
Sabine Attinger- Helmholtz Centre for Environmental Research
Sabine Attinger
- Helmholtz Centre for Environmental Research
About
218
Publications
50,768
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,160
Citations
Current institution
Publications
Publications (218)
Global warming is altering soil moisture (SM) droughts in Europe with a strong drying trend projected in the Mediterranean and wetting trends projected in Scandinavia. Central Europe, including Germany, lies in a transitional zone showing weaker and diverging change signals exposing the region to uncertainties. The recent extreme drought years in G...
Climate change threatens the sustainable use of groundwater resources worldwide by affecting future recharge rates. However, assessments of global warming's impact on groundwater recharge at local scales are lacking. This study provides a continental‐scale assessment of groundwater recharge changes in Europe, past, present, and future, at a (5×5) $...
High spatial resolution of satellite-based soil moisture (SM) data are essential for hydrological, meteorological, ecological, and agricultural studies. Especially, for watershed hydrological simulation and crop water stress analysis, 1-km resolution SM data have attracted considerable attention. In this study, a dual-polarization algorithm (DPA) f...
Profound knowledge of soil moisture and its variability plays a crucial role in hydrological modelling to support agricultural management, flood and drought monitoring and forecasting, and groundwater recharge estimation. Cosmic-ray neutron sensing (CRNS) has been recognised as a promising tool for soil moisture monitoring due to its hectare-scale...
In the recent years, the German federal state of Brandenburg has been particularly impacted by soil moisture droughts. To support the timely and informed management of such water-related risks, we introduce a novel soil moisture and drought monitoring network based on cosmic-ray neutron sensing technology. This initiative is driven by a joint colla...
Individual approaches to observe water dynamics across our landscape, from the land surface to groundwater, are many though they individually only provide glimpses into the real world due to their specific space–time scales. Comprehensive integration across all available observations is still largely lacking, limiting both our ability to reduce sci...
Knowledge about the long history of the anthropogenic inputs of nitrogen (N) and phosphorus (P) is crucial to capture long-term N and P processes (legacies) and to investigate water quality and ecosystem health. These inputs include N and P point sources, which mainly originate from wastewater and which are directly discharged into surface waters,...
Comparing COVID-19 response strategies across nations is a key step in preparing for future pandemics. Conventional comparisons, which rank individual non-pharmaceutical intervention (NPI) effects, are limited by: (i) a focus on epidemiological outcomes; (ii) NPIs typically being applied as packages of interventions; and (iii) different political,...
Regional groundwater modelling can provide decision-makers and scientists with valuable information required for the sustainable use and protection of groundwater resources in the future. In order to assess and manage the impact of climate change on regional aquifer systems, numerical groundwater models are required which represent the subsurface s...
The need to develop and provide integrated observation systems to better understand and manage global and regional environmental change is one of the major challenges facing Earth system science today. In 2008, the German Helmholtz Association took up this challenge and launched the German research infrastructure TERrestrial ENvironmental Observato...
Pedo‐transfer functions (PTFs) relate soil/landscape static properties to a wide range of model inputs (e.g., soil hydraulic parameters) that are essential to soil hydrological modeling. Combining PTFs and hydrological models is a powerful strategy allowing the use of soil/landscape static properties for the generalization of large‐scale modeling....
The need to develop and provide integrated observation systems to better understand and manage global and regional environmental change is one of the major challenges facing Earth system science today. In 2008, the German Helmholtz Association took up this challenge and launched the German research infrastructure TERrestrial ENvironmental Observato...
Central Europe, including Germany, has faced exceptional multi-year terrestrial water storage (TWS) deficits since 2018, negatively impacting various sectors such as forestry, energy production, and drinking water supply. Currently, the understanding of the recovery dynamics behind such extreme events is limited, which hampers accurate water manage...
The geostatistical characterization of the subsurface is confronted with the double challenge of large uncertainties and high exploration costs. Making use of all available data sources is consequently very important. Bayesian inference is able to mitigate uncertainties in such a data-scarce context by drawing on available background information in...
Knowledge about the long history of the anthropogenic inputs of Nitrogen (N) and Phosphorus (P) is crucial to capture long-term N and P processes (legacies) and to investigate water quality and ecosystem health. These inputs include N and P point sources, that originate mainly from wastewater, and that are directly discharged into surface waters, t...
This paper employs stochastic analysis to investigate the combined effect of temporal and spatial variability on the temporal variance of baseflow in large catchments. The study makes use of the well‐known aggregated reservoir model, representing the catchment as a network of parallel linear reservoirs. Each reservoir models a sub‐catchment as an i...
Profound knowledge of soil moisture and its variability plays a crucial role in hydrological modeling to support agricultural management, flood and drought monitoring and forecasting, and groundwater recharge estimation. Cosmic-ray neutron sensing (CRNS) have been recognized as a promising tool for soil moisture monitoring due to their hectare-scal...
The fast depletion of soil moisture in the top soil layers characterizes flash drought events. Due to their rapid onset and intensification, flash droughts severely impact ecosystem productivity. Thus understanding their initialization mechanisms is essential for improving the skill of drought forecasting systems. Here, we examine the role of antec...
Eddy covariance sites are ideally suited for the study of extreme events on ecosystems as they allow the exchange of trace gases and energy fluxes between ecosystems and the lower atmosphere to be directly measured on a continuous basis. However, standardized definitions of hydroclimatic extremes are needed to render studies of extreme events compa...
Cosmic ray neutron sensing (CRNS) has become a promising method for soil water content (SWC) monitoring. Stationary CRNS offers hectare‐scale average SWC measurements at fixed locations maintenance‐free and continuous in time, while car‐borne CRNS roving can reveal spatial SWC patterns at medium scales, but only on certain survey days. The novel co...
The geostatistical characterization of the subsurface is confronted with the double challenge of large uncertainties and high exploration costs. Making use of all available data sources is consequently very important. Bayesian inference is able to mitigate uncertainties in such a data scarce context by drawing on available background information in...
Introduction: Pressure on groundwater resources is increasing rapidly by population growth and climate change effects. Thus, it is urgent to quantify their availability and determine their dynamics at a global scale to assess the impacts of climate change or anthropogenically induced pressure, and to support water management strategies. In this con...
Eddy covariance sites are ideally suited for the study of extreme events on ecosystems as they allow the exchange of trace gases and energy fluxes between ecosystems and the lower atmosphere to be directly measured on a continuous basis. However, standardized definitions of hydroclimatic extremes are needed to render studies of extreme events compa...
Germany's 2018–2020 consecutive drought events resulted in multiple sectors – including agriculture, forestry, water management, energy production, and transport – being impacted. High-resolution information systems are key to preparedness for such extreme drought events. This study evaluates the new setup of the one-kilometer German drought monito...
Worldwide surface waters suffer from the presence of nitrogen (N) compounds causing eutrophication and deterioration of the water quality. Despite many Europe-wide legislation’s, we still observe high N levels across many water bodies in Europe. Information on long-term annual soil N surplus is needed to better understand these N levels and inform...
The scope of this work is to discuss the proper choice of macrodispersion coefficients in modeling contaminant transport through the advection dispersion equation (ADE). It is common to model solute concentrations in transport by groundwater with the aid of the ADE. Spreading is quantified by macrodispersivity coefficients, which are much larger th...
Hydrogeological information about an aquifer is difficult and costly to obtain, yet essential for the efficient management of groundwater resources. Transferring information from sampled sites to a specific site of interest can provide information when site‐specific data is lacking. Central to this approach is the notion of site similarity, which i...
Environmental data are the key to defining and addressing water quality and quantity challenges at the catchment scale. Here, we present the first large-sample water quality data set for 1386 German catchments covering a large range of hydroclimatic, topographic, geologic, land use, and anthropogenic settings. QUADICA (water QUAlity, DIscharge and...
Water provision and distribution are subject to conflicts between users worldwide, with agriculture as a major driver of discords. Water sensitive ecosystems and their services are often impaired by man-made water shortage. Nevertheless, they are not sufficiently included in sustainability or risk assessments and neglected when it comes to distribu...
Large‐scale groundwater models are required to estimate groundwater availability and to inform water management strategies on the national scale. However, parameterization of large‐scale groundwater models covering areas of major river basins and more is challenging due to the lack of observational data and the mismatch between the scales of modeli...
Improving nitrogen (N) status in European water bodies is a pressing issue. N levels depend not only on current but also past N inputs to the landscape, that have accumulated through time in legacy stores (e.g., soil, groundwater). Catchment-scale N models, that are commonly used to investigate in-stream N levels, rarely examine the magnitude and d...
Understanding catchment controls on catchment solute export is a prerequisite for water quality management. StorAge Selection (SAS) functions encapsulate essential information about catchment functioning in terms of discharge selection preference and solute export dynamics. However, they lack information on the spatial origin of solutes when applie...
Environmental data are the key to define and address water quality and quantity challenges at catchment scale. Here, we present the first large-sample water quality data set for 1386 German catchments covering a large range of hydroclimatic, topographic, geologic, land use and anthropogenic settings. QUADICA (water QUAlity, DIscharge and Catchment...
Improving nitrogen (N) status in European water bodies is a pressing issue. N levels depend not only on current but also past N inputs to the landscape, that have accumulated through time in legacy stores (e.g. soil, groundwater). Catchment-scale N models, that are commonly used to investigate in-stream N levels, rarely examine the magnitude and dy...
Distributed environmental models such as land surface models (LSMs) require model parameters in each spatial modeling unit (e.g., grid cell), thereby leading to a high-dimensional parameter space. One approach to decrease the dimensionality of the parameter space in these models is to use regularization techniques. One such highly efficient techniq...
Large‐scale measurements of the spatial distribution of water content in soils and snow are challenging for state‐of‐the‐art hydrogeophysical methods. Cosmic‐ray neutron sensing (CRNS) is a noninvasive technology that has the potential to bridge the scale gap between conventional in situ sensors and remote sensing products in both, horizontal and v...
MOSES (Modular Observation Solutions for Earth Systems) is a novel observation system that is specifically designed to unravel the impact of distinct, dynamic events on the long-term development of environmental systems. Hydro-meteorological extremes such as the recent European droughts or the floods of 2013 caused severe and lasting environmental...
Coupled numerical models, which simulate water and energy fluxes in the subsurface–land-surface–atmosphere system in a physically consistent way, are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete state evolut...
Pumping tests are established for characterizing spatial average properties of aquifers. At the same time, they are promising tools to identify heterogeneity characteristics such as log-conductivity variance and correlation scales. We present the extended Generalized Radial Flow Model (eGRF) which combines the characterization of well flow in fract...
Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experie...
We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy. The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi‐analytical drawdown solution from the upscaling...
Six conceptually different transport models were applied to the macrodispersion experiment (MADE)-1 field tracer experiment as a first major attempt for model comparison. The objective was to show that complex mass distributions in heterogeneous aquifers can be predicted without calibration of transport parameters, solely making use of structural a...
Distributed environmental models such as land surface models (LSM) require model parameters in each spatial modelling unit (e.g. grid cell), thereby leading to a high-dimensional parameter space. One approach to decrease the dimen- sionality of parameter space in these models is to use regularization techniques. One such highly efficient technique...
Travel time distributions (TTDs) provide an effective way to describe the transport and mixing processes of water parcels in a subsurface hydrological system. A major challenge in characterizing catchment TTD is quantifying the travel times in deep groundwater and its contribution to the streamflow TTD. Here, we develop and test a novel modeling fr...
Aquifer heterogeneity in combination with data scarcity is a major challenge for reliable solute transport prediction. Velocity fluctuations cause non-regular plume shapes with potentially long-tailing and/or fast-travelling mass fractions. High monitoring cost and a shortage of simple concepts have limited the incorporation of heterogeneity into m...
Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on th...
In the context of geotechnical and geological barriers, a thorough analysis of uncertainty and sensitivity is a crucial aspect of any physics-based performance assessment. While experimental data are scarce in actual waste repositories, large-scale experiments in underground research laboratories (URLs) provide such data that can be used to not onl...
Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever-increasing availability of diverse data sets and computational resources as well as advancement in ML algorithms. Despite advances in their predictive accuracy, the usefulness of ML algorithms for inference remains elusive. In...
Groundwater is the biggest single source of high-quality freshwater worldwide, which is also continuously threatened by the changing climate. In this paper, we investigate the response of the regional groundwater system to climate change under three global warming levels (1.5, 2, and 3 ∘C) in a central German basin (Nägelstedt). This investigation...
Abstract. Coupled numerical models, which simulate water and energy fluxes in the subsurface-land surface-atmosphere system in a physically consistent way are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete sta...
We determine the time-dependent behavior of the dispersion coefficient for transport in formations with isotropic log-conductivity fields showing fractal behavior. We consider two different dispersion coefficients for point-like injection: (1) the ensemble dispersion coefficients, defined as half the rate of change of the second central moments of...
Increased anthropogenic inputs of nitrogen (N) to the biosphere during the last few decades have resulted in increased groundwater and surface water concentrations of N (primarily as nitrate), posing a global problem. Although measures have been implemented to reduce N inputs, they have not always led to decreasing riverine nitrate concentrations a...
The improvement of process representations in hydrological models is often only driven by the modelers' knowledge and data availability. We present a comprehensive comparison between two hydrological models of different complexity that is developed to support (1) the understanding of the differences between model structures and (2) the identificati...
Groundwater is the biggest single source of high-quality fresh water worldwide, which is also continuously threatened by the changing climate. This paper is designed to investigate the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3°C) in a central German basin (Nägelstedt). This invest...
Groundwater travel time distributions (TTDs) provide a robust description of the subsurface mixing behavior and hydrological response of a subsurface system. Lagrangian particle tracking is often used to derive the groundwater TTDs. The reliability of this approach is subjected to the uncertainty of external forcings, internal hydraulic properties,...
Transverse dispersion, or tracer spreading orthogonal to the mean flow direction, which is relevant e.g, for quantifying bio‐degradation of contaminant plumes or mixing of reactive solutes, has been studied in the literature less than the longitudinal one. Inferring transverse dispersion coefficients from field experiments is a difficult and error‐...
Increased anthropogenic inputs of nitrogen (N) to the biosphere during the last decades have resulted in increased groundwater and surface water concentrations of N (primarily as nitrate) posing a global problem. Although measures have been implemented to reduce N-inputs especially from agricultural sources, they have not always led to decreasing r...
Groundwater travel time distributions (TTDs) provide a robust description of the subsurface mixing behavior and hydrological response of a subsurface system. Lagrangian particle tracking is often used to derive the groundwater TTDs. The reliability of this approach is subjected to the uncertainty of external forcings, internal hydraulic properties,...
Presentation of a geostatistical software framework.
Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator...
Data assimilation with 3D subsurface hydrologic models comes along with various challenges. Apart from obvious technical issues regarding the large number of model states and the involved demand of computational resources, there can be as well model and method specific problems. The ratio of available observations to unknown model states and parame...
1. Motivations • Distributed (hydrological) models are relevant tools for hypothesis testing and decision support systems • However, they are affected by many sources of uncertainty and our capability to calibrate and evaluate these models is limited. • For these reasons, their results could be questionable and their applicability limited fostering...
OpenGeoSys was coupled to the pipe flow model HYSTEM-EXTRAN [HE, version 7.7 or newer] (itwh, Kanalnetzberechnung - Hydrodynamische Abfluss-Transport- und Schmutzfrachtberechnung. HYSTEM-EXTRAN 7 Modellbeschreibung, 2014, itw 2010) in order to simulate pipe leakage in a variably saturated subsurface. The newly developed weak coupling scheme is appl...
In this paper, a new analytical solution for interpreting dipole tests in heterogeneous media is derived by associating the shape of the tracer breakthrough curve with the log-conductivity variance. It is presented how the solution can be used for interpretation of dipole field test in view of geostatistical aquifer characterization on three illust...
Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been sy...
Most of the current large scale hydrological models do not contain a physically-based groundwater flow component. The main difficulties in large-scale groundwater modeling include the efficient representation of unsaturated zone flow, the characterization of dynamic groundwater-surface water interaction and the numerical stability while preserving...
Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1–10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching co...
Soil properties show high heterogeneity at different spatial scales and their correct characterization remains a crucial challenge over large areas. The aim of the study is to quantify the impact of different types of uncertainties that arise from the unresolved soil spatial variability on simulated hydrological states and fluxes. Three perturbatio...
A framework for interpreting transient pumping tests in heterogeneous transmissivity fields is developed to infer the overall geostatistical parameters of the medium without reconstructing the specific heterogeneous structure point wise. This method is applied to the field sites “Horkheimer Insel” and “Lauswiesen” (South-West Germany) to estimate t...
Most of large-scale hydrological models do not contain a robust groundwater flow component. In this study, we couple the hydrological model mHM with the groundwater simulator OpenGeoSys (OGS) using off-line coupling. Then we use the Naegelstedt catchment with groundwater head data to verify the model output.
Land surface and hydrologic models (LSM/HM) are used at diverse spatial resolutions ranging from 1–10 km in catchment-scale applications to over 50 km in global-scale applications. Application of the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the model resolution and fulfills a f...
Travel-time distributions are a comprehensive tool for the characterization of hydrological system dynamics. Unlike the streamflow hydrograph, they describe the movement and storage of water within and throughout the hydrological system. Until recently, studies using such travel-time distributions have generally either been applied to lumped models...
We present the numerical analysis of a 3-D regional groundwater model for the Naegelstedt catchment in central Germany. The hydrogeological system is reproduced according to sparsely distributed boreholes data. The numerical analysis is carried out using the scientific software OpenGeoSys. Three alternative representations of hydrogeological zonati...
This article provides an overview about the Bode River catchment that was selected as the hydrological observatory and main region for hydro-ecological research within the TERrestrial ENvironmental Observatories Harz/Central German Lowland Observatory. It first provides information about the general characteristics of the catchment including climat...
Soil properties show high heterogeneity at different spatial scales and their correct characterization remains a crucial challenge over large areas. The aim of the study is to quantify the impact of different types of uncertainties that arise from the unresolved soil spatial variability on simulated hydrological states and fluxes. Three perturbatio...
The emergence of stochastic subsurface hydrology stemmed from the realization that spatial variability of aquifer properties (primarily permeability K) has a profound impact on solute transport. Heterogeneity is characterized by much larger scale than the pore scale and the seemingly erratic variation of K and the uncertainty of its distribution ca...
Combining numerical models, which simulate water and energy fluxes in the subsurface-land surface-atmosphere system in a physically consistent way, becomes increasingly important to understand and study fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by such models, whe...
Increased availability and quality of near real-time observations provide the opportunity to improve understanding of predictive skills of hydrologic models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE sat...
Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentrati...
A framework for interpreting transient pumping tests in heterogeneous transmissivity fields is developed to infer the overall geostatistical parameters of the medium without reconstructing the specific heterogeneous structure point wise. The methodology of Radial Coarse Graining is applied to deduce an effective radial description of multi-Gaussian...
Travel-time distributions are a comprehensive tool for the characterization of hydrological system dynamics. Unlike streamflow hydrographs, they describe the movement and storage of water inside and through the hydrological system. Until recently, studies using such travel-time distributions have generally either been applied to simple (artificial...
A new method is presented which allows interpreting steady-state pumping tests in heterogeneous isotropic transmissivity fields. In contrast to mean uniform flow, pumping test drawdowns in heterogeneous media cannot be described by a single effective or equivalent value of hydraulic transmissivity. An effective description of transmissivity is requ...
The lack of comprehensive groundwater observations at regional and global
scales has promoted the use of alternative proxies and indices to quantify
and predict groundwater droughts. Among them, the Standardized Precipitation
Index (SPI) is commonly used to characterize droughts in different
compartments of the hydro-meteorological system. In this...
Evolution equations for probability density functions (PDFs) and filtered density functions (FDFs) of random species concentrations weighted by conserved scalars are formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. This approach provides consistent numerical PDF/FDF solutions, gi...
Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. A mixing model, also known as a dissipation model, is essential for...
Accurately predicting regional scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires among other things a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic model...
Although aquifers are naturally heterogeneous, the interpretation of pumping tests is commonly performed under the assumption of aquifer homogeneity. This yields interpreted hydraulic parameters averaged over a domain of uncertain extent which disguises their relation to the underlying heterogeneity. In this study, we numerically investigate the se...
Background and aims Soil hydraulic properties drive water distribution and availability in soil. There exists limited knowledge of how plant species diversity might influence soil hydraulic properties.
Methods We quantified the change in infiltration capacity affected by soil structural variables (soil bulk density, porosity and organic carbon cont...
Ground water flow systems of shallow sedimentary basins are studied in general by analyzing the fluid dynamics at the real world example of the Thuringian Basin. The impact of the permeability distribution and density differences on the flow velocity pattern, the salt concentration, and the temperature distribution is quantified by means of transie...