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Abstract

Cadmium (Cd) is one of the non-essential, highly toxic environmental pollutants worldwide causing serious environmental
and agricultural problems. Elevated Cd doses are carcinogenic to humans. It is ranked seventh in the list of top 20 toxic metals
and classified as a group 1 carcinogen. The median range of Cd dietary intake (66.5-116 ug Cd kg™! body weight per month)
is much higher than maximum limit (25 ug Cd kg~! body weight per month) reported by FAO/WHO. Toxicity of Cd causes
arange of damages to plants from germination to yield; however, the extent of damage is concentration and time-dependent.
Reduction in seed germination and plant growth is primarily due to Cd interference with enzymatic and photosynthetic
activities and membrane damage. Cadmium exposure at higher rates disturbs the nutritional and water relations of plants
and causes oxidative damage. Moreover, Cd-induced structural changes in the photosynthetic apparatus disturb the yield of
plants. In this review, adverse effects of Cd on seed germination, stand establishment, plant growth, uptake and assimila-
tion of nutrients, enzymatic activities, ultra-structural and oxidative damages, changes in antioxidant defense system and
stress proteins, carbon metabolism, and yield formation are reported. Moreover, Cd dynamics in soil rhizosphere and factors
affecting Cd dynamics in soil have also been discussed. Furthermore, remediation strategies (physical, chemical, biological,
and amendments) to decontaminate Cd-polluted soils have also been described in this review. Through phytoremediation,
Cd can be extracted and stabilized in the soil while through microbes Cd can be sequestrated into their bodies. Increased Cd
uptake in hyperaccumulator plants to remediate and convert the toxic form of Cd into nontoxic forms. While in chemical
remediation, Cd can be washed out, immobilized and stabilized in the soil through chemical amendments. Bioremediation
of polluted sites is considered effective and reliable due to its eco-friendly features. Moreover, Cd uptake and toxicity in rice
can be decreased by proper application of essential nutrients such as nitrogen, zinc, iron, and selenium in Cd contaminated
soils. The organic amendments may help through an increase in soil pH, adsorption in its functional groups, the formation of
complexations, and the conversion of exchangeable to residual forms. Adoption of some agricultural practices are also found
to be effective in reducing the Cd uptake and accumulation in plants and harvesting quality food from Cd contaminated soils.
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1 Introduction

In the present era, environmental contamination is one of
the significant constraints of modern human society (Ali
and Khan 2017; Afzal et al. 2019). Among environmental
contaminants, heavy metals (HMs) are the most toxic due
to their persistent and bioaccumulative nature; thus, creat-
ing a deleterious risk to biological substances (Ali et al.
2019). Globally, the rate of HM mobilization and transport
in the ecological system has been extraordinarily expanded
since the 1940s due to rapid growth rate of industrializa-
tion (Anyanwu et al. 2018). Although, these metals naturally
exist in the soil in a very minute concentration through char-
acteristic lithogenic as well as pedogenic means (Wuana and
Okieimen, 2011). However, various anthropogenic practices
including mining, improper industrial as well as urban waste
disposal, combustion of non-renewable energy sources, met-
allurgical industries, chemical fertilizers, and improper han-
dling of industrial effluents are fundamental contributors to
aggregate these metals in soil (Tchounwou et al. 2012; Yuan
etal. 2019).

Regarding their biological role, HMs have been catego-
rized primarily as essential as well as non-essential (Ali
et al. 2019). Essential HMs like zinc (Zn), manganese (Mn),
iron (Fe), and nickel (Ni) are inevitably vital for the growth
and biological functioning of living forms in a quite low
concentration (Andresen et al. 2018). While non-essential
HMs including lead (Pb), cadmium (Cd), and silver (Ag)
have no or very little biological activity and their exposure
above permissible limit poses a hazard to biological systems

Fig. 1 Annual world mine pro-
duction of Cd in thousand met-
ric tons (source, USGS 2020).
The plus and minus values/
labels in the graph line indicate
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Cd production
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by interfering with their physiological and metabolic pro-
cesses, contaminating food chain, causing ecological imbal-
ances and resulting in lethal health issues due to their toxic
nature (Zulfigar et al. 2019; Haider et al. 2021). Cadmium
is a highly noxious HM that is deleterious for biological
systems through its uptake and accumulation in phototrophs
and consequent trophic transportation (Hussain et al. 2021a,
b). According to ATSDR (2012), Cd has been classified as a
7th element amongst the top 20 most dangerous substances
due to its extraordinary potential health effects. Cadmium is
released into the environment via both natural and anthro-
pogenic systems. Among natural systems, volcanic emis-
sions, forest fires, weathering of Cd-containing rocks, and
wastewater are the principal means of mobilizing it from
the lithosphere (Choppala et al. 2014; Zhao et al. 2015).
However, Cd is rare HM in the lithosphere which is ranked
as 65th most abundant element with 0.1-0.2 ppm concentra-
tion (Emsley 2011). Therefore, anthropogenic activities such
as application of phosphate-based fertilizers (Roberts 2014),
manufacturing of Ni—Cd batteries, Zn mining, agricultural
practices such as wastewater irrigation, electroplating, appli-
cation of urban compost as well as metal-based pesticides,
and industrial emission as a byproduct (Zhao et al. 2015;
Zhou et al. 2017; Manzoor et al. 2019) are mainly respon-
sible for Cd aggregation in soil. Additionally, atmospheric
deposition is the key source of soil Cd accumulation with
2500-15,000 tonnes per annum (UNEP 2010; Shahid et al.
2013a; Cai et al. 2019). Between 2001 and 2019, global pro-
duction of recoverable Cd increased from 19,300 to 25,400
thousand metric tons (USGS 2020; Fig. 1).

Overall 31% increase between 2001 and 2019
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Cadmium is a toxic heavy metal that has a little biologi-
cal role in living bodies (Shahid et al. 2016). It has been
demonstrated to be naturally used as a catalytic metal in
the cadmium-carbonic anhydrase (CDCAL1), a CA isolated
from the marine diatom Thalassiosira weissflogii (Alterio
et al. 2015). However, due to its great mobility in soil-plant
framework (Gill et al. 2012), Cd is easily taken up by plants
and transmitted to humans and animals along the food
chain (Paunov et al. 2018); hence, its exposure in exces-
sive concentration is a serious concern for them. In human
beings, the maximum acceptable dietary Cd concentration is
60-70 pg per day (Chunhabundit 2016). Beyond this level,
it is reported to associate with breathing and bone disorders,
diabetes, hypertension (Ueno et al. 2010; Fatima et al. 2019)
and elicits extreme damage to organs such as lungs, kid-
neys, and liver, causing the danger of emerging malignancy
(Shahid et al. 2014a; Baldantoni et al. 2016). Moreover, it is
highly detrimental for soil microbial community activities
and structure (Khan et al. 2009a, b; Yu et al. 2021) and is
also reported to impair plant physiological capacities, lead-
ing towards abridged growth and yield (Jibril et al. 2017).
Therefore, to limit the risk of Cd-induced phytotoxicity, high
Cd concentrations in foodstuff, and the subsequent impact
on animals and human beings, it is suggested that agricul-
tural lands with more than 1 ppm Cd may not be used for
crop production and decontaminating measures should be
adopted for soils having 5-20 ppm Cd concentration (Lou-
wagie et al. 2009).

The fundamental ideas of Cd dynamics, its uptake, nox-
iousness, and detoxifying mechanisms in the soil-plant
framework have been thoroughly scrutinized in studies con-
ducted before 2000 and their findings have been summed
up in numerous review articles and books. Moreover, dur-
ing the recent decade, quite a few articles have further been
documented, reflecting the biochemical mechanisms under
Cd stress. The current review sums up the most recent data
regarding the toxic effects of Cd on key metabolic func-
tions of plants leading to growth and yield impairment. The
dynamics of Cd in the rhizosphere, factors affecting its bio-
availability along with important remediation approaches
and agricultural practices are also highlighted to reclaim
the Cd contaminated soils to harvest better crop yields of
good quality.

2 Impact of Cadmium Toxicity on Plant
Growth and Yield Formation

Beyond permissible limits, i.e., 8 ppm for agricultural soils
as well as 3-30 ppm for plants ((Ismael et al. 2019), Cd is
reported to elicit adverse effects on plant growth owing to
its non-metabolic nature and extensive biological half-life
(Shanmugaraj et al. 2019). Its excessive accumulation in

plants reflects several phytotoxic features including abridged
germination index, water and oxidative stress, impairment in
nutrient uptake and metabolism, hampered enzymatic activi-
ties, genotoxicity, and impeded carbon metabolism; hence,
leading towards a substantial decline in crop yield (Fig. 2;
Shahid et al. 2013b, 2014b; Abedi and Mojiri 2020). Effects
of Cd contamination on various aspects of phytotoxicity are
highlighted in the accompanying sub-sections.

2.1 Germination, Stand Establishment, and Plant
Growth

Cadmium causes obnoxious effects on germination index,
seedling vigor index, and earlier plant growth (He et al.
2014). Reduced seed germination is attributed to the Cd-
induced inhibition of seed imbibition (Bautista et al. 2013;
Huybrechts et al. 2019) which is essential for hydration of
enzymes involved in important metabolic activities, resulting
in biochemical as well as physiological alterations (Zayneb
et al. 2015). Moreover, high Cd concentration in germina-
tion medium appears to inhibit hydrolysis of reserved sugars
as well as their translocation from endosperm to growing
embryonic axis due to its contrary effects on hydrolyzing
enzymes such as acid phosphatases (ACPs) and a-amylases,
hence leading to starvation of germinating embryo (Kuria-
kose and Prasad 2008). Besides, Cd-induced retardation
of seedling growth has also been reported due to inhibited
storage protein catabolism owing to its interactions with
proteolytic enzymes (Gianazza et al. 2007), changes in pro-
tein pattern (Ahsan et al. 2007a, b) and reduction in root
respiration leading to augmented nitrite production (Gouia
et al. 2003) and impaired cellular activities (Seneviratne
et al. 2017). Several studies reported that Cd stress leads to
inhibition of food storage mobilization, decrease in radical
formation. Disruption in cellular osmoregulation and the
degradation of proteolytic activities, ultimately inhibition
of seed germination and seedlings development (Baszynski
2014; Seneviratne et al. 2017; Fig. 3). A series of recent
studies has well documented the harmful effect of Cd on
germination as well as seedling vigor index in a variety of
crops including rice (Oryza Sativa L.) (Cd 100 pM) (He
et al. 2014), wheat (Triticum aestivum L.) (Cd 20 mg LY
(Ahmad et al. 2013), maize (Zea mays L.) (Cd 100 mg LY
(Chen et al. 2021), sunflower (Helianthus annuus L.) (Cd
50 mg kg_l) (Jadia and Fulekar 2008, mustard (Brassica
juncea L.) (Cd 100 mg kg_l) (Irfan et al. 2014), pea (Pisum
sativum) (Cd 5 mM) (Smiri 2011), chickpea (Cicer arieti-
num L.) (Cd 23 mg kg™') (Wani et al. 2007a), mung bean
(Vigna radiate L.) (Cd 23 mg kg™') (Wani et al. 2007b),
and rapeseed (Brassica napus L.) (Cd 10 mg kg_l) (Ehsan
et al. 2014a).

In addition to germination and seedling growth, Cd
contamination also causes plant growth deformities due to
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Fig. 2 Possible sources of cadmium in soil, factors affecting cadmium speciation in soil, and its toxic impacts of cadmium in plant (Data
taken from Khan et al. 2017; Rizwan et al. 2018; Yuan et al. 2019; El-Rasafi et al. 2020)
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Fig.3 Possible interference mechanisms of Cd on seed germination imbibition. SOD: superoxide dismutase, POD: peroxidase, APX:
process. Cadmium (Cd) negatively affects metabolic reactivation by ascorbate peroxidase, GR: glutathione reductase. (Conceived from
reducing levels of hydrolyzing enzymes, starch mobilization and seed Huybrechts et al. 2019)
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cellular, molecular and biochemical alterations, affecting
plant morphology as well as physiology (Shanmugaraj
et al. 2013; Song et al. 2017). Cadmium-induced retarda-
tion and abnormalities of general growth and biomass
are linked to several metabolic changes in plants, result-
ing in inhibited photosynthesis and nitrogen fixation as
well as assimilation (Chang et al. 2013; Sebastian and
Prasad 2015a; 2015b) which lead to reduced carbohy-
drate and protein turnover; hence, causes reduction in
plant growth. Moreover, Cd stress impairs several cellular
activities including inhibited mitotic index and micronu-
cleus formation (Fusconi et al. 2006; Seth et al. 2008),
chromosomal abnormalities (Nefic et al. 2013), cell wall
lignification (Vaculik et al. 2012), and DNA damages
(Seth et al. 2008); eventually, inducing cell death (Zhang
et al. 2015a) and growth deformation including necro-
sis, chlorosis and rolling of leaves, brown, twisted, rigid
and mucilaginous roots and stunted growth (Wahid et al.
2008; Lux et al. 2010; Chang et al. 2013; Rizwan et al.
2017; Zhang et al. 2019). Huang et al. (2015) investi-
gated the effect of Cd stress on root morphology of three
pepper cultivars (two low-Cd cultivars and one high-Cd
cultivar) and reported that under hydroponic conditions,
10 uM concentration of Cd caused a substantial reduction
in root tips, length as well as whole root area against con-
trol. Cadmium stress has also been reported to inhibit the
growth of white clover plants due to its noxious effect on
nodulation index as well as its ultrastructure, leading to
nodule senescence and reduced carbohydrate and protein
synthesis (Manier et al. 2009). Hedjiji et al. (2015) inves-
tigated that Cd did not only reduce the plant biomass and
growth, but also caused a decline in fruit production of
tomato (Solanum lycopersicum L.) plants at 20 pM and
100 uM concentration. These results suggest that tomato
plants acclimatize during long-term exposure to 20 pM
Cd, while 100 pM Cd results in drastic nutritional per-
turbations leading to fruit set abortion. Similar results
have also been reported in potato (Solanum tuberosum
L.) (Hassan et al. 2016), cabbage (Brassica oleracea var.
capitate) (Jinadasa et al. 2016), lettuce (Lactuca sativa
L.) (Monteiro et al. 2009), radish (Raphanus sativus L.)
(Varalakshmi and Ganeshamurthy 2013), peanut (Zhang
et al. 2013a), mustard (Chen et al. 2011), soybean (Gly-
cine max) (Wang et al. 2016a, b) and rice (Zhou et al.
2014; Mostofa et al. 2015; Rehman et al. 2015).

Cd-induced toxic effects on germination and crop
growth are highly dependent on its concentration and
cultivar and differ from species to species, plant growth
stage, and duration of metal exposure (Gul et al. 2018).
Such as, two pepper cultivars behaved differently regard-
ing Cd accumulation in roots (Xin et al. 2014).

2.2 Uptake and Assimilation of Mineral Elements

Cadmium has been reported to impose contrary impacts
on the uptake as well as assimilation of nutrients in plants
(Li et al. 2016; Ismael et al. 2019; Mourato et al. 2019),
leading towards nutrient deficit known as an inducible defi-
ciency (Khan et al. 2015a). Under the stressed condition,
the inhibition in the absorption of essential elements might
be ascribed to the competition for root uptake between Cd
and mineral elements (Rizwan et al. 2016a, b; Ertani et al.
2017). Primarily, Cd enters the roots via three pathways,
generally followed by mineral nutrients, including passive
transport in the epidermal layer at the plasma membrane in
exchange of H" (Yamaguchi et al. 2011), through specific
ion transporters (Sadana et al. 2003) and specific proteins in
the form of chelates (Curie et al. 2009). Furthermore, diva-
lent cation (Cd*") is the principal elemental state of Cd to
enter the plants (Song et al. 2016); thereby, competing with
other cations. Besides competing for entry, Cd also retards
nutrient translocation to aerial plant parts by challenging and
inhibiting numerous transporters that are engaged with the
nutrient translocation (Wang et al. 2016a, b; Sarwar et al.
2017; Mitani-Ueno et al. 2018; Naeem et al. 2019), geneti-
cally interfering with specific transporter gene expression
(Migocka and Klobus 2007) and inducing efflux of mineral
nutrients from roots (Kovacik et al. 2006). Cd is reported
to interfere with several macro as well as microelements
such as Zn, Mn, Fe, phosphorus (P), nitrogen (N), and so
forth (Solti et al. 2011; Bertoli et al. 2012; Jinadasa et al.
2016; Khan et al. 2016a); hence, disturbing their assimi-
lation and specific role in plants (Sipos et al. 2013). The
unfavorable impacts of Cd on the depleted nutrient con-
tents have been observed in several plant species, such as
rice (Li et al. 2012a, b), wild garlic (Allium ursinum L.)
(Street et al. 2010), and soybean (Zhi et al. 2015). Nada
et al. (2007) examined the Cd-nutrient interactions and their
subsequent impacts on sunflower plants. Cd-induced imbal-
ance in uptake as well as translocation of essential elements
in plant tissues; resulting, depletion of Fe and Mn in leaves.
Moreover, Fe deficiency also caused a reduction in chloro-
phyll as well as ferredoxin content in the plant, resulting,
in inhibited photosynthesis and other metabolic processes.
Khan et al. (2016b) investigated the Cd interaction with pri-
mary macronutrients and found that Cd application (1, 2.5,
and 5 mg kg™') reduced that N content in tomato plants by
70, 9, and 34% corresponding; while, reduction in P as well
as potassium (K) content was also observed in tomato and
potato plants. Astolfi et al. (2005) detected inhibitory impact
of Cd on H*ATPase in maize, which is a cytoplasmic-mem-
brane-associated metal-sensitive enzyme system, controlling
transport of ions across the membrane.

Phytotoxicity induced by Cd has also been reported
to pose deleterious effects on N metabolism including N
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uptake, fixation as well as assimilation by inhibiting the
action of enzymes associated with N metabolic pathway
(Chang et al. 2013), thus inducing physiological changes
which result in restricted plant growth (Shanmugaraj et al.
2019). Karina et al. (2003) studied the N metabolism of soy-
bean plants exposed to two distinctive Cd concentrations
(50 and 200 pM). At 200 pM concentration, reduced nodu-
lation and inhibited the action of nitrogenase was detected
in plants, resulting impaired N fixation as well as ammo-
nia assimilation. Similar results have also been observed
in mung bean (Cd 20 mg kg~') (Wahid et al. 2007), chick-
pea (Cd 50, 100, or 150 uM) (Hasan et al. 2008) and white
lupin (Lupinus albus L.) (Sanchez-Pardo et al. 2013). Fur-
thermore, Cd is documented to disturb NO; assimilation
in plants by diminishing the action of nitrate reductase, a
key enzyme involved in NO; assimilation by catalyzing the
NAD(P)H reduction of NO; to NO, (Singh et al. 2019) and
increasing in the endogenous NO concentration in different
plant species (Valentovicova et al. 2010).

The impact of Cd exposure on plant nutritional status
is highly dose-dependent which differs by changing the Cd
exposure time, cultural medium, and varies among differ-
ent species, genotypes, and cultivars (Naeem et al. 2019).
For instance, Hediji et al. (2015) reported varied calcium
(Ca) content in tomato plants when subjected to different
Cd (20 uM and 100 uM) concentrations. It was observed
that Cd interacted synergistically as well as antagonistically
with mineral contents at 20 uM and 100 uM concentration,
correspondingly. Cd stress reduced Ca, Cu and Zn contents
in shoots and increased them in roots. High Cd level led
to a significant decrease in K and Mg content in all plant
organs. Furthermore, Fe concentration was reduced in roots,
stems, and leaves but increased in flowers, seeds, and red
ripe fruits. Similarly, a positive correlation between Cd and
mineral elements was reported when welsh onion (Allium
fistulosum) L. was exposed to different Cd concentrations
(Liet al. 2016). Goncalves et al. (2009a) explored the impact
of Cd on the nutritional status of potato in hydroponic as
well as in-vitro experimental conditions and reported that
Cd impact on plant nutrient content is dependent on the
experimental cultural medium, as Cd-induced no effect on
the plant nutritional status in a hydroponic culture; while, in
case of in-vitro conditions, the essential elements including
Ca, K, Mg, Zn, Mn, Fe, and copper (Cu) diminished in both
the roots as well as shoot.

Although, the Cd-nutrient interactions are well known
in diverse plant species; however, the mechanism of these
interactions is still unclear which needs further investiga-
tion. Besides, most of the existing research regarding the
assessment of Cd effects on plant nutritional status is associ-
ated with the spiking of plant growing medium, i.e., soil or
hydroponic culture with Cd, which may not be completely
illustrative of natural field condition (Khan et al. 2016a). For
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that reason, to fill this literature gap, more extensive field
research is needed to be explored to assess these impacts
under natural conditions.

2.3 Plant Water Relations

In response to Cd exposure, plants are subjected to varying
degrees of water stress, due to several morphological as well
as physiological alterations including decreased intracellular
space, cell size, number, and diameter of vascular bundles
(Fernandez et al. 2013). These modifications result in dis-
rupting the plant ionic homeostasis by inducing changes in
plasma membrane permeability; thus, inhibiting the stomatal
conductance, transpiration rate, and relative leaf water con-
tent (Dominguez et al. 2011). According to Thevenod and
Lee (2013) Cd induces irregularities in signal transduction
as well as stomatal gas exchange in response of its antago-
nistic effect on Ca and K levels in plants, respectively. It is
reported to interfere with Ca metabolism due to its competi-
tive behavior to get entry in guard cells through Ca channels
which results in aberrant signal transmission; consequently,
guard cells become flaccid. (Corguinha et al. 2012). Moreo-
ver, Cd toxicity causes a substantial decline in the hydraulic
conductivity by reducing the root surface area as well as
root hair density for water absorption (Gouia et al. 2003). If
soils are Cd contaminated, the soil solution’s osmotic abil-
ity may be lower than that of root cell sap (Malecka et al.
2008). Under such conditions, soil solution will severely
limit plant water absorption levels and result in osmotic
pressure (Rucinska-Sobkowiak 2016).

Disturbance in the water status of plants under Cd expo-
sure is reported in a variety of crops. Nedjimi and Daoud
(2009) demonstrated the effect of excessive Cd concentra-
tion on the nutritional and water status of saltbush (Atriplex
halimus). It was reported that Cd drastically abridged K and
Ca content in both roots as well as shoot, caused a signifi-
cant reduction in transpiration and hydraulic conductivity:
thus, the roots and shoot were characterized by decreased
water content in the tissues. Similarly, Sedum alfredii (Cras-
sulaceae) when exposed to 600 uM Cd, the leaf water con-
tent considerably reduced to 0.69% as compared to control
owing to restrained root development; hence, water uptake
and supply to shoot is disturbed (Zhou and Qiu, 2005). Polle
et al. (2013) observed Cd-induced water stress in euphrates
poplar (Populus euphratica) and found it in a wilting state
due to fluctuation in turgor pressure and turgidity loss by
guard cells. Likewise, euphrates poplar when exposed to
Cd (50 pM), displayed significant contraction of cytoplasm,
resulting impaired ionic homeostasis and water balance (Sun
et al. 2013). In this scenario, plant growth inhibition is fur-
ther aggravated due to the hampered rate of transpiration
as well as nutrient translocation from one part to another
(Sipos et al. 2013). Cadmium-induced hindrance of stomatal
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conductance has also been stated in numerous plant species
including white clover (Trifolium repens), evergreen oak
(Quercus ilex), rice, Picris divaricate, and soybean (Ying
et al. 2010; Dominguez et al. 2011).

During the course of evolution, plants have evolved intri-
cate strategies to cope with Cd-induced stress by enhanced
accumulation of osmolytes (El-Esawi et al. 2020). Plants
under Cd stress are found to reflect escalated levels of absci-
sic acid (ABA) a phytohormone involved in stomatal clo-
sure, resulting diminished respiratory rate (Roelfsema and
Hedrich 2005). However, in response to Cd stress, plants
show adaptive behavior by synthesizing a higher concen-
tration of osmolytes such as proline to maintain osmotic
balance (Yakhin et al. 2009) which is also an indicator of
stressed condition (Tran and Popova 2013). Tobacco (Nico-
tiana tabacum L.) plants exhibited antioxidant response
against Cd exposure by accumulating a greater concentra-
tion of proline in cells to assuage Cd toxicity (Islam et al.
2009). In an experiment, it was observed that increase in
Cd concentration reduced the leaf water potential in mus-
tard; whereas with increase in Cd concentration, the leaf
proline level also increased and protected the plant growth
and restricted the uptake and transport of Cd (Irfan et al.
2014). Similarly, in another study Cd and other heavy metals
induced stress triggered the accumulation of osmolytes such
as sucrose, mannitol and glycine betaine (Dhir et al. 2012).

2.4 Enzymatic Activity

Cadmium is accounted to have a well-marked deterrent
impact on the functional capabilities of numerous principle
enzymes in plants owing to its exorbitant binding affinity
with sulfanyl functional group (-SH) on them and competi-
tion for replacing enzyme activating cations including Zn,
Mg and Ca (Cuypers et al. 2011; Pourrut et al. 2011; Gupta
et al. 2019). In roots, it is reported to interfere with plasma-
lemma associated HT ATPase, which maintains electrochem-
ical gradient and behaves as a proton pump by providing the
driving force for nutrient uptake as well as transportation
(Falhof et al. 2016); thus, leading to restricted root activities
(Astolfi et al. 2005). Skrebsky et al. (2008) examined the
effect of Cd (0, 20, 40, 60, and 80 pM) on acid phosphatase
(ACP) and 6-aminolevulinic acid dehydratase (ALA-D)
activities in Pfaffia glomerata plants which are involved in
maintaining P status and biosynthesis of photosynthetic pig-
ments, respectively. Cadmium detained the ALA-D activity
by 89% at 80 pM Cd concentration. While, up to 23% and
30% inactivity in ACP was observed in the shoot as well as
root, respectively, which might be due to Cd interference
with PO43‘ binding sites or replacing ACP activating Ca>*
and Mg?* ions. Similarly, upon Cd exposure (200 uM),
soybean plants experienced 100% arrest in ALA-D activ-
ity in roots and leaves, while 72% retardation was noted in

nodules. Moreover, Cd inhibited ALA-D activity enhanced
ALA accumulation in roots (2.5-fold), leaves (104%), and
nodules (46%) which caused oxidative stress by triggering
enhanced ROS formation in plants (Noriega et al. 2007).

Seedling growth facilitating enzymes are potentially inac-
tivated under Cd induced stress (Yan et al. 2014). Signifi-
cant physiological inhibition of proteases and a-amylases
and acid phosphatases (ACPs) was observed in barley
seeds which catalyze the sugar reserves mobilization in the
endosperm (Kalai et al. 2014). Salas et al. (2018) observed
proteolytic enzyme alteration in rice due to Cd stress which
is involved in metabolic activities by hydrolyzing the protein
substrates. Up to 50% inactivation was observed in leucine
aminopeptidase; while, carboxypeptidase activity was con-
trarily enhanced which catalyze the hydrolysis of leucine and
arginine into lysine substrates, respectively.

In addition, Cd is reported to adversely affect the plant N
metabolism by hampering the activity of enzymes related
to N uptake as well as fixation (Chang et al. 2013). Cd is
documented to reduce nitrogenase activity, playing a vital
role in N fixation, in various plant species such as mungbean
(Wahid et al. 2007) and chickpea (Hasan et al. 2008). Moreo-
ver, activities of some other enzymes involved in the plant
NH,* assimilation are also hampered upon Cd exposure,
resulting in N deficiency (Sanchez-Pardo et al. 2013).

Conversely, Cd-induced intensification in some enzyme
activities is also exhibited. McCarthy et al. (2001) reported
that Cd positively affected the activities of leucine-amin-
opeptidase, endopeptidase isozymes, and glyoxylate cycle
enzymes in peas which exhibited senescence symptoms on
leaves. Likewise, activities of arginine decarboxylase and
ornithine decarboxylase improved in sunflower plants which
negatively affected antioxidant level in plants (Groppa et al.
2008).

2.5 Ultra-structural and Oxidative Damages

Cd prompted oxidative stress is accounted in plants owing
to the escalated generation of reactive oxygen species (ROS)
(Andresen and Kiipper 2013; Ehsan et al. 2014a; Gutsch
et al. 2019), suppressed antioxidant system (Abbas et al.
2017), and redox imbalance (Petrov et al. 2015); ultimately,
causing oxidative impairment as well as lipid peroxida-
tion (Younis et al. 2016). Being a non-redox element, Cd is
reported to generate ROS including superoxide anion (O,")
singlet oxygen (10,), hydrogen peroxide (H,0,), or hydroxyl
radicals (OH™) via indirect pathways (Iannone et al. 2010;
Fig. 4). For instance, Cuypers et al. (2011) reported that
the high affinity of Cd for Carboxyl (-COOH), thiol (-SH),
and histidyl groups on antioxidant enzymes are responsible
for oxidative stress, as it tends to inactivate the antioxida-
tive defense system which results in shattering of ROS bal-
ance; ultimately, leading towards plant growth inhibition
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Fig.4 Effect of cadmium on generation of reactive oxygen species
and activities of antioxidant enzymes. The intoxication with pollutant
metals induces oxidative stress because they are involved in several
different types of ROS-generating mechanisms. For example, transi-
tion metals (such as Fe** and Cu®*) participate in the Haber—Weiss
cycle, producing OH from O, and H,0,. Metals without redox
capacity (such as Cd>*, Pb**, and Hg?*) can enhance the pro-oxidant

(Sebastian and Prasad 2013). In the cytosol, Cd instigates
phospholipases, which brings about the cellular release of
linolenic acids, acting as derivatives for lipoxygenase or
ROS formation (Belkadhi et al. 2015).

In addition, Cd indirectly generates ROS by disrupting the
ultra-cellular components such as peroxisomes, chloroplasts,
and mitochondria which are considered as fundamental ROS
generating points in plants (Pietrini et al. 2003; Lushchak
2011). Cysteine residues, Fe—S clusters, thiol and binding
sites for divalent metals are potential Cd target sites, leading
to electron transport chain inhibition, proton motive force
dissipation, and cell dysfunction (Kurochkin et al. 2011).
According to Heyno et al. (2008), blockage of the mito-
chondrial electron transport system is the principal target of
Cd to induce free radicals. Additionally, malfunctioning of
metalloproteins in photosynthetic as well as mitochondrial
electron transport chains is also liable to induce ROS sub-
jected to Cd stress (Belyaeva et al. 2012; Parmar et al. 2013).
Furthermore, NADPH oxidase concomitant ROS generation
is another proposed mechanism for Cd-induced oxidative
damage (Gill and Tuteja 2010). Cd promotes the activity of
plasmalemma associated NADPH oxidase which results in
catalyzing O, reduction reaction by making use of NADPH
as a reducing agent; eventually, the formation of superoxide
(O,") free radical (Chou et al. 2012). Similar observations
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status by reducing the antioxidant glutathione (GSH) pool, activating
calcium-dependent systems and affecting iron-mediated processes.
These heavy metals also disrupt the photosynthetic electron chain,
leading to O,~ and 'O, production. CAT: catalase, SOD: superoxide
dismutase, GPX: guaiacol peroxidase, APX: ascorbate peroxidase,
GSSG: reduced glutathione, MDA: malondialdehyde ( Modified from
Benavides et al. 2005)

are also documented in pea (Rodriguez-Serrano et al. 2006),
tobacco (Olmos et al. 2003; Garnier et al. 2006), and black
nightshade (Solanum nigrum) (Deng et al. 2010).
Ultra-structural damages including protein oxidation,
enzyme inhibition, membrane lipid peroxidation (Popova
et al. 2009), ionic leakage (Goncalves et al. 2007), and DNA
as well as RNA destruction are the manifestation of plant
oxidative stress; eventually, leading to hampered activities
of cellular organelles and plant death (Shahid et al. 2014c;
Gratao et al. 2015). Lipid peroxidation is involved in ruptur-
ing of bio-membrane in Cd stressed plants (Andresen and
Kiipper 2013; Liptakova et al. 2013) which ultimately results
in physiological dis-functioning of cellular ultra-structures
such as glyoxisomes, peroxisomes, mitochondria, and chlo-
roplast (Keunen et al. 2011). Ali et al. (2013¢) found mor-
phologically impaired mitochondria, cracked cell walls, and
plasmolysis in Cd stress rapeseed plants. Similar results are
also observed in cotton (Gossypium hirsutum L.) (Daud et al.
2009) and Sedum alfredii (Jin et al. 2008). Furthermore, it is
reported to cause peroxisome senescence, and its prompted
metabolic alteration to glyoxisomes (McCarthy et al. 2001).
Genotoxicity is another outcome of Cd-induced oxida-
tive stress in plants which is associated with ROS imbal-
ance resulting in lipid peroxidation and generating muta-
genic aldehydes (Lin et al. 2015). According to Kranner and
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Colville (2011) due to the electrophilic nature of OH™ free
radical, it is highly inclined to oxidize DNA by interfer-
ing with nitrogenous foundations and can modify 100000 s
of purine as well pyrimidine bases per cell within a day.
Preferentially, OH™ radical is reported to target position 5
of pyrimidine bases i.e. cytosine (C) and thymine (T), and
results in the formation of allylic radicals by attacking H
atom in thymine methyl groups; which in turn, produce pro-
tonation inducing peroxyl radicals (Nzengue et al. 2015).
Moreover, Cd prompted lipid peroxidation also results in
DNA damage owing to the ability of its by-products such as
4-hydroxy-2-nonenal as well as malondialdehyde (MDA)
to interact with nucleotide bases (Stone et al. 1990). Fur-
thermore, Cd-stimulated ROS shuttling is also responsible
for mitotic impairments via micronucleus formation and
chromosomal aberrations (Circu and Aw 2010). Foltete
et al. (2012) reported emanated micronuclei frequency in
Cd exposed (510 pM CdCl,) Vicia faba plants. In another
study, random amplified polymorphic DNA (RAPD) indi-
cators of Cd exposed plants were observed which showed
deviations in DNA band intensity (Liu et al. 2005). Similar
observations are also documented in various plant species
such as tobacco and onion (Allium cepa) (Bandyopadhyay
and Mukherjee 2011).

2.6 Changes in Antioxidant Defense System
and Stress Protein

In light of Cd-stimulated oxidative stress, plants are well
known to develop defensive system against ROS (Horvath
et al. 2007) including both enzymatic antioxidants such as
ascorbate peroxidase (APX), catalase (CAT), glutathione
peroxidase (GPX), peroxidase (POD), glutathione reduc-
tase (GR), dehydroascorbate reductase (DHAR), superox-
ide dismutase (SOD), monodehydroascorbate reductase
(MDHAR), glutathione-S-transferases (GST), and non-
enzymatic scavengers such as glutathione (GSH), ascorbic
acid, carotenoids, tocopherols, phytochelatins, and thiols
as well as phenolic compounds (Shanthala et al. 2000).
These free radical scavengers make an imperative defen-
sive system counter to Cd phytotoxicity (Igbal et al. 2010)
by behaving as reducing agents which tend to convert ROS
into innocuous end products (Table 1; Shahid et al. 2014c;
Abbas et al. 2015). Moreover, activation of these antioxidant
enzymes has been reported due to variations in gene regula-
tion (Anjum et al. 2012) and an increase in their substrate
content under metal stress (Anjum et al. 2012). Shamsi et al.
(2008) evaluated enhanced SOD, as well as POD activities
and higher MDA content in Cd, stressed soybean plants.
Agrawal and Mishra (2009) investigated the influence of
Cd (68 uM) on lipid peroxidation (LPO) and enzymatic as
well as non-enzymatic antioxidants in pea plants and found
a substantial decrease in CAT activity and ASA content;

whereas, a contrary effect was detected for SOD, POD.
Moreover, higher content of non-enzymatic ROS scavengers
including proline, flavonoids, and thiols was observed due to
enhanced lipid peroxidation. Phytochelatin production has
also been reported as an antioxidant response of plants coun-
ter to Cd stress (Cabala et al. 2011). Jinadasa et al. (2016)
evaluated the impact of Cd toxicity (500 pg L™!) on cabbage
and reported enhanced phytochelatin formation in shoot and
roots as compared to control. In another study, Cd-induced
(5 tM CdCl,) oxidative stress was detected in pea plants, as
evidenced by enhanced MDA and non-protein thiol content
and escalated activity of chitinase, CAT, and POD (Met-
wally et al. 2005). Likewise, mustard plants exhibited higher
activities of MDHAR and DHAR upon 10 uM Cd exposure
(Markovska et al. 2009). Comparable results have also been
reported in diverse plant species like mustard (Hayat et al.
2007; Irfan et al. 2014), sunflower (Saidi et al. 2014), rape-
seed (Ehsan et al. 2014a), common bean (Phaseolus vulgaris
L.) (Saidi et al. 2013; Howladar 2014), wheat (Agami and
Mohamed 2013; Chen et al. 2014a), cotton (Farooq et al.
2013), tomato (Monteiro et al. 2011) and chickpea (Hasan
et al. 2007).

Although, Cd stress induces an antioxidant defense sys-
tem in plants, however, several studies have observed varia-
tions in responses to ROS scavengers depending upon the Cd
concentration, genotypes, plant species, physiological plant
conditions, and tissue specificity (Srivastava et al. 2014;
Hussain et al. 2019). Ali et al. (2002) evaluated the effect
of a concentration series of Cd on the antioxidant system
of rice seedlings and found fluctuations in antioxidant con-
centrations at varying Cd levels. An increasing trend was
observed with SOD and GR in both roots and leaves; while,
APX and POD showed a concentration-dependent contrast-
ing trend, by increasing as well as decreasing their activity
in response to low and high Cd concentrations, respectively.
Moreover, in case of CAT, tissue-dependent high activity
was observed in roots; whereas, its activity declined in
leaves. A similar trend in antioxidant activities is observed in
Cd stressed rapeseed (Yan et al. 2015). Molina et al. (2008)
unveiled the variable and tissue-specific response of antioxi-
dative defense in mung bean seedlings exposed to 40 uM Cd
concentration. Cadmium imposed a negative effect on CAT
and GSSH concentration; whereas SOD and GPX activities
improved in leaves, but a contrasting pattern was observed in
roots. In another study in Cd-treated rice, GST activity was
reported to rise in the shoot; however, the opposite pattern
was observed in roots (Zhang and Ge 2008). Furthermore,
antioxidant enzyme activity has been found to fluctuate
in different plant species. For instance, under Cd-induced
oxidative stress, ASH content enhanced in barley; while
its concentration reduced in soybean, cucumber (Cucumis
sativus L.), and pea with no substantial change in Populus
canescens (Gill and Tuteja 2010). Likewise, CAT activity
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Table 1 Effects of Cd toxicity on activities of different antioxidant enzymes and lipid peroxidation in different plants

Plant species Enzymes Culture Cd exposure level Cd exposure duration References
Increased Decreased @
Arabidopsis thaliana  SOD, AsA, CAT GSH Hydroponic 0, 5, 10 pM 0,2,24,48 and 72 h  Jozefczak et al. (2014)
Tomato CAT, GR, GPOX, Soil 0and 1 mM 47 Gratao et al. (2015)
APX

Strawberry (Fragaria SOD, CAT APX Soil 0, 15, 30, 45 and Muradoglu et al.
X ananassa cv. 60 mg kg™ (2015)
Camarosa)

Corkscrew willow SOD, CAT, APX Soil 150 pM 30 Yang et al. (2015a)
(Salix matsudana)

Poplar (Populus yun- APX, CAT, GR, SOD Soil 100 pM 0,4,8,12 Yang et al. (2015b)
nanensis)

Highbush blueberry ~ SOD Hydroponic 50, and 100 pM 7,14, 21 Manquién-Cerda et al.
(Vaccinium corym- (2016)
bosum L.)

Sorghum (Sorghum  GST Hydroponic 0, 100, and 150 pM 5 Roy et al. (2016)
bicolor)

Nettle (Urtica dioica GR, GST, Hydroponic 0, 0.045, and 58 Tarhan and Kavakcio-
L) 0.09 mM glu (2016)

Date palm (Phoenix  CAT, SOD Soil 300, 600, and 90 Al-Qurainy et al.
dactylifera L.) 900 pM (2017)

Spinach CAT, GR, GPOD Hydroponic 25 pM 1,2,7 Pinto et al. (2017)

Candle bush (Cassia CAT, APX, GPX, Hydroponic 0, 22, 44, 88, and 30 Silva et al. (2017)
alata) GSH 132 uyM

Hyacinth bean (Doli- CAT, APX, GR GPOX Soil 0, 50, 100, and 5 Souza et al. (2017)
chos lablab L) 200 pM

Parsley (Petroselinum SOD CAT, APX Soil 0,75, 150 and 15 Ulusu et al. (2017)
hortense L.) 300 pM

Bermuda grass CAT, SOD, POD, GR Soil 750 mg kg‘1 21 Shi et al. (2014)
(Cynodon dactylon)

Indian bassia (Bassia SOD, CAT, POD, Peat and 150 pM Hashem et al. (2016)
indica) APX, GR, PPO sand at 1:1

ratio

Chinese cabbage SOD, CAT, POD, Hydroponic 50 pM 2 Zong et al. (2017a)
(Brassica rapa L.) AsA, GSH

Chinese cabbage SOD, CAT, POX Hydroponic 50 pM 7 Zong et al. (2017b)

Rapeseed GR, GPX, GSH Soil 50 and 100 mg kg™! 15 Anjum et al. (2014)

Mung bean GSH, GR GPX, GST Pot 50 and 100 mg kg™! 15 Anjum et al. (2014)

Wheat CAT Hydroponic 220 mg kg™ Baruah et al. (2019)

Tomato CAT Hydroponic 220 mg kg™! Baruah et al. (2019)

Pea CAT Hydroponic 220 mg kg™ 7 Baruah et al. (2019)

AsA ascorbic acid, APX ascorbate peroxidase, CAT catalase, GPX glutathione peroxidase, POD peroxidase, GR glutathione reductase, DHAR
dehydroascorbate reductase, SOD superoxide dismutase, MDHAR monodehydroascorbate reductase, GST glutathione-S-transferases, GSH
reduced glutathione, PPO polyphenol oxidase, GPOX guaiacol peroxidases

is stated to decline in common reed (Phragmites austra-
lis) and bell pepper (Capsicum annuum); while enhanced
activity is observed in rice, wheat, black bean, mustard and
chickpea (Gill and Tuteja 2010). A similar trend with POD
activity was observed in radish and pea plants (El-Beltagi
et al. 2010).

Moreover, Cd stress also brings alterations in the plant
protein pool due to mutations in gene expression (Tran and
Popova 2013). It upregulates several stress proteins like
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HSPs (heat shock proteins), proteinases, and pathogenesis-
related proteins to resist metal-induced stress in plants;
whereas proteins associated with plant primary metabo-
lisms such as Calvin cycle, glycolysis, and Krebs cycle are
strikingly downregulated (Kieffer et al. 2009). In rice, Cd
treatment led to interruption in the synthesis of 36 proteins.
In aerial plant parts, 16 proteins were upregulated; while
3 proteins were downregulated. However, in case of roots,
quantitative increase and decrease in protein biosynthesis
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were 16 and 1, respectively (Lee et al. 2010). Rodriguez-
Celma et al. (2010) investigated that Cd-induced alterations
in plant protein metabolism are dose-dependent. It was
observed that two different Cd concentrations i.e. 10 uM
and 100 uM caused alterations in 36 and 41 polypeptides,
correspondingly. Semane et al. (2010) reported upregulation
of 21 proteins in Arabidopsis thaliana, treated with 10 uM
Cd. Similarly, Rodriguez-Serrano et al. (2009) found Cd-
induced production of PrP4A and HSP71: pathogen-asso-
ciated proteins in pea plants, which were upregulated in the
plant’s defensive response against Cd stress. Plant defensive
response was also observed in Cd-treated wheat seedlings,
where a 51-kDa stress-associated protein was detected in
root tissues (Mittra et al. 2008).

2.7 Carbon Metabolism and Yield Formation

Retardation of plant carbon metabolism including photosyn-
thesis as well as respiration is the well-known expression of
Cd toxicity, leading towards yield loss. Cd has been reported
to inhibit photosynthesis via several direct as well indirect
means, such as a reduction in expression of photosynthesis
associated genes including psbA rbcL and psaB (Qian et al.
2010), lipid peroxidation (Iannone et al. 2010), disturbed
nutrient metabolism (Qureshi et al. 2010) and augmented
proteolysis (Pena et al. 2007); resulting, structural as well
functional damages to photosynthetic machinery (Parmar
et al. 2013). According to Najeeb et al. (2011) Cd toxicity
(100 pM) inhibits C-fixation by giving marked distortion to
the entire photosynthetic machinery, causing disturbed and
inflated thylakoids, hence damage to both light as well as
dark reaction centers. However, the light reaction center of
chloroplast comprising photosystem I (PSI), photosystem
II (PSII), and antenna complex is more affected, especially
PSII (Kupper et al. 2007). Cd stress remarkably impaired the
activity of PSII over short duration of exposure to Thlaspi
caerulescens (Kupper et al. 2007); whereas, over a long
exposure period, activities of both photosystems arrested in
pea (Goussi et al. 2018). Prasad et al. (2004) suggested that
a greater impairment of PSII activity in comparison with
PSI might be linked with greater activity of ROS at PSII.
Moreover, disruption of photosynthetic apparatus is also
attributed to enhanced lipid peroxidation under Cd stress
due to augmented activity of lipoxygenase (LOX) (Cuypers
et al. 2010). Under Cd stress, lipid peroxidation in associa-
tion with LOX activity has been detected in various plant
species like Lupine, Arabidopsis, Phaseolus, and Barley
(Maksymiec and Krupa 2006; Tamas et al. 2009). Besides,
Cd inhibited photosynthesis may be ascribed to disorganiza-
tion of both electron acceptor as well as donor sides of PSII;
hence, averting photoactivation (Sigfridsson et al. 2004).
On the donating side, Cd replaces Ca in Ca/Mn cofactor
for enzymatic activities at oxygen-evolving complex (OEC)

(Dinakar et al. 2009); while, on the other side, it retards the
e~ conductance due to configurational modification of pri-
mary as well as secondary acceptor quinone (Geiken et al.
1998).

Biosynthetic retardation of light-capturing pigments
such as chlorophyll, neoxanthin, lutein, violaxanthin, and
carotenoids is another mechanism of photosynthetic inhibi-
tion (Wan et al. 2012; Chang et al. 2013; Xue et al. 2014).
Cd has been stated to interfere with d-aminolevulinic acid
(ALA) dehydratase (Mysliwa-Kurdziel and Strzalka 2002;
Sharma et al. 2020), porphobilinogen deaminase (Skrebsky
et al. 2008), and protochlorophyllide reductase (Stobart et al.
1985), key enzymes in chlorophyll biosynthesis pathway;
resulting, the diminished raw material for photosynthetic
pigments (Goncalves et al. 2009b). Similar observations
are documented in several plant species such as cucumber,
tomato, and spinach (Spinace oleracea) (Goncalves et al.
2009b; Lopez-Millan et al. 2009; Hediji et al. 2010). Moreo-
ver, because of the resemblance of UV visible absorption
spectrum, Cd substitutes Mg in both, chlorophyll a as well
as b (Gillet et al. 2006). However, Cd substituted chlorophyll
pigment is unfit for photosynthesis, as all absorbed energy
is dissipated in the form of heat due to unstable excited state
(Kupper et al. 2006).

In addition, Cd acts as a potent suppressant of the Calvin
cycle by impairing the vital enzymatic activities; conse-
quently, hampering C-fixation (Bashir et al. 2013; Song et al.
2019). Cd has been reported to target several CO, assimilat-
ing enzymes including ribulose-1,5-biphosphate carboxylase
(RuBPCase), phosphoenolpyruvate carboxylase (PEPCase),
aldolase, phosphofructokinase, fructose-1,6-bisphosphatase,
NADP-dependent glyceraldehyde-3-phosphate dehydroge-
nase, and carbonic anhydrase (Song et al. 2019). Song et al.
2019 reported hampered Rubisco activity in sunflower plants
which resulted in abridged quantum efficiency of PSII and
CO, assimilation.

Among respiratory activities, Cd is reported to obstruct
leaf respiration due to its interference with stomatal conduct-
ance through its entry into guard cells by competing with
Ca (Pietrini et al. 2010; Souza et al. 2011), leading towards
stomatal closure and abridged stomatal density (Deng et al.
2014), which subsequently results in overall obstruction
of CO, assimilation. Moreover, mitochondrial respiratory
activities are also impeded due to Cd interference with the
Krebs cycle (Bezawork-Geleta et al. 2017) as well as O,
evolving e~ transport chain (Branca et al. 2020). Cadmium
is reported to induce changes in the activities of several
respiratory enzymes (Shanying et al. 2017) such as malate
dehydrogenase, succinate cytochrome c reductases, nicoti-
namide adenine dinucleotide (NADH), succinate dehydroge-
nases, cytochrome c oxidase, phosphogluconate dehydroge-
nases, and alcohol dehydrogenase; thereby, retarding pant C
metabolism (Smiri et al. 2009). Nevertheless, to the best of
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our knowledge, several literature gaps regarding the impact
of Cd on respiratory activities remain to be addressed. All
of the prior studies about respiration are based on Cd impact
on stomatal conductance; while respiratory activities in rela-
tion to roots and mitochondrial respiratory activities are still
not presented in the literature. Furthermore, Cd exposure
primarily disturbs the RuBP carboxylase activity, while Cd
relation to its oxygenase activity needs to be investigated.
Cadmium is a potentially toxic pollutant that induces
diverse metabolic alterations in the plant body leading
towards yield loss (Table 2). Wani et al. (2007b) reported
40% reduction in seed yield when gram plants were sub-
jected 24 mg kg~! Cd concentration. However, the impact of
Cd toxicity on crop yield varies among different genotypes
(Huang et al. 2017). Huang et al. (2008) assessed the yield
loss in various Cd stressed rice genotypes. It was found that
Cd tolerant genotypes exhibited up to 9% significant reduc-
tions in yield in comparison to Cd susceptible genotypes, for
which, about 50% loss in yield was reported. Furthermore,
Chen et al. (2014b) observed the response of cotton plant to
different Cd concentrations regarding yield and found con-
trary results. Low Cd concentration, improved plant growth
and development, while plant growth, lint yield, boll num-
ber per plant, and boll weight significantly reduced under
high Cd concentration. Similarly, Li et al. (2011) indicated
a significant decline in pod number per plant, size of cotton
bolls, seed cotton, and lint yield under Cd stress. In case of
wheat, a significant decline in spikelet number, grain number
per spike, and 1000-grain weight were detected in plants,
exposed to Cd toxicity (Yang et al. 2011). Moreover, similar
outcomes are also documented in other crops including corn
(Cao et al. 2005a, b), mung bean (Wani et al. 2007b), and
rapeseed (Yuan and Sun 2014). In sum, Cd toxicity ham-
pered the crop yield and yield-related traits substantially.

Table 2 Effect of Cd stress on yield of some representative field crops

Crop species  Cd level Yield Reference
reduction
(%)
Rice 150 ppm  38.33 Huang et al. (2008)
Rice 150 ppm  42.13 Huang et al. (2008)
Peanut 15 ppm 16.98 Fang et al. (2012)
Cotton 400 uM 23.79 Chen et al. (2014b)
Pea 68 uM 16.38 Agrawal and Mishra (2009)
Radish 200 ppm  45.09 Varalakshmi and Ganesha-
murthy, (2013)
Rice 147 ppm  11.30 Cui et al. (2012)
Maize 375 uM 6.16 Anjum et al. (2015)
Rice 150 ppm  34.37 Kanu et al. (2017)
Wheat 2.86 ppm 27.5 Abbas et al. (2018)
Wheat 10 ppm 38.07 Farooq et al. (2020)
Tomato 50 pM 25.50 Xie et al. (2021)
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3 Cadmium Dynamics in Rhizosphere

Cadmium is an extremely ecotoxic element with its natural
concentration in soil ranges from 0.06 to 1.1 ppm with
an average concentration of 0.41 ppm (Kabata-Pendias
and Pendias 2011). It is present in different bioavailable
fractions such as exchangeable fraction, soluble fraction,
organically, and inorganically bound fractions, and min-
eralogical Cd (Mohamed et al 2010). Upon weathering, it
readily enters into the soil mobile pool and forms numer-
ous complex compounds with inorganic ions as well as
organic substances. In case of its speciation, Cd is reported
to exist in several cationic as well as anionic forms in
the soil such as CdCl*, CdHS*, CdHCO;*, CdOH™,
Cd(HS),*", CdCl;~, Cd(OH);", and Cd(OH),~ (Kabata-
Pendias and Sadurski 2004). In acidic soil, Cd, is present
as CdCl1*, and CdSO,; (ii) in alkaline soil, CdAHCO;™;
(iii) in oxic soil, Cd**, and CdCI* (Kabata-Pendias and
Mukherjee 2007). Nonetheless, Cd>* is considered to be
the Cd specie that is most available to plants (Taylor and
Percival 2001).

4 Factors Affecting Cadmium Dynamics

The physico-chemical characteristics of soil including pH,
clay particles, redox reactions, charged mineral particles,
nature of sorbent, soil nutritional status and root effluxed
organic acids are the major factors influencing the Cd
mobility as well as bioavailability in soil (Violante et al.
2010; Tomas et al. 2012). Among these, pH is the most
crucial aspect influencing Cd behavior in soil (Cotuk et al.
2010). There is a contrasting trend between Cd bioavail-
ability and pH, as its mobility increases by decreasing soil
pH with the greatest mobility at 4.5-5.5 pH and vice versa
(Jung 2008). Under low soil pH, the mobility and bio-
availability of Cd are higher owing to its conversion from
precipitated form, i.e., Fe and Mn carbonates and oxides
to soluble form (Li et al. 2014a). Redox potential (Eh) is
another important factor affecting the Cd concentration
and solubility in soil. Cadmium is reported to observe
a linear trend with Eh, as its solubility escalates with
increased soil Eh which might be ascribed to Cd interac-
tion with dissolved organic C and Mn and precipitations
such as sulfides (Frohne et al. 2011). Besides these, soil
organic residues pay a significant concern in governing the
Cd sorption as well as solubility, as it promptly interacts
with Cd to form complexes (Quenea et al. 2009). Soils
with higher organic matter have relatively lower Cd uptake
by plants owing to Cd-sorption (Shahid et al. 2012). Soil
texture also affects the Cd solubility in soil as Andersen



Journal of Soil Science and Plant Nutrition

et al. (2002) reported higher Cd bioavailability in sandy
soil as compared to clayey soil for similar Cd content.
Clays are considered to bind the metals through particular
adsorption sites (Rassaei et al. 2020).

5 Remediation of Cadmium-Contaminated
Soils

As demographic pressure is increasing at a very rapid rate,
it demands more land for the cultivation of crops to ful-
fill future dietary requirements. Therefore, remediation of
Cd-polluted soils is the need of the hour. There are sev-
eral approaches/strategies which are used to remediate
Cd contaminated soils but the main objective of all these
approaches is to save the environment as well as human
health. Principally, there are three major approaches (physi-
cal, chemical, and biological) to decontaminate metal pol-
luted soil (Fig. 5; Selvi et al. 2019). Several physicochemical
approaches like soil excavation and disposal, soil washing,
soil sodification and stabilization, and chemical extraction
are practiced to remediate Cd-adulterated soils (Ahmad et al.
2012; Voglar and Lestan 2013). Although these approaches
are beneficial in reducing metal contamination, these are
not feasible owing to higher cost, ecological risks, and their
adverse impacts on soil biota (Sorvari et al. 2007). Addi-
tionally, these approaches disturb the physical, chemical,
and biological characteristics of the soil; hence making the

soil unfit for cultivation (Marques et al. 2009). Along with
physical and chemical methods, the biological approach is a
promising and sustainable approach in which living organ-
isms either microbes (microbial remediation) or plants
(phytoremediation) are used to remediate the soil. Asitisa
natural, cheap to run, and environmentally sound strategy;
therefore, it is widely accepted (Chibuike and Obiora 2014).
Moreover, soil treatment with organic and inorganic amend-
ments is found to be effective in declining the Cd absorp-
tion and accumulation in plants (Shan et al. 2016; Arshad
et al. 2016). Therefore, this review describes the manage-
ment of Cd contaminated soils by using different strategies
to decrease Cd phytoavailability; thus, boosting crop growth
and production. However, the adoption of the best possible
strategy depends upon the time, cost, and availability as well
as the future use of land.

5.1 Phytoremediation

Plantation for remediation of HMs is an eco-friendly, aes-
thetically acceptable, and cost-effective approach (Suman
et al. 2018; Kurade et al. 2021). In this process, HMs can
be degraded, removed, immobilized, or detoxified to miti-
gate their adverse impacts (Kamran et al. 2014). There are
various strategies associated with bioremediation techniques
such as phytoextraction, rhizofiltration, phytovolatilization,
phytodegradation, rhizdegradation, phytostabilization, and
phytorestoration (Yan et al. 2020). Phytoextraction is the

l Cd remediation l
Biological Physical Chemical Amendments
— l |
Microbial remediation || Phytoremediation = — Inorganic Organic Plant growth
regulators (PGRs)
| Bacteria |<— I Phytoextraction |<— —>| Nitrogen | -PI Biochar |
| Fungi -— |Phytodegradation = —>|  Phosphorus | || Manures |
| Algae -+ | Phytovolatilization | <+— —> Iron | |  compost |
Plant growth Rhizosphere | —| Selenium I |  Pressmud |
promoting < degradation
rhizobacteria — —’I Zinc |
(PGPRs) | Rhizofiltration |<—
—>| Silicon |

| Phytostabilization |<—

| Phytorestoration |<+—

Fig.5 Possible management strategies to reduce cadmium toxicity
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process of phytoremediation in which hyperaccumlator
plants are used for the elimination of HMs from contami-
nated soils and water (Jacob et al. 2018). Hyperaccumulators
are the plants having ability to grow on metalliferous soils
and to accumulate high amounts of heavy metals in their aer-
ial organs without suffering phytotoxic effects (Shrivastava
et al. 2019). Hyperaccumulator plants are grown to absorb
HMs in large amounts and accumulate them in above-ground
biomass including shoots and leaves (Yan et al. 2020). Vari-
ous Cd hyperaccumulator plants along with their accumu-
lating efficacy are enlisted in Table 3. After phytoextrac-
tion, phytodegradation is the process that involves internal
and external transformations. In internal phytotransforma-
tion, certain metabolic processes are involved; whereas in
external phytotransformation, plant roots secrete various
compounds that help in the breakdown of contaminants
(Prasad and De Oliveira Freitas 2003). While in rhizofiltra-
tion, plants absorb and sequester the HMs from the soil into
plant roots (Mahajan and Kaushal 2018). Phytostabiliza-
tion is another process in phytoremediation that deals with
the cultivation of plants to diminish HM mobility by metal
valence reduction, sorption, complexation, or precipitation
(US EPA 2000). Among phytoremediation approaches, phy-
toextraction is most common due to its higher efficacy and

cost-effectiveness (Ali et al. 2013b). In conclusion, phytore-
mediation is a viable, socially, and economically acceptable,
and eco-friendly approach to remediate Cd-polluted soils.
Nonetheless, the concentration of Cd in edible portions of
important food crops should be closely monitored to coun-
teract the health risks posed by Cd.

5.2 Microbe-Assisted Remediation

Disintegration or transformation of HMs into innocuous
form by using microbes is known as microbe-assisted
remediation (Ojuederie and Babalola 2017). There are
many forms of bioremediation such as use of bacteria
(Kang et al. 2016), fungi (Zaidi et al. 2011), algae (Huq
et al. 2007), actinomycetes (El-Sayed et al. 2011), plant
growth-promoting rhizobacteria (Khan et al., 2009a,
b) which are used to disintegrate, reduce and convert
metallic elements into benign end products. Microbial
bodies are highly successful in the remediation of Cd-
contaminated soils due to their capability to precipitate
and sequester (Table 4). Owing to the capability to grow
and size in a controlled environment, and resilience to a
vast range of ecological circumstances, bacteria has been
proven an excellent biosorbent to remediate adulterated

Table 3 Examples of Cd
hyperaccumulators and their
accumulation efficacy

Plant species

Accumulation effi- References

ciency (mg kg™")

American black nightshade (Solanum photeino- 158

Zhang et al. (2011a)

@ Springer

carpum)
Smooth mesquite (Prosopis laevigata) 8176 Buendia-Gonzilez et al. (2010)
Yellowcress (Rorippa globosa Turcz.) 219 Sun et al. (2010)
Japanese honeysuckle (Lonicera japonica) 286 Liu et al. (2009)
Violettes (Viola principis) 1200 Wan et al. (2016)
Needle spikerush (Eleocharis acicularis) 240 Sakakibara et al. (2011)
Needle spikerush 239 Sakakibara et al. (2011)
Viola (Viola Baoshanensis) 7076 Liet al. (2010)
Saltbush (Atriplex halimus) 606.5 Nedjimi and Daoud (2009)
Alpine penny-cress (Thlaspi caerulescens) 3000 Sheoran et al. (2009)
Swinecress (Coronopus didymus) 867.2 Sidhu et al. (2017)
Water velvet (Azolla pinnata) 740 Rai, (2008)
Alpine penny-cress 3000 Sheoran et al. (2009)
Globe yellowcress (Rorippa globose) > 100 Wei et al. (2008)
Loosestrife (Lysimachia deltoids) 212 Wang et al. (2009)
Curly pondweed (Potamogeton crispus) 49.09 Sivaci et al. (2008)
Arabis (Arabis paniculate) 434 Tang et al. (2009)
Black nightshade 387 Sun et al. (2008)
Alpine penny-cress (Thlaspi caerulescens) 5000 Koptsik, (2014)
Mallow (Malva sinensis Cavan) 154.30 Zhang et al. (2010)
Holy Herb (Siegesbeckia orientalis) 192.92 Zhang et al. (2013b)
Yellowcress (Nasturtium officinale R.BR) 133.52 Lin et al. (2011)
Jewelweed (Impatiens glandulifera) 1562 Coakley et al. (2019)
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Table 4 Microbial biosorption by different microbes

Microbial group Microbial biosorbent pH Temperature (°C) Time (h) Initial metal ion Sorption Reference
concentration (mg  capacity (mg
L™ gh
Bacteria Kocuria rhizophila 8§ 35 1 150 9.07 Hagq et al. (2015)
Enterobacter cloacae 8 40 72 200 114.29 Banerjee et al. (2015)
Beauveria bassiana 7.1 30 18 650 19 Suksabye et al. (2015)
Pseudomonas aeruginosa 7.1 30 18 650 74 Suksabye et al. (2015)
Bacillus subtilis 7.1 28-30 72 650 50 Suksabye et al. (2015)
Streptomyces rimosus 8 50 24 100 63.3 Selatnia et al. (2004)
Fungi Penicillium chrysogenum 5.5 30 73 - 210.2 Deng and Ting, (2005)
Absidia cylindrospora 54 25 30 - - Albert et al. (2018)
Glomus caledonium 78 - - 7 14.7 Wang et al. (2007)
Algae Asparagopsis armata 6 - 2 135 323 Romera et al. (2007)
Codium vermilara 6 - 2 135 21.8 Romera et al. (2007)
Cystoseira barbata 4 20 1 117.4 37.6 Yalcin et al. (2012)
Pseudochlorococcum 7 20 12 100 5.48 Shanab et al. (2012)
typicum
Chlorella vulgaris 4.5 35 168 100 97.43 Kumar et al. (2018)

soil (Srivastava et al. 2015). According to Ziagova et al.
(2007), Staphylococcus xylosus and Pseudomonas sp.
effectively reduced the soil Cd content. Moreover, in an
investigation, Bacillus laterosporus and Bacillus licheni-
formis were applied in Cd contaminated soil and found
that Cd contents in soil were significantly reduced with
sorption capacity of 159.5 mg g~! and 142.7 mg g~!,
correspondingly (Zouboulis et al. 2004). Fungal isolates
are also effective in shrinking the Cd levels in the soil.
Albert et al. (2018) examined the elimination of Cd using
fungi Absidia cylindrospora from the soil and after three
days, A. cylindrospora biosorbed about 50% of Cd present
in the soil. Application of Penicillium canescens and Pen-
icillium chrysogenum considerably reduced Cd toxicity
(Say et al. 2003; Deng and Ting 2005). Soil treatment
with fungal isolates Rhizophagus irregularis and Fun-
neliformis mosseae improved the sunflower biomass and
alleviated the Cd toxicity (Hassan et al. 2013). Fungi have
different mechanisms of detoxification as compared to
eukaryotes. Extracellular practices include metal chela-
tion, precipitant formation as well as cell wall sorption;
these processes significantly account for metal decon-
tamination (Bellion et al. 2006). Likewise, algal isolates
also have remediation potential against Cd. Asparagopsis
armata and Cystoseira barbata substantially reduced the
Cd concentration and were proved to effective in biore-
mediation of Cd (Romera et al. 2007; Yal¢in et al. 2012).
In conclusion, the application of appropriate microbial
inoculum might be effective to amend Cd polluted soil
effectively.

5.3 Remediation Through PGPRs

Plant growth-promoting rhizobacteria (PGPRs) were used
to improve the growth and productivity of crops, now they
are also used for remediation to overcome abiotic stresses
(Nazli et al. 2020). Bacteria that are resilient to Cd stress
even at higher concentration along with the capability to
improve plant productivity are known to be Cd resilient
PGPRs (Sharma and Archana 2016). PGPRs efficiently ame-
liorate the Cd phytotoxicity owing to their potential meta-
bolic activity; as it involved direct and indirect mechanisms
(Zhuang et al. 2007). Direct activities involve immobiliza-
tion and biotransformation of Cd (Zaidi and Khan 2006);
however, indirect activities involved improvement in the
growth of metal stressed plants by yielding enzymes and
metabolites including siderophores and ACC-deaminase
(Burd et al. 2004). To defend the plants from Cd nox-
iousness, bacteria must possess Cd-resistant PGPR traits,
capable of binding free Cd>* and active colonization in the
rhizosphere (Pishchik et al. 2002). Moreover, Cd imper-
vious as well as PGPR strains may influence metal-plant
interactions in dual ways, i.e., by facilitating the uptake as
well as aggregation of Cd in plant tissues; thus, enhancing
the potential of hyperaccumulating plants (Table 5; Sharma
and Archana 2016) or by diminishing the Cd uptake and
translocation towards upper plant parts (particularly in non-
hyperaccumulating plants) (Table 6; Kumar et al. 2011). It
is well reported that the application of PGPRs through soil
or seed inoculation not only improved the growth and bio-
mass of plants but also proved helpful in Cd remediation in
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Table 6 Some examples of cadmium-resistant PGPR that reduce Cd accumulation in plants

PGPR Plant Amount of Method of Cd accumulation in plant (mg  PGPR trait References
PGPR application kg™h
Without bac- With bacteria
teria
Enterobacter Black night- 108 cfu mL™! Seedling inocu- 550 467 Cd immobiliza- Kuffner et al.
aerogenes shade lation tion and ACC (2010)
deaminase
activity,
siderophore
production
Bradyrhizobium Soybean 108 cfu mL™! Soil inocula- 586 434 Improved nutri- Guo and Chi
Sp. tion+ Seedling ent uptake (2014)
inoculation
(10 DAT)
Chryseobacte- ~ Maize 108 cfu mL™! Inocula- 21.5 4 Reduced Cd Moreira et al.
rium humi tion + surface translocation (2014)
spray towards shoots
and Cd immo-
bilization
Ralstonia Maize 108 cfu mL™! Inocula- 21.5 6.5 Moreira et al.
eutropha tion + surface (2014)
spray
Stenotropho- Wheat 10° cfu mL™! Seed inoculation 132 118 Improved stabi- Ahmad et al.
monas sp. lization (2014)
Klebsiella sp Wheat 10° cfu mL™! Seed inoculation 132 95 Improved stabi- Ahmad et al.
lization (2014)
Bacillus sp. Wheat 10° cfu mL™! Seed inoculation 132 103 Improved stabi- Ahmad et al.
lization (2014)
Serratia sp Wheat 10° cfu mL™! Seed inoculation 132 130 Improved stabi- Ahmad et al.
lization (2014)
Pseudomonas Pak choi (Bras- 107 cfu mL™! Soil inoculation 200 75 Bio-adsorption  Xu et al. (2012)
putida sica chinensis)
Pseudomonas Mung bean Soil inoculation 3.3 0.7 Cd bioaccumu-  Saluja and
putida lation, P-type Sharma (2014)
ATPases
Klebsiella sp Maize 10° cfu mL™! Seed inoculation 145 120 Cd accumula- Ahmad et al.
tion (2014)
Serratia sp Maize 10° cfu mL™! Seed inoculation 145 140 Cd accumula- Ahmad et al.
tion (2014)
Bacillus sp. Maize 10° cfu mL™! Seed inoculation 145 125 Cd accumula-  Ahmad et al.
tion (2014)
Stenotropho- Maize 10° cfu mL™! Seed inoculation 145 130 Cd accumula- Ahmad et al.
monas sp. tion (2014)
Bacillus Maize 108 cfu mL™! Seed inoculation 987.22 668.17 Phytoextraction Malekzadeh et al.
mycoides and phytosts- (2012)
bilization
Micrococcus Maize 108 cfu mL™! Seed inoculation 987.22 726.52 Phytoextraction Malekzadeh et al.
roseus and phytosts- (2012)
bilization

ACC 1-aminocyclopropane-1-carboxylic acid

Cd-contaminated soils. Jing et al. (2014) collected two Cd-
resistant PGPRs strains namely Klebsiella sp. JYX10 and
Enterobacter sp. JYX7 from Polygonum pubescens to inoc-
ulate rapeseed plants for Cd aggregation. It was observed
that both the bacterial strains efficiently accumulated Cd and

@ Springer

improved plant growth by production of IAA, siderophore,
ACC deaminase and/or by increasing the bioavailability of
Cd in soil. Dell’Amico et al. (2008) also probed the remedia-
tion potential of Mycobacterium sp. ACC14, Pseudomonas
Fluorescens ACC9, and P. tolaasii ACC23 in rapeseed and
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noticed enhanced uptake of Cd. ACCD activity was respon-
sible for better root growth in the initial stages of plant
growth, siderophore and IAA production might facilitate the
mobilization of nutrients, hormonal balance, and, thus, plant
growth. Likewise, Burkholderia sp. improved the growth and
biomass of Sedum alfredii in Cd polluted soil and remark-
ably removed the Cd from the soil and improved the phy-
toextraction efficacy. Burkholderia sp. D54 produced IAA
and siderophores, synthesize ACC deaminase, and solubi-
lize inorganic phosphate and metal bearing minerals, which
together may account for significantly increased growth of
S. alfredii (Guo et al. 2011). Liang et al. (2014) investigated
the capability of Pseudomonas aeruginosa, Bacillus subti-
lis, Bacillus megaterium, and Bacillus cereus inoculation in
improving the growth and enhancing the Cd accumulation
in Orychophragmus violaceus in Cd contaminated soil. The
outcomes highlighted that application of bacterial strains
stimulated the root elongation, enhanced the Cd mobility,
and improved the Cd accumulation in O. violaceus. Moreo-
ver, Bacillus megaterium, Bacillus cereus, and Bacillus
subtilis, Pseudomonas aeruginosa accumulated 181.4%,
82.15%, 53.43%, and 39.28% Cd from the soil, respectively.

5.4 Chemical Remediation

Along with phytoremediation, soil remediation can be
escalated via chelation strategy in which different chelat-
ing agents are applied in the growth medium which forms
several coordinate bonds by single metal ions (Habiba et al.
2015; Feng et al. 2020). There are several types of chelating
agents such as EDTA ethylenediaminetetraacetate, EGTA
ethylenebis(oxyethylenenitrilo)tetraacetic acid, DTPA
diethylenetriaminepentaacetic acid, CDTA trans-1,2-di-
aminocyclohexane-N, N, NO, NO -tetraacetic acid diethyl-
enetriaminepentaacetic acid, IDSA iminodisuccinic acid,
and EDDS (S,S-ethylenediamine disuccinic acid), used to
enhance mobilization as well as intake of HMs by resistant
plants (Shaheen and Rinklebe 2015; Zaheer et al. 2015).
Chelating agents promote the absorption and subsequent
translocation and amassing of HMs in plant parts. This is
due to escalated desorption of HMs from the matrix to solu-
tion in soil, change in the form of HM in soil, enhance the
content of available HM in soil, and facilitate translocation
towards xylem tissues and improve metal transport towards
aerial structures (Bian et al. 2018). Predominantly, EDTA
is the most widely used chelating agent owing to its strong
affinity and slower biodegradability (Saifullah et al. 2009).
The higher binding affinity of EDTA for HMs enables the
release of HMs from insoluble to soluble phase (Nowack
2002). The application of another chelator DTPA is also
proved useful in Cd complexation. It is well reported that
the application of DTPA enhances the solubility of Cd and
improves its uptake in plants (Mehmood et al. 2013). Wang

et al. (2020) explored the potential of EDDS application
at 1 mM and 3 mM in Tagetes patula L. and Phytolacca
americana L. and results revealed significant accumulation
of biomass in both tested plants. Likewise, sundance stain
of sunflower hyperaccumulated Cd with 0.3 g kg™! EDTA
(Munn et al. 2008), additionally, it was noticed that response
of EDTA in remediation varied with EDTA concentration.
Application of EDTA at 0.1 g kg™! in black nightshade had
a positive effect on Cd uptake and availability and enhanced
the phytoremediation efficiency (Sun et al. 2008). Similarly,
the application of IDSA, EDTA, and EDDS in hydroponi-
cally grown maize substantially enhanced the Cd uptake in
maize biomass (Zhao et al. 2010). Hence, chelating agents
help to remediate the Cd polluted soils. The application
of these chelators substantially improved the Cd uptake in
above-ground biomass of many important plants (Table 7).
These studies suggest that the application of chelating agents
is an effective strategy for Cd remediation from the soil.

5.5 Plant Growth Regulators-Assisted Remediation

Modulation of plant growth regulators (PGRs) profile is
another tolerance strategy of plants regarding Cd stress
(Asgher et al. 2015; Hasan et al. 2019). Amongst main
PGRs, phytohormones including auxins, cytokinins (CKs),
gibberellins (GA), abscisic acid (ABA), jasmonic acid (JA),
brassinosteroids (BRs), ethylene, nitric oxide (NO), and pol-
yamines are accounted to play a significant role concerning
developmental processes of plants. Plant growth regulators
substantially account for enhancing plant adaptability to sur-
vive in Cd polluted growing medium (Table 8; Piotrowska-
Niczyporuk et al. 2012). Furthermore, PGRs (auxin, GA,
and CKs) are also involved in phytoextraction (Bulak et al.
2014). For coping with Cd stress, various plants have devel-
oped an endogenous defense mechanism with the produc-
tion of phytohormones. However, under higher Cd stress, the
efficacy of the internal defense system was reduced. Thus,
the exogenous application of phytohormones might improve
plant tolerance under Cd stress. Application of 50 mM sali-
cylic acid (SA) as pre-treatment reduced Cd accumulation in
wheat, resulting in declined MDA content (Shakirova et al.
2016). Pre-treatment with SA at the rate of 500 mM for 20 h
improved the plant water relations, photosynthetic pigments,
C-fixation, and ABA concentration; whereas reduced the
H,0,, MDA, and proline content in Cd exposed seedlings of
wheat (Moussa and El-Gamal 2010a, b). Similarly, improved
Cd tolerance was observed in brassica upon the application
of SA which resulted in mitigating the Cd-elicited oxidative
damages (Ahmad et al. 2011). Additionally, SA treatment
reduced the Cd contents in biomass of Chinese cabbage as
well as rapeseed (Mba et al. 2007; Ahmad et al. 2011; Ali
et al. 2015). In tomato, the pretreatment of SA abridged the
Cd-induced oxidative stress by dint of reduced formation of
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Table 7 Effect of chelates application for remediation of Cd in soil

Plant species

Chelate applied Dose applied Concentration in biomass

Soil metal (mg kg™!) References

(mg kg™
Before After
Potherb mustard EDTA 5 mM 4.26 5.75 4.87 Guo et al. (2019)
Potherb mustard EDTA 10 mM 4.26 5.40 4.87 Guo et al. (2019)
Four o'clock (Mirabilis EDTA 1 mM 61.09 111.74 25 Wang and Liu, (2013)
jalapa L.)
Four o'clock EGTA 1 mM 61.09 92.27 25 Wang and Liu, (2013)
Marigold (Calendula offici- EDTA 921 1200 100 Liu et al. (2010)
nalis L.)
Impatiens (Impatiens wal-  EDTA 0.1 mmol 410 538 20 Wei et al. (2012)
leriana)
French marigold (Tagetes EDTA 0.1 mmol 325 496 20 Wei et al. (2012)
patula)
Maize IDSA 500 pumol L' 25 44 20 Zhao et al. (2010)
Maize EDTA 500 pumol L' 25 15 20 Zhao et al. (2010)
Maize EDDS 500 pumol L' 25 13 20 Zhao et al. (2010)
Black nightshade EDTA 0.1 gkg™! 143.5 183.8 25 Sun et al. (2008)
mustard EDTA 1050 kg ha™' 0.36 0.44 0.23 Bloem et al. (2017)
Spinach EDTA 1.25 mM 0.04 0.14 6.8 Suthar et al. (2013)
Spinach EDTA 2.5 mM 0.04 0.18 6.8 Suthar et al. (2013)
Spinach EDTA 5 mM 0.04 0.22 6.8 Suthar et al. (2013)
Indian mustard EDTA 0.5 mM 310 420 30.7 Ramamurthy and Memarian
2013)
Indian mustard EDTA 1 mM 310 500 30.7 Ramamurthy and Memarian
(2013)
Indian mustard EDTA 2 mM 310 640 30.7 Ramamurthy and Memarian
(2013)
mustard EDTA 0.25 1.24 3 Dede et al. (2012)
Sunflower EDDS 5mmol kg™' 1.7mgpot™" 1.6 mgpot™! 50 mg kg-! Moslehi et al. (2019)
French marigold EDDS 3mM 428.64 528.49 Wang et al. (2020)
French marigold EDDS 1 mM 428.64 518.26 Wang et al. (2020)
Pokeweed (Phytolacca EDDS 3 mM 8.21 32.82 Wang et al. (2020)
americana L.)
Pokeweed EDDS 1 mM 8.21 42.58 Wang et al. (2020)

EDTA ethylene diamine tetra acetate; EGTA ethylene glycol tetraacetic acid; IDSA imino di succinic acid; EDDS (S,S-ethylene diamine disuc-

cinic acid)

proline, MDA, and H,0, contents (Kog et al. 2013). Further-
more, ascorbic acid treatment has also been reflected to be
an effective measure in mitigating the Cd deterrent impacts
in rice regarding oxidative damages (Chao et al. 2010). Like-
wise, exogenously applied JA improved the APX action in
Cd exposed rice plants with reference to control (Singh and
Shah 2014a). Besides, the application of methyl jasmonate
improved the response of antioxidants (CAT, SOD, POD,
and GR) under Cd-stressed rice seedlings (Singh and Shah
2014b). Application of DA-6 (diethyl aminoethyl hexanoate)
augmented the Cd extraction efficiency and enhanced the
biomass accumulation in Amaranthus hybridus Linn. (Li
et al. 2018) and ryegrass (He et al. 2019). Exogenous supply
of 5-aminolevulinic acid (ALA) improved plant resistance

@ Springer

to Cd tolerance (Ahmad et al. 2017), by improving the anti-
oxidant enzyme actions in rapeseed under Cd-stressed soil
(Ali et al. 2013a, 2013b). Similarly, the treatment of NO in
the form of sodium nitroprusside reduced the Cd prompted
oxidative damages in wheat seedlings (Singh et al. 2008)
and rice seedlings (Xu et al. 2015). Foliar supply of gib-
berellic acid (10 pM) significantly improved the leaf area,
dry biomass, and photosynthetic activity in mustard and
reduced oxidative stress and ethylene production (Masood
et al. 2016). Brassinosteroid (BR) application in mustard
improved photosynthesis, proline contents, and antioxidant
activities (Hayat et al. 2007). Priming of wheat seeds with
polyamines, spermine, and spermidine enhanced the seed-
ling growth, starch, ascorbic acid, and protein concentration
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and reduced the MDA, H,0,, and proline contents under
Cd-stressed conditions (Rady and Hemida 2015). Proline is
an important metabolite for plant adaptation, protection, and
tolerance to Cd stress. Accumulation of proline in plants is
recognized as a strategy to counteract Cd stress by adjust-
ing osmotic potential, stabilization of membrane structures
(Amari et al. 2017; Semida et al. 2018), and reduction of
oxidative stress (Rady et al. 2019). Foliar spray of proline
and glycinebetaine caused a significant improvement in
growth and physiochemical attributes of two wheat cultivars
under Cd stress. Proline and glycinebetaine had markedly
enhanced shoot and root fresh weight, leaf phenolics, lesser
degradation of chlorophylls, and accumulation of MDA and
H,0, contents under Cd stress (Rasheed et al. 2014). Simi-
larly, Cd-stressed olive plants treated with proline showed
an increase of antioxidant enzymes activities, photosynthetic
activity, nutritional status, plant growth and oil content of
olive fruit (Zouari et al. 2016). So, the use of the afore-
mentioned PGRs can be an effective strategy to boost the
growth and development of plants grown in a Cd-stressed
environment.

5.6 Use of Inorganic Amendments for Remediation

Fertilization of different mineral amendments might be an
effective option in decreasing the Cd uptake and accumula-
tion in plants. Some individual mineral elements have been
highlighted here which considerably decrease the Cd accu-
mulation in plants.

5.6.1 Nitrogen

Nitrogen is an important macronutrient for plants with an
imperative function in plant productivity and grain nutrition
(Hirel and Krapp 2020). Various findings have reported that
N application in soil significantly influences the Cd dynam-
ics (Li et al. 2013; Ishikawa et al. 2015). Lin et al. (2011)
reported escalated Cd uptake in rice plants under N deficient
conditions; subsequently, abridged the plant growth, which
reflects that adequate N application might decline Cd deter-
rent impacts. However, the intensity of Cd phytotoxicity may
vary with different N speciation. For instance, Yang et al.
(2016a) observed that excessive quantity of NO>~ in nutrient
solution enhanced the Cd content in rice biomass and grains
contrary to control. In another study, the highest N and low-
est Cd concentration were observed in paddy biomass with
the application of (NH,),SO, compared with Ca(NO;), and
NH,NOj; under hydroponic conditions (Hassan et al. 2005).
Similarly, Gao et al. (2010) probed the role of source and
time as well as the method of application of nitrogenous
fertilizers regarding Cd toxicity in wheat plants under con-
ventional as well as conservation tillage systems. The out-
comes reflected that N-supply as band placement resulted

@ Springer

in enhanced Cd content in plants contrary to dual-banded
placement which signifies that higher N accessibility dimin-
ishes the Cd uptake. Ammonia enrichment enhanced grain
Cd concentration in comparison to ammonium nitrate and
urea. Increasing the N rate from 60 to 160 and 240 kg ha™",
reduced the Cd absorption in potato, regardless of potato
cultivars (Jonsson and Asp 2011). Thus, the selection of
proper N source, rate, and method of the application might
be a feasible preference to grow plants in Cd-polluted soils
with minimum risk of Cd entry into the food chain.

5.6.2 Phosphorus

Reduction in Cd toxicity by using phosphorus (P)-containing
amendments is well known in several crops (Rizwan et al.
20164, b). Phosphorous enrichment as CaH,P,04 under
various levels of CdSO, improved the spinach biomass and
reduced the Cd concentration owing to reduced exchange-
able as well as carbonic formations of Cd in relation to con-
trol (Dalir et al. 2012). The supply of P as mono-ammonium
phosphate (MAP) reduced the Cd content in wheat grains
and improved the gas exchange parameters and plant growth
(Arshad et al. 2016). Rochayati et al. (2011) assessed the
impact of P on Cd uptake in maize, and it was observed
that the application of reactive P rock enhanced the Cd
absorption by maize plants. Conversely, Jiang et al. (2007)
observed that H,PO, application in solution culture signifi-
cantly reduced the Cd uptake by maize. This indicated that
P fertilizer type and growing medium substantially affect
the Cd behavior regarding plant uptake. Shi et al. (2015)
reported that Cd concentrations in wheat grains were cor-
related with the concentration of P in straw and grains of
wheat. Whereas, Jafarnejadi et al. (2011) documented that
the overdose of phosphatic fertilizers augmented the Cd con-
tent in the top layer of soil and wheat grains. This indicated
that P fertilization should be cautiously used in Cd-polluted
soils to diminish Cd entrance in the food chain via crops.

5.6.3 Zinc

Zinc is an important micronutrient for plants; however,
owing to physico-chemical similarities with Cd, competi-
tion exists at the soil matrix for adsorption as well as at root
surfaces for uptake. It has been stated by numerous studies
that enrichment of Zn in soil reduced the Cd concentration in
plants (Singh and Shivay 2013; Adil et al. 2020). Kukier and
Chaney (2002) observed that Zn application diminished Cd
content in shoots; while, in case of rice grains, its concentra-
tion showed variation in response to contamination level as
well as the composition of nutrient solution. Similarly, Liu
et al. (2007) probed that Cd toxicity was reduced in durum
wheat seedlings after the Zn application. The concentration
of Cd in Chinese cabbage reflected a contrary response to Zn
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enrichment. Accordingly, it was proposed that Zn application
on foliage might be helpful in reducing the Cd concentration
in Chinese cabbage (Tang et al. 2016). Translocation of Cd
in wheat shoots was significantly reduced by enhancing the
Zn interactions in soil solution fraction (Green et al. 2003).
According to Koleli et al. (2004) the positive response of
Zn regarding Cd toxicity alleviation might be the outcome
of the competition for particular metalloenzymes, critical
cellular organelles and improved defense mechanism in Cd
exposed plants. Cakmak et al. (2000) suggested that reduc-
tion in Cd concentration in wheat grains is also ascribed to
Zn associated competitive retardation of Cd transmission
into the phloem. Moreover, the corresponding treatment of
Zn to wheat flag leaf along with Cd impeded the transport
of Cd towards grains (Harris and Taylor 2001).

5.6.4 Iron

The application of iron (Fe) could be a potential amendment
in deterring the Cd accumulation in plants. It is well docu-
mented that Fe nutrition could alleviate Cd content under
both field and laboratory conditions (Zhou et al. 2015).
Tomato seedlings were planted in a hydroponic growing
medium with diverse levels of Fe, along with treatment hav-
ing no Fe supply, there was substantially higher Cd uptake
by tomato seedlings compared with other treatments. So, it
was suggested that deficiency of Fe induced variations in
root exudation, leading towards augmented Cd availability
(Bao et al. 2010). Similar outcomes have also been high-
lighted in diverse studies (Zhou et al. 2015). Iron enrichment
in rice grown on Cd-contaminated soil considerably resulted
in the restoration of photosynthetic e~ transmission system
compared with controlled conditions (Sebastian and Prasad
2015b). The efficacy of Cd uptake differs with different
forms of Fe. For example, Fe and Cd uptake were consider-
ably higher with the application of Fe (III) citrate instead of
Fe (IIT) EDTA in similar amounts (Csog et al. 2011). The
studies revealed that Fe supply can be an effective option
to reduce Cd phytotoxicity but its various sources must be
assessed before its application.

5.6.5 Selenium

A naturally occurring metalloid that possesses the poten-
tial for better plant productivity at minimal dose but elic-
its adverse impacts at a higher dose (Mostofa et al. 2017).
Various studies highlighted that selenium (Se) application
can reduce the Cd uptake as well as the deterrent impacts
on crops (Hawrylak-Nowak et al. 2014; Sun et al. 2016;
Xie et al. 2021). Selenium supply inhibited Cd uptake by
paddy seedlings and improved the nutrient status under Cd
stress (Feng et al. 2013). The selenium-mediated decrease
in Cd content in rice biomass might be owing to a reduction

of Cd solubility in soil (Hu et al. 2014). Moreover, it was
observed that nutrient status was improved with a reduction
in lipid peroxidation and Cd concentration when the wheat
seedlings were exposed to Se (Zembala et al. 2010). Under
Cd-stressed environment, promising results with Se sup-
ply in improving the plant biomass and hampering root Cd
absorption has been documented in broccoli (Pedrero et al.
2008), pepper (Mozafariyan et al. 2014), garlic (Sun et al.
2010a, b), cucumber (Sun et al. 2016), and tomato (Abdul-
lah et al. 2016). These findings showed that Se fertilization
reduced Cd concentrations with significant improvement in
plant growth, C-fixation, and nutritional status. Moreover,
the effect of Se on Cd in different plants is Se as well as Cd
dose-dependent (Ding et al. 2014). In general, Se is sig-
nificantly found to elicit a protective impact on Cd exposed
plants.

5.6.6 Silicon

Silicon (Si) is the second most abundant element on earth's
crust and widely reported for the alleviation of abiotic
stress in plants (Rizwan et al. 2015, 2016a; Keller et al.
2015). Quite a few studies revealed that Si application
declined Cd toxicity in wheat (Rizwan et al. 2012, 2016c;
Thind et al. 2020), rice (Nwugo and Huerta 2010; Kim
et al. 2014), maize (Mihalicova et al. 2014; Vaculik et al.
2015), cotton (Farooq et al. 2016), Chinese cabbage (Wu
et al. 2016a, b), cucumber (Feng et al. 2010) and tomato
(Wu et al. 2015). da Cunha et al. (2008) probed that Si
application at the rate of 200 ppm under 10 ppm Cd
enhanced the root and shoot biomass of maize consider-
ably. da Cunha and do Nascimento (2009) suggested the
Si aggregation in root endodermis, as well as pericycle,
seems to play a vital role in increasing the tolerance of Cd
toxicity in maize. In another study, the application of Si
enhanced the Cd deposition in shoot and roots cell walls
and augmented suberin lamellae deposition and improved
CAT, POD, and SOD activities in maize seedlings (Luka-
cova et al. 2013). Cadmium concentration significantly
reduced in grains of durum wheat with Si supply com-
pared with untreated treatments (Naeem et al. 2015). The
Si-mediated reduction of Cd concentration in wheat might
be owing to a rise in soil pH (Rizwan et al. 2012) and/or
reduction in the concentration of extractable Cd in soil
and by enhancing Cd accumulation in roots (Naeem et al.
2015). Similarly, Si application improved rice growth by
reducing the Cd uptake and ameliorating the structure and
function of roots as compared to control (Kim et al. 2014).
Nwugo and Huerta (2008) reported that Si application in
the Cd-contaminated field enhanced the photosynthetic
efficiency of Cd-stressed rice. Moreover, it maintained
the structure and integrity of rice leaves and roots under
Cd-stressed conditions (Tripathi et al. 2012). However, a
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lower concentration of Si in soil did not change the soil pH
and enhanced the Cd concentration in shoots and bulbs of
garlic compared with control (Wang et al. 2016c). Thus,
the application of Si can be a useful option to improve the
growth of plants under the Cd-stressed environment.

5.7 Use of Organic Amendments for Remediation

Generally, organic supplements are used in metal-polluted
soils in various ways to reduce Cd uptake in plants (Juang
et al. 2012; Lwin et al. 2018). Numerous studies have
reported the use of organic amendments in Cd contami-
nated soils and their effects in reducing its uptake in plants
(Tables 9, 10).

5.7.1 Biochar

Biochar is a stable source of organic carbon is produced
with the heating of biomass at a higher temperature
(300-1000 °C) in the absence of O, (Verheijen et al.
2010). The fame of biochar as a soil amendment has sig-
nificantly increased in recent years due to its fundamental
advantages including soil conditioning, improvement in
soil pH, fertility, water holding capacity, carbon sequestra-
tion, recycling of nutrients, and remediation of soil con-
taminants (Zhang et al. 2013c; Ali et al. 2017, Ur Rehman
et al. 2020). Biochar acts as an adsorbent to sequester HMs
in soil (Hussain et al. 2017). It is well reported in the
published literature that the application of biochar in pot
and field experiments significantly improved the growth,
biomass, and economic yield in Cd-contaminated soils
(Table 9).

Zheng et al. (2012) stated that the use of rice straw bio-
char significantly reduced Cd concentration in rice compared
with rice husk and bran. Similarly, biochar derived from
rice straw reduced the Cd concentration in rice and reduced
MDA, proline, as well as CAT, POD, and SOD activities
under Cd stressed conditions (Zhang et al. 2014a). Biochar
application reduced toxic metal concentrations including
Cd in wheat (Ok et al. 2015), rice (Bian et al. 2016), sun-
flower (Sneath et al. 2013), mustard (Choppala et al. 2015),
jack bean (Puga et al. 2015), garlic (Song et al. 2014), let-
tuce (Kim et al. 2015a, b) pepper (Xu et al. 2016), soybean
(Wagqas et al. 2014) and mung bean (Prapagdee et al. 2014).
However, the biochar effects towards metal immobilization
and uptake by crop plants differed with pyrolysis tempera-
ture, biochar, and soil type (Khan et al. 2015b; Rizwan et al.
2016¢c; Woldetsadik et al. 2016). In crux, biochar applica-
tion is an eco-friendly approach to grow crops successfully
in Cd-contaminated soils with reduced Cd contents in their
above-ground parts.

@ Springer

5.7.2 Compost

Compost is a well-decomposed organic material produced
from animals and plants under anaerobic conditions (Stan-
islawska-Glubiak et al. 2015). It improves the soil structure
and fertility status; as it comprises organic matter contents.
Moreover, the application of compost is also helpful in
improving crop productivity in Cd-contaminated soils. For
instance, the application of compost increased the growth
and biomass of corn under Cd-stressed conditions and it
also improved the tolerance index (Ahmad et al. 2015). Sato
et al. (2010) experimented to evaluate the efficacy of com-
post derived from swine, cattle, and poultry on uptake and
availability of Cd by spinach. After four years of study, it
was concluded that the application of amendments reduced
Cd concentration in spinach. Moreover, the repeated applica-
tion enhanced the P concentration in soil. The authors also
suggested that compost derived from cattle might be a more
effective amendment to reduce Cd uptake by spinach com-
pared with other treatments. Likewise, compost application
reduced bioavailable Cd in soil and uptake by rice plants
(Juang et al. 2012). It has been reported that the efficiency of
composted manure in reducing the toxic metal concentration
is significantly higher as compared to fresh manure (Irshad
et al. 2014).

5.7.3 Manures

Manure application is another viable option for improv-
ing soil health and metal remediation (Shumba et al. 2014;
Sabir et al. 2015). Application of organic manures in Cd-
contaminated soil decreased the Cd phytoavailability and
resultantly improved wheat growth owing to little oxidative
damage (Ahmad et al. 2011). Zhao et al. (2014) conducted
a field experiment to assess the effect of long-term cattle
manure application on Cd uptake by maize and soil proper-
ties. The results showed that the use of compost improved
the availability of Cd in the soil and the uptake in maize, but
Cd accumulation was higher in shoots compared to grains;
so, it was concluded from the above study, that manure
application enhanced or reduced Cd uptake and availability
depending upon manure type. Thus, the choice of manure is
an important step to achieve good phytoextraction efficacy
by maize crop. Different organic manures when amended to
soil may reduce Cd bioavailability and uptake (Rizwan et al.
20164, b). Green manure is also very useful in improving
soil fertility and Cd remediation. Ok et al. (2011) reported
that the use of rapeseed residues as green manure decreased
the concentration of Cd in rice plants by transferring Cd to
more stable factions. In another study, combined application
of lime and organic amendments in Cd contaminated soil
significantly improved rice yield and decreased Cd contents
in grains (Guo et al. 2018).
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Table 10 Effect of organic amendments on crops growth and Cd uptake, grown on Cd-contaminated soils

Plant species

Soil type

Organic amendment

Applied dose

Effects

References

Maize

Maize

Amaranth

Rice

Maize

Tobacco

Cucumber

Foxtail amaranth
(Amaranthus cau-
datus)

Amaranthus caudatus

Amaranthus caudatus

Wheat

Rice

Rice

Sandy

Sandy loam

Silty clay

Sandy loam

Sandy

Sandy clay

Sandy loam

Loam

Compost

Rice straw and cow
manure

Farmyard manure (FYM)

Compost

Cattle manure

Cow manure

Bagasse

Farmyard manure

Straw dust

Rice husk

Chicken manure

Manure

Poultry manure

Oand 15 tha™!

6.25 and 12.5% (w/w)
(rice straw), 10 and
20% (wlw) (cow
manure)

0, 10, and 20 t ha™!

0, 1, and 2% (w/w)

0, 20, and 40 t ha™!

1 and 2% (w/w)

3% and 5% (w/w)

0.5,2, 5 and 10% (w/w)

0.5, 2,5 and 10% (wW/w)

0.5, 2, 5 and 10% (w/w)

10, 20, and 30 g kg~! soil

0, 1, and 3% (w/w)

80 g/pot

Compost reduced the Cd
uptake and increased
the plant growth

Both the amendments
improved the root
and shoot biomass
and grain yield. The
concentration of Cd
in roots and shoots
reduced significantly

FYM application
improved the plant
growth and reduced the
concentration in shoots

Compost amendment
decreased the bioavail-
ability of Cd in soil and
reduced uptake of Cd
in rice

Application of manures
increased the Cd con-
tents in maize grains

Cow manure amendment
reduced uptake of Cd
in tobacco leaves to
allowable limits and
improved tobacco yield

Bagasse application
effectively mitigate Cd
toxicity and reduced
mobility and bioaccu-
mulation of Cd

FYM amendment at 5%
reduced the Cd load in
leafy vegetable

Application of straw dust
improved the yield by
improving the antioxi-
dant system of plants

Rice husk application
significantly reduced
the Cd content in
tissues (23%) and
improved the yield

Application of chicken
manure along KH,PO,
reduced the Cd avail-
ability by 63% and
improved the yield

The addition of manure
enhanced soil pH and
increased paddy yield
with substantially
reduced Cd contents

Reduced Cd concen-
tration in soil and
improved plant biomass
and grain yield

Ahmad et al. (2015)

Putwattana et al. (2015)

Alamgir et al. (2011)

Wu et al. (2011)

Zhao et al. (2014)

Ngorwe et al. (2014)

Khan et al. (2018)

Singh and Prasad, (2014)

Singh and Prasad, (2014)

Singh and Prasad, (2014)

Zhang et al. (2016)

Han et al. (2011)

Ullah et al. (2017)

@ Springer
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Table 10 (continued)

Plant species Soil type Organic amendment

Applied dose

Effects References

Rice Sandy loam Press mud

2% (wlw)

Reduced Cd concentra-
tion by 50% in soil
and improved growth,
photosynthetic traits
and yield of rice plants
growing under Cd
stress

Azhar et al. (2019)

5.7.4 Press Mud

Press mud is a waste product produced after sugarcane
crushing which comprises essential nutrients for plants.
Press mud is an organic fertilizer that is considered a good
soil conditioner (Kumar et al. 2017). The composition of
press mud varies from 68—70% moisture, 24-28% combusti-
ble fraction, and 6-8% ash (Gangavati et al. 2005). Applica-
tion of press mud immobilized Cd and improved the growth
and yield of maize in Cd-polluted soil (Akhtar et al. 2019).
Vermicomposting of press mud and fly ash significantly
improved micronutrients concentration and reduced Cd and
other HMs in the feedstock. Moreover, the enzymatic activi-
ties (phosphatase, dehydrogenase and urease) were increased
(Karwal and Kaushik 2020). In a recent study, the applica-
tion of press mud in HM polluted soil in rice—wheat system
substantially reduced AB-DTPA extractable Cd in soil and
improved growth of wheat (Rehman et al. 2020). In sum-
mary, organic amendments like biochar, manures, compost,
and press mud might be a feasible option for remediation of
Cd-polluted soils but their nutrient retention mechanisms
should be kept in mind before application.

5.8 Remediation Potential Through Molecular
Breeding and Genetic Engineering

Some plants have innate abilities to remediate HMs from
soil and environment, but this remediation potential is quite
slow because the rate of bioremediation is directly propor-
tional to plant growth rate. The direct correlation of plant
growth and biomass with the total amount of bioremediation
makes the remediation process very slow. Therefore, there
is a need for the identification of rapid growing and high
biomass accumulating plants that have strong metal accu-
mulation potential (KoZmirska et al. 2017). In this regard,
genetic engineering has promisingly facilitated to modify the
plants by transforming their primary and secondary metabo-
lisms with the introduction of new phenotypic and genotypic
characteristics aiming to enhance/improve their phytoreme-
diation potential (Muszyniska and Hanus-Fajerska 2017).
Success stories about the identification of genes involved
in the acquisition, sequestration, translocation, and detoxi-
fication of HMs in plants and microorganisms have been

@ Springer

widely reported (Danika and Norman 2005). Their transfer
into higher biomass and fast-growing plants has been known
to accelerate the process of HMs remediation (Maestri and
Marmiroli 2012). Tissue culture is another potential option
that can be exploited to identify the genes with higher bio-
degradation properties or higher metal accumulation poten-
tial to develop new varieties with enhanced tolerance and
phytoremediation of HMs (Mengoni et al. 2000). For exam-
ple, overexpression of gene YCF1, OsMTP1, and AtATM3
increased the accumulation and tolerance of Cd in Populus
alba x P. tremula var. glandulosa, tobacco, and mustard,
respectively (Bhuiyan et al. 2011; Shim et al. 2013; Das
et al. 2016). It is well documented that transgenic plants
have a notable ability to contribute to the revitalization of
Cd-contaminated soils through phytoremediation. Further
research is needed in the field of molecular breeding and
transgenic approaches for the development of plants with
high phytoremediation potential. Moreover, non-food crops
should be selected for genetic manipulation, so that entry of
toxic HMs in food items could be avoided.

5.9 Other Crop Practices

Tillage practices play an important role in decreasing the
Cd toxicity in soil and its uptake in plants (Gao and Grant
2012). Gao et al. (2010) conducted a field study to com-
pare the effect of conventional tillage and reduced tillage
in reducing the Cd toxicity in wheat. Reduced tillage sig-
nificantly decreased the Cd concentration and accumula-
tion in wheat grains, which might be due to higher soil
organic matter caused by the residue of the previous crop
retained on the soil surface that can increase the adsorp-
tion and complexation of Cd. Additionally, reduced till-
age may affect the microbial activity and release of Cd
from crop residue (Li et al. 2017). Intercropping offers
an opportunity for farmers to achieve greater production
per unit land area by growing two or more crops in prox-
imity (Chen et al. 2015). Li et al. (2009) reported in an
experiment that intercropping of maize with different leg-
umes (chickpea, alfalfa, cowpea, and purple haricot) sig-
nificantly increase the Cd uptake by maize compared with
non-leguminous crops (amaranth, rapeseed, and teosinte).
Likewise, in a field study, the co-cultivation of maize with
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legumes increased Cd uptake in adjacent maize regard-
less of Cd levels (Liu et al. 2012), which might be due to
a reduction in soil pH. Tang et al. (2012) reviewed that
co-cropping with phytoextraction plants and food crops
may reduce the Cd concentration and accumulation in food
crops. Similarly, in rice/wheat intercropping, Cd concen-
tration was reduced in shoots and grains of rice and wheat
compared to monoculture (Wu et al. 2003). Thus, co-
cropping of food crops with Cd-hyperaccumulator plants
might be an option to reduced Cd concentration in food
crops. Crop rotation is another alternative technique in
reducing the Cd availability to crops (Yu et al. 2014). In
a field study, the effect of rice rotation with oilseed rape
was studied and it was observed that Cd concentration in
rice grains reduced about 47% when it was rotated with
oilseed rape (Wu et al. 2011). Conversely, Yu et al. (2014)
carried out an experiment in alluvial loam soil under rice-
rape rotation. The cultivation of rice after rape enhanced
Cd concentration in rice compared with fallow treatment.
This showed that oilseed rape cultivation in soil mobi-
lized the Cd and increased the Cd uptake by subsequent
rice crop. However, Cd uptake varies between cultivars of
rice and rapeseed, which showed that plant species should
be taken into account during crop rotation to assure food
quality and safety (Yu et al. 2014). In a field experiment, it
was observed that the pre-cultivation of Salix substantially
reduced the Cd concentration in post-cultivated wheat
grains. A high-density cultivation of Salix decreased Cd
in wheat grains rapidly as compared to a low-density plan-
tation (Greger and Landberg 2008). This showed that pre-
cultivation of phytoextraction plants might be effective in
reducing the Cd concentration in wheat grains. The type
of soil is another important factor that determines the Cd
uptake by plants. Rafiq et al (2014) conducted an experi-
ment to study the effect of seven different textured soils on
Cd availability to rice plants and results showed that Cd
content in rice varied with the type of soil being highest
and lowest in Periudic Agrosoils and Calcaric Regosols,
respectively. Water management is an effective option in
reducing the Cd uptake and accumulation in plants (Hu
et al. 2013a, b; Pan et al. 2016). Limited water supply
during periods of higher water requirement increased the
Cd accumulation in spinach than other irrigation regimes
(Tack 2017). Several studies confirmed that continuous
flooding leads to reduced Cd uptake in rice plants (Hu
et al. 2015). Cadmium concentration was significantly less
in rice husk in intermittent and flooding treatments com-
pared to aerobic treatments (Hu et al. 2015). In a two-year
study, three different watering systems sprinkler, satura-
tion and flooding were used for growing 26 rice geno-
types. The sprinkler system diminished the average Cd
content in rice between 13 and 28% than that of continuous
flooding, while the saturation irrigation method caused an

extraordinary increased (760% and 1000%) Cd concentra-
tion in rice. Thus, a greater amount of Cd was found in
rice kernels under the saturation irrigation method (Spanu
et al. 2018).

In summary, appropriate agricultural practices such as
tillage, inter-cropping, crop rotation, and water management
could be useful options for reducing the Cd concentration
in plants.

6 Conclusion and Future Perspectives

Cadmium polluted soil has been well acknowledged to
be a significant danger to human wellbeing by means of
adulterating the food chain. Cadmium is radically harm-
ful to agricultural harvests and accounted to diminish plant
development, productivity, and quality; hence, the decline in
overall yield. Moreover, Cd in exorbitant concentration trig-
gers oxidative damages by impeding antioxidant enzymes
in plants. To overcome this menace, quite a few techniques
have been utilized for viable relief of Cd elicited phytotoxic-
ity. These relief approaches chiefly include bioremediation
which includes phytoremediation (phytoextraction, phyto-
degradation, phytovolatilization, rhizosphere degradation,
rhizofiltration, phytostablization, and phytorestoration) and
microbial remediation (bacteria, fungi, algae, and PGPRs).
Some other recent remediation techniques for Cd decon-
tamination are the exogenous application of chelates, PGRs,
inorganic (N, P, Zn, Fe, Se, and Si), and organic (biochar,
manure, compost, and press mud) amendments. Moreover,
the adoption of some agricultural practices including judi-
cious tillage, practices, crop rotation, intercropping, and
water management could be sensible approaches to lighten
the Cd instigated phytotoxicity. Although an enormous num-
ber of endeavors have been made to alleviate Cd toxicity in
plants, further exploration ought to be carried out focusing
on ensured quality as well as safe productivity of food. This
ought to incorporate the following:

e Metabolomics, proteomics, transcriptomics, and genomic
approaches should be needed to study for a better under-
standing of underlying mechanisms Cd toxicity in crop
plants at the molecular level.

e More eco-friendly amendments should bring into practi-
cal exploitation for declining Cd phytotoxicity.
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