-1\}$ using one delay element and the LCIRC function is presented in Fig. 6. LCIRC_{opt} represents the LCIRC function application for N_0 times consecutively, as it was defined in (3). Both adders and the multiplier are modulo-2N operators.

The trellis complexity of the codes generated with the scheme in Fig. 6 increases with the wordlength, because the number of trellis states grows exponentially with the output wordlength, i.e., 2^N, while the number of transitions originating from and ending in the same state grows exponentially with the input wordlength, i.e., 2^{N_0}.

It can be easily demonstrated that the minimum Euclidean distance for the QAM-TCM encoder in Fig. 6 has the following expression:

$$d_E^2 = \left(2^{N_0-N} \cdot 2^{-N_0} \cdot 2^N \cdot \left(\sum_{i=0}^{N-N_0-1} 2^i \right) \cdot \left(\sum_{i=0}^{N-N_0} 2^{-i} \cdot 2^N \right) \cdot \left(\sum_{i=0}^{N-N_0} 2^{-i} \cdot 2^N \right) \right)$$

For example, let us consider the optimum encoders for the output wordlength equal to 4, i.e., $N=4$. The input wordlength may take three values $N_0 \in \{1, 2, 3\}$, and the corresponding encoding rates are $R \in \{1/4, 1/2, 3/4\}$. For the rate 1/4 encoder the scheme in Fig. 6 is set with all the values corresponding to $N_0=1$. From (4) results that the minimum distance of this code is $d_E^2 = 9.2$, having a coding gain of $10\log_{10}d_E^2 = 9.2$ dB.

case 1: \begin{align*}
\text{TABLE 1: MINIMUM QAM-TCM DISTANCES AS FUNCTION OF N AND N_0 FOR OPTIMUM GF(2^N) RC-LCIRC ENCODERS}
\end{align*}

<table>
<thead>
<tr>
<th>N</th>
<th>N_0</th>
<th>R</th>
<th>d_E^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1/2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1/4</td>
<td>9.2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1/2</td>
<td>3.6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3/4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1/6</td>
<td>\approx 9</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1/3</td>
<td>\approx 4.47</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5/6</td>
<td>\approx 0.48</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>\approx 0.19</td>
</tr>
</tbody>
</table>

For the rate 1/2 encoder the scheme in Fig. 6 is set with all the values corresponding to $N_0=2$. From (4) results that the minimum distance of this code is $d_E^2 = 16$, having a coding gain of $10\log_{10}d_E^2 = 16$ dB.
The QAM-TCM schemes using rate 1 optimum nonlinear RC encoders can be designed for any spectral efficiency value, and for any encoding rate, using the scheme in Fig. 6 with minimum distance given by (4), i.e., the code performances decrease with the rate increases. Unfortunately, these performances are related to the spectral efficiency of these PSK transmissions. For the codes presented in Table 1, having the encoder structure in Fig. 6, the spectral efficiency for the QAM transmission is equal to the input wordlength N_w. Hence, the code performances increase is paid by a spectral efficiency decrease.

It can be easily noticed that all the rate $(N-1)/N$, for any N value, the optimum RC-LCIRC encoders are offering the same minimum distance as the corresponding binary optimum encoders determined by Ungerboeck in [8]. However, the GF(2^N) optimum RC-LCIRC encoders are less complex than the corresponding binary encoders. The memory size of the binary encoders increases logarithmically with the number of states in the trellis, while the GF(2^N) optimum RC-LCIRC encoders include only one delay element, no matter what is the trellis complexity.

One can notice that optimum RC-LCIRC QAM-TCM encoders can be designed for any spectral efficiency value, and for any encoding rate, using the scheme in Fig. 6 with minimum distances given by (4).

IV. SIMULATION RESULTS

The QAM-TCM schemes presented in Section II and Section III using all optimum encoders in Table 1 were considered for simulations. The SER performances for these encoding schemes using multilevel QAM signals and Viterbi decoding were analyzed in the presence of AWGN. The SER is plotted in Fig. 7 as a function of the SNR.

The QAM-TCM schemes using rate 1 optimum nonlinear RC encoders for the same spectral efficiencies as the three optimum encoder QAM-TCM schemes for $N=4$, were considered for comparison. For example, the rate 1/4 encoder for $N=4$ is having the same spectral efficiency as the rate 1 encoder for $N=1$, i.e., 1b/s/Hz, and the rate 2/4 encoder for $N=4$ and the rate 1 encoder for $N=2$ have an efficiency of 2b/s/Hz. These cases are considered in Fig. 7.

Analyzing the SER curves it can be noticed that the rate 1/4 encoder for $N=4$ performs better than the rate 1 encoder for $N=1$ by more than 1 dB, and the rate 2/4 encoder for $N=4$ performs almost the same as the rate 1 encoder for $N=2$. The simulation results are in concordance with the theoretical results from Table 1. However, the average multiplicity of error events with the minimum distance in (4), for optimum GF(2^N) RC encoders, is smaller than multiplicity of minimum distance error events for the rate 1 encoders, for all encoders with $N_w < N$. This is the reason why the simulation results in Fig. 7 show slightly larger coding gains between these two encoders for a given spectral efficiency.

V. CONCLUSIONS AND FUTURE WORKS

It was demonstrated that optimum RC encoders over GF(2^N) can be designed using the LCIRC function. A generalized 1-delay GF(2^N) RC encoder scheme using LCIRC was defined, for any possible encoding rate. A general expression is found for the minimum Euclidian distance of QAM-TCM schemes using these optimum encoders. As advantage of this generalized encoder, we can mention its reduced complexity. Hence, using only one delay element and multiple bit circulations we designed encoders having complex trellises and large Euclidian distances. In addition, it was shown that the nonlinear encoders offer the same performances as conventional binary encoders.

In perspective, we intend to apply the presented method to other nonlinear structures and develop efficient trellis-coded modulation systems using these encoders. In addition, we will address the performances evaluation for the proposed TCM schemes over fading channels. Considering the properties of the QAM-TCM encoders presented in this paper, we also aim to analyze the turbo TCM scheme with optimum RC encoders over GF(2^N).
ACKNOWLEDGEMENT

This work was supported in part by the Romanian UEFISCUS PN-2 RU-TE Project no. 18/12.08.2010 and by the Romanian contract POSDRU/89/1.5/S/62557.

REFERENCES

