

Synthesis of 1-Alkyl-2-chloromethylbenzimidazole Under Green Conditions

S. Srinivas Rao^{*}, Ch. Venkata Ramana Reddy and P.K. Dubey

Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad College of Engineering Kukatpally, Hyderabad -500 085, India

*Corresponding author: E-mail: seenu604@gmail.com

Received: 20 November 2013; Accepted: 27 January 2014; Published online: 26 December 2014; AJC-16514

A green approach for the synthesis of 1-alkyl-2-chloromethylbenzimidazoles (3) ($R^1 = CH_3$, C_2H_5 , CH_2Ph) under, different conditions has been developed from 2-chloromethylbenzimidazole (2) by reaction with an alkylating agent (*i.e.* DMS, DES, PhCH₂Cl) by physical grinding or by using green solvent like PEG-600 or by using micro-wave irradiation technique.

Keywords: Green synthesis, Grinding, Microwave, N-alkyl-2-chloromethylbenzimidazole, Benzimidazole.

INTRODUCTION

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest¹. Benzimidazoles are an important class of bioactive molecules in the field of drugs and pharmaceuticals². 2-Mercaptobenzimidazole derivatives having substitution either at the nitrogen or sulfur are reported to exhibit a broad spectrum of biological activity³⁻⁸.

Verma *et al.*⁹ reported that N-methyl-*o*-phenylenediamine on treatment with chloro acetic acid in aq. HCl under reflux for 1 h gave 1-methyl-2-chloromethylbenzimidazole in 80-82 % yield. Flosi *et al.*¹⁰ described that 1-methyl-1*H*-benzimidazole-2-carbaldehyde on treatment with diisobutylaluminium hydride in THF for 1 h followed by chlorination with SOCl₂ in dichloromethane gave 1-methyl-2-chloromethylbenzimdazole. In continuation of our earlier studies on alkylation of 2-acetylbenzimidazole¹¹ and thiolation of N-methyl-2-chlorobenzimidazole¹², we now wish to report on alkylation of 2-chloromethylbenzimidazole using green methods.

EXPERIMENTAL

Melting points were determined in open capillaries in sulfuric acid bath and are uncorrected. IR spectra were recorded with Jasca FT-IR 5300. ¹H NMR and spectra were recorded in CDCl₃/DMSO using Varian 400-MHz instrument. Mass spectra were recorded on an Agilent LC-MS instrument giving only M⁺ values in Q + 1 mode. Thin-layer chromatography (TLC) analyses were carried out on glass plates coated with silica gel GF-254 and visualization was achieved using iodine vapours or UV lamp. Experiments under microwave irradiation were carried out by using the commercially available CEM Discover Microwave Reactor.

Synthesis of 1-alkyl-2-chloromethylbenzimidazoles (3) (R_1 = CH₃, C₂H₅, CH₂Ph) from 2-chloromethylbenzimidazole (2)

Physical grinding method: A mixture of **2** (10 mM), alkylating agent (10 mM) and K_2CO_3 (1.38 g, 10 mM) was ground together for about 10-15 min in a mortar with a pestle at room temperature to obtain a homogeneous mixture. The completion of the reaction was monitored by TLC on silica gel-G plates using samples of the starting material and authentic target compounds as references. The mixture was then treated with ice-cold water (about 30-40 mL). The separated solid was filtered, washed with water (2 × 10 mL) and dried to obtain crude **3a-c**. Recrystallization of the crude product from ethyl acetate gave pure **3a-c**. IR, ¹H NMR and LC-MS spectra for the compounds **3a-c** were found to be in agreement with the structures assigned to them. Yields are shown in Table-1.

In PEG-600: A mixture of 2 (10 mM), alkylating agent (10 mM) and PEG-600 (20 mL) was heated on a steam-bath at 100 °C for 3 h. At the end of this period, the mixture was cooled to room temperature and poured into ice-cold water (about 50 mL). The separated solid was filtered, washed with water (2×10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure **3a-c**, identical with the same products obtained above. Yields are shown in Table-1.

Under microwave condition: A mixture of **2** (10 mM) and alkylating agent (10 mM) was taken in a 10 mL CEM-reaction tube sealed by rubber stopper and subjected to microwave irradiation for 2 min in a commercial microwave

TABLE-1	
PREPARATION OF COMPOUND 3 FROM COMPOUND 2 UNDER DIFFERENT G	REEN CONDITIONS

				Methods								
				Physical grinding			PEG-600			Microwave irradiation		
S. No.	SM	Reagent	Product	Time	Temp.	Yield*	Time	Temp.	Yield*	Time	Temp.	Yield*
3. NO.	SIVI	Keagem	FIGURE	(min)	(°C)	(%)	(min)	(°C)	(%)	(min)	(°C)	(%)
		DMS		10-15	RT	78	180	100	68	2	RT / 450 W	80
		DES	3b	10-15	RT	74	180	100	72	2	RT / 450 W	83
		PhCH ₂ Cl	3c	10-15	RT	81	180	100	66	2	RT / 450 W	78
m.p. of 3a: 118-22 °C (Lit. ^{9,10} m.p. 116-20 °C) *Yield refers to isolated crude product only												
$mn \text{ of } \mathbf{2h} \text{ 102 } 104 ^{\circ}\text{C} (\text{Lit } 9.10 \ \text{mn} \text{ n} \ 0.9 \ 102 ^{\circ}\text{C})$												

m.p. of **3b:** 102-104 °C (Lit.^{9,10} m.p. 98-102 °C)

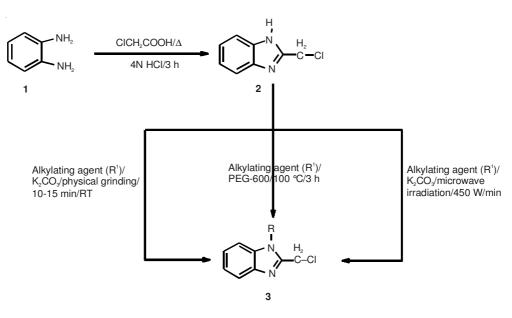
m.p. of **3c:** 84-89 °C (Lit.^{9,10} m.p. 86-89 °C)

Р

reactor. After that, the tube was cooled and the completion of reaction was checked by TLC. Then the reaction mixture was poured into ice-cold water (50 mL). The separated solid was filtered, washed with water (2×10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure **3a-c**, identical with the same products obtained above. Yields are shown in Table-1.

RESULTS AND DISCUSSION

Condensation of *o*-phenylenediamine (1) with chloroacetic acid in 4N HCl under reflux for 3 h gave the known 2-(chloromethyl)-1*H*-benzimidazole (2). Reaction of 2 with each of dimethyl sulphate (DMS), diethyl sulphate (DES) and benzyl chloride (PhCH₂Cl) in the presence of K₂CO₃, by a simple physical grinding of the reaction mixture in a mortar with a pestle under solvent-free conditions for 10-15 min at room temperature, followed by processing, gave, respectively 1-methyl-2-chloromethylbenzimidazole **3a** (*i.e.*, **3**, R = CH₃), 1-ethyl-2-chloromethylbenzimidazole **3b** (*i.e.*, **3**, R = CH₂CH₃) and 1-benzyl-2-chloromethylbenzimidazole **3c** (*i.e.*, **3**, R = CH₂Ph) as the products identical with the ones reported in the earlier methods^{9,10} in all respects (m.p. m.m.p. and co-tlc analysis). The reaction was also carried out in PEG-600 as the green solvent. Thus, heating a mixture of **2** with an alkylating agent in PEG-600 for 3 h without the use of any added base, followed by simple processing, gave, respectively **3a** (*i.e.*, 3, $R = CH_3$), **3b** (*i.e.*, **3**, $R = CH_2CH_3$) and **3c** (*i.e.*, **3**, $R = CH_2Ph$) identical with the same products obtained above (**Scheme-I**).


Compound **3** could also be prepared by an alternative, green method. Thus, **2** with an alkylating agent and K₂CO₃ as a base under microwave irradiation at RT conditions for 2 min and subsequent processing gave, respectively **3a** (*i.e.*, **3**, R = CH₃), **3b** (*i.e.*, **3**, R = CH₂CH₃), **3c** (*i.e.*, **3**, R = CH₂Ph) identical with the products obtained above (**Scheme-I**).

Conclusion

In conclusion, we have developed a green approach for the synthesis of 1-alkyl-2-chloromethylbenzimidazoles under different conditions.

ACKNOWLEDGEMENTS

The authors are indebted to the authorities of Jawaharlal Nehru Technological University Hyderabad, India for providing the research facilities.

3a, R=CH₃; 3b, R=C₂H₅; 3c, R=CH₂Ph

Scheme-I

REFERENCES

- (a) G.L. Gravatt, B.C. Baguley, W.R. Wilson and W.A. Denny, *J. Med. Chem.*, **37**, 4338 (1994); (b) J.S. Kim, B. Gatto, C. Yu, A. Liu, L.F. Liu and E.J. LaVoie, *Eur. J. Med. Chem.*, **39**, 992 (1996); (c) T. Roth, M.L. Morningstar, P.L. Boyer, S.H. Hughes, R.W. Buckheit and C.J. Michejda, *J. Med. Chem.*, **40**, 4199 (1997); (d) D.A. Horton, G.T. Bourne and M.L. Smythe, *Chem. Rev.*, **103**, 893 (2003).
- (a) G.L. Gravatt, B.C. Baguley, W.R. Wilson and W.A. Denny, *J. Med. Chem.*, **37**, 4338 (1994); (b) B. Jayashankara, *ARKIVOC*, 75 (2008); (c) T. Roth, M.L. Morningstar, P.L. Boyer, S.H. Hughes, R.W. Buckheit and C.J. Michejda, *J. Med. Chem.*, **40**, 4199 (1997).
- H. Hasegawa, N. Tsuda and M. Hasoya, Japanese Patent, 72,55,198 (1974); Chem. Abstr., 156308 (1975).
- G. Rovnyak, V.L. Narayana, R.D. Haugwitz and C.M. Cimarusti, US Patent, 3,927,014 (1975); *Chem. Abstr.*, 84, 105596m (1975).

- 5. S.C. Bell and P.H. Wei, J. Med. Chem., 19, 524 (1976).
- D.R. Graber, R.A. Morge and J.C. Sih, J. Org. Chem., 52, 4620 (1987).
 N.I. Korotkikh, G.F. Raenko and O.P. Shvaika, Chem. Heterocycl. Comp.,
- 31, 359 (1995).
 N.I. Korotkikh, A.F. Aslanov and G.F. Raenko, *Russ. J. Org. Chem.*, 31, 721 (1995); *Chem. Abstr.*, 18833 (1997).
- 9. R.K. Verma, R. Mall, P. Ghosh and V. Kumar, Syn. Comm., 43, 1882 (2013).
- W.J. Flosi, D.A. DeGoey, D.J. Grampovnik, H. Chen, L.L. Klein, T. Dekhtyar, S. Masse, K.C. Marsh, H.M. Mo and D. Kempf, *Bioorg. Med. Chem.*, 14, 6695 (2006).
- 11. P.K. Kumar and P.K. Dubey, Asian J. Chem., 24, 3249 (2012).
- 12. S.S. Rao, P.K. Dubey and Y.B. Kumari, *Indian J. Chem.*, **52B**, 1210 (2013).