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UMR 7504 Université de Strasbourg—CNRS, F-67034 Strasbourg, France
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Abstract. Molecular switches based on the N-alkylated indanylidene-
pyrroline (NAIP) framework mimic some of the outstanding double bond
photoisomerization properties of retinal Schiff bases in rhodopsin, most notably,
the occurrence of vibrational coherences in the excited and photoproduct
ground states. Focusing on the zwitterionic NAIP switch and using broadband
transient absorption spectroscopy, our previous investigation of the Z to E
photoisomerization dynamics is now extended to the study of the backward E to
Z photoisomerization and to the role of the solvent on the vibrational coherence
accompanying the photoreaction. Despite very similar signatures of excited-state
vibrational coherence and similar isomerization times, the backward reaction
has a significantly smaller isomerization yield than the forward reaction, and
most interestingly, does not display ground state coherences. This indicates
that both the quantum yield and vibrational dephasing depend critically on
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the photochemical reaction path followed to reach the ground potential energy
surface. In addition, investigation of the effect of the solvent viscosity shows that
vibrational dephasing is mainly an intramolecular process.

S Online supplementary data available from stacks.iop.org/NJP/15/105022/
mmedia
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1. Introduction

Double bond photoisomerization is a light-triggered chemical reaction leading to structural
changes at the nanoscale. In recent years, synthetic chromophores capable of undergoing such a
chemical event have found an increasing number of opto-electronic and biophysical applications
yielding novel photoresponsive materials. Nevertheless, in living systems a highly specialized
chromophore, the protonated Schiff base of retinal, has been selected by the biological evolution
to control a series of basic functions such as vision, circadian rhythm, ion-channels, light
energy conversion. When incorporated in the protein (opsin) environment of the dim-light visual
pigment rhodopsin (Rh), the retinal chromophore displays outstanding properties in terms of
isomerization quantum yield (65%) and speed (200 fs). Most remarkably, Rh provides the only
natural example of a vibrationally coherent photoisomerization [1]. This process is of particular
interest since the coherent photoisomerization funnels a significant amount of the absorbed
photon energy into a limited number of vibrational modes in the electronic ground state thus
transducing light-energy into mechanical-energy at the molecular level. Therefore, Rh appears
to provide a model system for a molecular opto-mechanical transducer operating efficiently in
the condensed phase.

Vibrational coherence originates from the coupling of two molecular electronic states by
an ultrashort laser pulse. Raman-active vibrational modes are populated and phase coherence
between vibrational states is imposed by the coherent laser field in both electronic states [2–5].
This yields vibrational wavepackets which may oscillate in their electronic potential well
provided their period is simultaneously longer than the laser pulse duration, and shorter than
the vibrational dephasing time and the electronic state lifetime. Vibrational wavepackets have
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been observed in a variety of photoisomerizing molecules and their time-resolved spectroscopic
signatures are oscillatory signals, non-exponential kinetics or dynamics spectral shifts [1, 6–21].

Remarkably, even in condensed phase, where dephasing is extremely fast, there are a few
examples of photoreactions displaying vibrational coherence in non-Raman-active modes [22],
or in electronic states other than those initially coupled by the light pulse and in particular in the
product of an ultrafast photoreaction [1, 23, 24]. In the latter case, the reactive motion imposed
by the topology of the excited electronic potential energy on the light-induced wavepacket
generates vibrational coherence in other, usually low-frequency modes involved in the reaction
coordinate, leading to a so-called coherent photochemical reaction.

Recent advances in quantum chemistry have enabled the computation of quantum
mechanics/molecular mechanics (QM/MM) trajectories revealing the excited state structural
dynamics of molecules as complex as Rh at the individual atomic level, with high temporal
resolution [18, 25], and in good agreement with observations [6]. It is even possible to pursue
the trajectory computation after the non-adiabatic decay to the ground state through a conical
intersection (CI) [18, 20, 26] where the branching ratio is controlled. This opens the way toward
accurate comparison with the observed photoproduct dynamics and possibly quantum yield
prediction.

In this context, we have been investigating both by ab initio quantum chemistry methods
and femtosecond spectroscopy [19, 20, 27–29] a family of N-alkylated indanylidene-pyrroline
(NAIP) photoswitches which are mimicking the photochemistry of retinal Schiff bases in Rh.
These photo-isomerizing model systems are small enough to be entirely treatable by QM/MM
techniques, including the solvent. At the CASPT2/CASSCF QM level, the excited state potential
energy surface is barrierless along torsion around the central double bond, and a CI is situated
at almost 90◦ torsion [27]. As shown experimentally, this leads to isomerization times as short
as 0.2–0.5 ps depending on substitutions on the indanone moiety, and with quantum yields
in the range of 0.20–0.35 [19, 20, 28, 30]. Most importantly, the molecules showing the
shortest excited-state lifetimes also display signatures of coherent excited and photoproduct
wavepacket dynamics [19, 20], similar to those reported for Rh. Semi-classical trajectory
computations of the indanylidene-pyrroline (IP) compounds indicate that the observed ground
state oscillations are the signature of coupled double-bond twisting and ring-inversions [20] and,
that the isomerization proceeds with vibrational coherence along the reaction coordinate. The
IP compounds thus appear as a model system to investigate the conditions for the appearance of
vibrational coherence along the reaction motion, and its implication in terms of reaction speed
and yield.

Here, we report new results on the wavepacket dynamics triggered by barrierless
photoisomerization in the dipolar ZW-NAIP. We compare the dynamics of the backward E
to Z photoreaction to that of the forward Z to E reaction, and investigate possible solvent
effects for the forward reaction. Interestingly, while the observed reaction and excited state
dynamics are very similar in both directions, the quantum yield is significantly different, and
the ground state wavepacket observed in the Z to E direction is no longer observed in the
backward direction. In addition, studying the forward reaction in a few selected alcohols, among
which the higher viscosity decanol, reveals hardly any change in the reaction dynamics and
vibrational coherence. This suggests that the vibrational coherence is observed in a so-called
volume-conserving deformation in line with the ring inversion modes predicted by QM/MM
semi-classical trajectory computations [20], and that vibrational dephasing is in essence an
intramolecular process in this compound.
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2. Experimental methods

The home-built, broadband (300–1000 nm) transient absorption (TA) set-up is described in
details in [19]. Briefly, it is based on a 5 kHz Ti:sapphire amplified laser delivering 40 fs, 0.5 mJ
output pulses. The pump wavelength is obtained by second harmonic generation. It is fixed at
400 nm, with an intensity kept in the linear regime of excitation, so as to promote not more than
5% of the ZW-NAIP molecule (Z or E isomer form) to its first excited electronic state S1 (see
figure 1(A)). The time resolution is 80 fs (FWHM of the solvent Raman response). Experiments
are performed on a 5–10 ml solution continuously circulated through a 0.5 mm thin fused silica
capillary. The concentration (≈0.5 mM) is adjusted to have an optical density of ≈0.6 at 400 nm.
Steady-state absorption spectra are measured shortly before and after TA acquisition using a
UV–Vis spectrophotometer (U-3000, Hitachi). No sign of photo-degradation is observed and
the change in isomer content is small, not larger than 10% relative to the initial isomer ratio (see
below). All TA data presented in this paper are processed following the procedure described
in [19] in order to compensate for group velocity dispersion and define time zero within ±20 fs
over the entire detection spectral range. Quantitative analysis methods are described in the SI
of [20].

The comparative study of the dynamics observed when exciting the Z or the E isomers is
performed on deuterated methanol (CD3OD, Sigma-Aldrich) solutions. A single stock solution
of concentration ∼5 mM is prepared. Half of the volume is kept in the dark, the second
half is irradiated with an argon laser over night. The isomer content of both samples is
determined by recording 1H-NMR spectra on a 300 MHz spectrometer (Avance 300 MHz,
Bruker). Immediately after, the samples are diluted by 10 and TA measurements are performed
on both samples one after the other. Figure 1 shows the structure, H-NMR and UV–Vis
absorption spectra of ZW-NAIP in both Z- and E-enriched solutions. The Z isomer is the more
stable and accumulates up to >98% at room temperature in the dark, as determined by H-NMR
spectroscopy (B). Upon illumination at 454.6 nm a steady-state isomer mixture of 12% Z and
88% E is obtained. At room temperature in the dark, this ratio relaxes to pure Z with a time
constant >10 h, allowing for TA experiments to be performed on the E isomer. Note that the
400 nm pump pulses slightly favors excitation of the E-form since its extinction coefficient is
larger by a factor 1.09 (figure 1(C)). The isosbestic point is situated at 410 nm.

To investigate the effect of solvent viscosity protonated methanol, butanol and decanol
are used as received (Sigma-Aldrich). TA experiments are performed on the Z isomer only
(solutions kept in the dark).

3. Results and analysis

3.1. Vibrationally coherent photoizomerization in the forward Z to E direction

Figure 2 displays the TA obtained for the Z-enriched, CD3OD solution of ZW-NAIP. Within
experimental noise, the data for the forward reaction is identical to that observed in CH3OH and
already discussed in detail in [19]. Before presenting new results pertaining to the backward
(E to Z) reaction and to the solvent influence, we recall here the main features of the forward
reaction highlighting the non-exponential kinetics and coherent dynamics:

• Stimulated emission (SE) occurs within the temporal instrument response function at
λ > 460 nm (figure 2(A)).
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Figure 1. (A) Schematic structure of ZW-NAIP in the Z isomer. (B) 1H-
NMR spectra showing that the Z and E isomer contents are (98.5%:1.5%) and
(11.5%:88.5%), for the Z-enriched and E-enriched solutions. (C) Absorption
spectra of Z- (black) and E- (red) enriched solutions of ZW-NAIP used in the
transient experiments. The blue curve is the difference between both spectra.
The blue and green arrows show the pump wavelength (400 nm) for TA
experiments on both samples, and the Ar laser line (454.6 nm) used for E-isomer
accumulation, respectively.

• At early times, excited-state absorption (ESA) has a maximum at 430 nm and extends
into the near-UV, overlapping the ground-state bleach (GSB). With increasing delay time,
the ESA shifts to shorter wavelengths, and is maximum at a delay of 1t = 0.20 ps in the
range 320–335 nm (figure 2(B)). This dynamic blue-shift is evidence for an excited-state
vibrational wavepacket, which evolves along the isomerization reaction coordinate on a
barrierless excited state potential energy toward the CI.

• The UV spectroscopic signature of the wavepacket in S1 is lost rapidly, and a subsequent
ground state photoproduct absorption (PA) is observed with a prominent, red-shifted
wing. Here, the term ‘photoproduct’ denotes the vibrationally hot E/Z isomer mixture
generated through the excited state decay. Due to the moderate reaction quantum yield
the reactant isomer configuration dominates the photoproduct. This signal is maximal at
0.39 ps at 550–600 nm, and characterizes the arrival time of the vibrational wavepacket in
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Figure 2. (A) Two-dimensional plot of the TA signal (in false colors) of Z-ZW-
NAIP in CD3OD as a function of probe wavelength (from 320 to 610 nm) and
pump–probe delay (from −0.25 to 100 ps). The data is processed to correct
for the solvent contributions and for the chirp (see [19] for details). Because
of enhanced noise due to pump light scattering, the crossed-out portion around
400 nm is disregarded. Note that from 10 to 100 ps, the signal is magnified ten
times. (B) Selected time traces: At 333 nm, the rise of the UV most part of the
ESA is delayed and slower than the instrument response function (IRF in gray). It
is maximal at 200 ± 20 fs. At 550 nm, the early SE rapidly decays to give rise to
an unthermalized photoproduct signature, maximum at 390 ± 20 fs. (C) Spectral
evolution from the vibrationally ‘hot’ground state populations with a max. at
430 nm to the final equilibrated E–Z difference spectrum after 30 ps.

this spectroscopic observation window of the photoproduct S0 state. The crossover between
SE and PA in the red most part of the TA data is attributed to the signature of the passage
of the molecular system through the CI [19], in line with similar observations in Rh [18].

• The PA band rapidly narrows (blue shifts) and 1A evolves (1t > 0.5 ps) into a difference
spectrum with a pronounced GSB below 400 nm, and a positive lobe around 430 nm
characteristic of vibrationally excited ground state species (figure 2(C)).

• Kinetic traces taken at the red and blue wings of the ground state absorption spectrum dis-
play anti-phased oscillations with a 650 ± 50 fs period (∼50 ± 5 cm−1) and 270 fs damping
time (see supplementary data, available from stacks.iop.org/NJP/15/105022/mmedia), in-
dicative of a ground state vibrational wavepacket [19].
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http://stacks.iop.org/NJP/15/105022/mmedia
http://www.njp.org/


7

Figure 3. Comparison of the forward (black) and backward (red) isomerization
reactions of ZW-NAIP in CD3OD. (A) After 70 fs, both transient spectra are
similar. (B) The dynamic spectral shift of the UV ESA is also very similar as
shown by the delayed transient signals at 333 nm. The pink curve is a Gaussian
function representative of the instrument response function (80 fs FWHM). The
step in the rise of both traces is attributed to spurious solvent signal. (C) At
550 nm, the PA rapidly following the early SE is less intense in the backward
reaction, and reaches its maximum about 70 fs later, as compared to the forward
reaction. (D) At the time the red wing of the PA spectrum is maximum, it
is significantly more intense and more red-shifted in the forward (spectrum at
395 fs) than in the backward reaction (spectrum at 470 nm).

• The decay of the PA is characterized by two decay times of 1.0 and 4.6 ps. Due to
the small photo-chromic difference of the Z and E isomers the E–Z difference spectrum
has a small amplitude and emerges only after vibrational cooling is completed (>30 ps,
figure 2(C)).

3.2. Ultrafast dynamics of the backward E to Z reaction

To investigate the dynamics of the backward photoisomerization, TA experiments are performed
on the E-enriched sample. Like for the forward reaction, the pump laser is centered at 400 nm
where E has a 10% higher absorbance than Z. Hence more than 90% of the observed signal
correspond to the E to Z reaction. The small amplitude contribution from the minority Z isomer
is almost impossible to decipher as the reaction kinetics turns out to be nearly the same for both
isomers. The spectral differences between both isomers are only distinguishable after complete
return to the thermalized electronic ground state, that is beyond 30 ps (see below).

Two-dimensional data sets similar to those displayed in figure 2 for the forward reaction are
obtained for the backward photoreaction (see SI). Figures 3 and 4 illustrate the main differences
between both isomerization directions. At early times (see figure 3(A)) both photoreactions
show nearly identical ESA and SE spectra, with a slight blue shift of ∼5 nm, and slightly higher
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Figure 4. Comparison of kinetic traces for the forward (black) and backward
(red) photoisomerization reactions of ZW-NAIP in CD3OD at (A) 445 nm
and (B) 362 nm, respectively in the low- and high-energy sides of the PA
band. Note the break in time axis, with linear scale before the break and
logarithmic thereafter. While the forward reaction is accompanied by an out-
of-phase oscillatory behavior at both wavelengths (fit in blue, see figure S2 and
table 2 below), no clear evidence of such oscillations is observed in the reverse
reaction.

signal for the E to Z case, in line with the slightly stronger and blue-shifted absorbance of
the E species. The ESA and SE kinetics are alike, indicating that the backward reaction also
proceeds along a barrierless S1 potential, topologically similar to that theoretically predicted
for the forward reaction [29]. In addition, figure 3(B) shows that a dynamically blue-shifting
ESA is also observed in S1 for the backward reaction, indicative of a similar wavepacket. For
the backward reaction, the maximum of the 333 nm ESA signal occurs about 30 fs later. It is
also slightly weaker in amplitude and longer lived. The observed behavior suggests that the
excited state PES’s have similar topologies in both reaction directions and that the wave packet
evolution is slightly slower and temporally defocused in the backward reaction. The ground state
PA signal observed at 550 nm (figure 3(C)) is weaker and arrives later by 70 ± 20 fs for the E to
Z photoreaction. Also, the earliest spectral signature of the PA is significantly less red-shifted in
the backward reaction (figure 3(D)).

However, the most significant difference between the forward and backward reactions is
in the ground state coherences as shown in figure 4. For the forward reaction the GSB and
PA traces at 362 and 445 nm show an oscillatory behavior, which is well fitted by a damped
cosine function (coherent dynamics) on top of multiexponential (incoherent) kinetics (see
supplementary data, available from stacks.iop.org/NJP/15/105022/mmedia). Instead, for the
backward photoreaction, only the incoherent component is observed. More precisely, if some
oscillatory signal of similar period is to be considered in the backward reaction, its amplitude is
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Figure 5. (A) Difference spectra of ZW-NAIP in CD3OD comparing ground
state absorbances recorded in a spectrophotometer before and immediately after
40 min TA runs. Gray lines show the static difference spectra calculated and
scaled from the enriched Z and E spectra of figure 1(C). (B) Long-wavelength
portion of the differential TA data recorded for ZW-NAIP in CD3OD at long
delay times (>30 ps) (open dots), compared with the static isomer difference
spectra. Both spectra are mirror images of one another, provided they are scaled
by the ratio of the photoisomerization yields in both directions.

within the noise level, meaning at least ∼20 times lower than in the forward direction (see the
fits and residuals in figure S2 (available from stacks.iop.org/NJP/15/105022/mmedia)).

3.3. Comparison of the forward (Z → E) and backward (E → Z) isomerization yields

Figure 5 displays the final (t > 30 ps) difference absorption spectra observed for both forward
and backward isomerization reactions. In figure 5(A), we plot the difference between the spectra
of the initial Z-enriched and E-enriched samples and the spectra of the same solutions just
after 40 min of experiment time in the TA set-up. The obtained Z–E and E–Z difference spectra
perfectly overlap those calculated from the pure ground state absorption spectra (figure 1(C)),
showing that no other photoproducts accumulate during the course of the TA experiment and
that the reaction occurs reversibly in both directions. Also, their amplitudes are less than
1/10th of the reference difference spectrum (figure 1(C)), indicating that in both cases less
than 10% of the molecules have undergone isomerization during the entire TA experimental
time. Figure 5(B) focuses on the noiseless VIS part of stationary differential spectra obtained
in the TA experiments for t > 30 ps. They show the characteristic signature of Z-enrichment or
-depletion at 430 nm for the E to Z and Z to E reaction, respectively. The transient spectra
also overlay perfectly with the static difference spectra, attesting that the photo-reaction is
already entirely completed (and relaxed) at these time delays. Note that these data obtained
with freshly synthesized photoswitches do not show the spurious photoproduct absorbing at
long wavelengths that was reported in our previous work [19]. Since both initial isomer solutions
have the same total concentration, the ratio of the two stationary difference spectra is the ratio
of the quantum yields for the forward and backward photoreactions, multiplied by the ratio of
the extinction coefficients of both isomers at the pump wavelength. We conclude that the E to
Z photoisomerization yield is ∼2.5 weaker than for the Z to E photoreaction. The latter was
measured to be ∼35% [19].
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Figure 6. Selected kinetic traces comparing the Z to E photoreaction dynamics
in methanol (red), butanol (blue) and decanol (black). (A) Delayed onset of
the UV signature of the excited state wavepacket at 335 nm in methanol and
decanol only. The purple line represents the IRF. (B) SE, followed by the
delayed onset of the ground state photoproduct signature at 550 nm. Vertical
lines around 0.4–0.47 ps indicate the arrival times of the wavepacket in the
ground state. (C) ESA (pinpointed by the vertical line) followed by the oscillating
signature of the ground state photoproduct at 445 nm. The dashed lines are
the oscillatory components extracted from the fit (see supplementary data,
available from stacks.iop.org/NJP/15/105022/mmedia and table 2 below). Note
that 445 nm is the region of cross over between ESA signal (λ < 445 nm) and
SE (λ > 445 nm) at early times. Minor, solvent-induced spectral shift of this
crossover is responsible for the apparent difference in the early ESA signal
amplitude.

3.4. Solvent effects on the forward reaction

We studied the TA signals for the Z to E photoreaction for a limited set of alcohols with
increasing alkyl chain length and viscosity (in Pa s at 25 ◦C) [31] methanol (0.54 Pa s), butan-
1-ol (2.54 Pa s) and decan-1-ol (10.9 Pa s). The zwitterionic chromophore displays a very
weak solvatochromism, as only a 2 nm blue shift is observed in the absorption spectra when
Z-ZW-NAIP is dissolved in decanol (not shown). The same is true for the ESA and transient
ground state spectra. Hence we assume that a given probe wavelength characterizes the same
transient molecular state and geometry whatever the solvent. Some of these kinetic traces are
highlighted in figure 6. The signature of vibrational coherence such as the delayed onset of
the ESA in the UV (figure 6(A)), the delayed onset of the PA signature which is maximum at
0.4–0.45 ps (figure 6(B)) and the ground state oscillations after 0.4 ps (figure 6(C)) are observed
to be rather independent of the solvent. The amplitude of the oscillatory signal seems to be
slightly reduced in butanol and decanol compared to what it is in decanol but their period
and damping are the same within the experimental accuracy (see below). We conclude that the
vibrational dynamics and photoreaction speed are hardly affected by the local viscosity which
increases by a factor ∼20 from methanol to decanol. This lack of influence indicates that the
reaction coordinate operating in these system is at least partially ‘space saving’. Such reaction
coordinate would be characterized by a combination of skeletal torsional deformation (e.g. the
dihedral angle C5C4C1′C9′) and ring inversions as already described in previous reports [20, 29],
to minimize the volume required for completing the double bond isomerization. In particular,
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Table 1. A global analysis of the TA data after 1.2 ps (see the SI of [19] for
technical details) reveals that the vibrational relaxation in the ground state is well
characterized by two time constants in all experiments reported here. The first
three lines show results which all agree within the estimated error bar of 10%.
The last two lines show significantly longer time constants, due to the solvent
influence.

τ1 (ps) τ2 (ps)

Z-ZW-NAIP in CH3OHa 1.2 4.8
Z-ZW-NAIP in CD3OD 1.0 4.6
E-ZW-NAIP in CD3OD 1.3 5.1
Z-ZW-NAIP in CH3(CH2)3OH 1.6 7.1
Z-ZW-NAIP in CH3(CH2)9OH 2.0 7.5

a Results from [19].

the ring inversion motion would involve pyramidalization at the C4 and C1′ centers which help
to accomplish the isomerization reaction even in a situation where the skeletal deformation is
more limited. Such mixed reaction coordinate is reminiscent of the space saving bicycle-pedal
reaction coordinate proposed and computationally detected in Rh [26].

3.5. Quantitative analysis of the TA kinetics

For all TA data presented in this work, a quantitative analysis has been carried out according
to the procedures already described previously [19, 20]. In particular, the same global analysis
was applied to analyze the spectral relaxation induced by incoherent, ground state vibrational
relaxation at time delays larger than 1.2 ps. This relaxation is depicted in figure 2(C) in the case
of Z-ZW-NAIP in deuterated methanol. In all cases a similar spectral relaxation is observed
which proceeds with two time constants summarized in table 1. The results of the analysis are
twofold. Firstly we observe that in deuterated methanol the vibrational relaxation proceeds with
almost the same time constants for the forward (1.0 and 4.6 ps) and backward (1.3 and 5.1 ps)
reactions. Secondly, it is slower in the less polar, longer-chain alcohols, with 30–40% longer
characteristic times in decanol. These results confirm that the spectral relaxation observed
at time delays >1.2 ps is due to vibrational energy dissipation and/or dielectric relaxation
involving the solvent, with slower dipolar solvation [32] and reduced heat dissipation in longer-
chain alcohols.

Regarding the coherent dynamics, the choice of the fitting function is a critical issue
in such a case where dynamic spectral shifts, delayed components and oscillatory signals
are observed. Here, all the observed oscillatory features have been analyzed using the
same fitting function as already described in detail (see supplementary data, available from
stacks.iop.org/NJP/15/105022/mmedia and [20]). Table 2 summarizes the periods and damping
times of the oscillatory compounds observed on the various experimental conditions realized
here. It reveals that, the solvent viscosity does not affect the oscillation period (650–720 fs in all
cases) nor the damping (250–350 fs) beyond the error bars on these values.
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Table 2. Period (Tosc) and damping time (τosc) obtained from the fitting of the
oscillatory features observed in TA data (see supplementary data, available from
stacks.iop.org/NJP/15/105022/mmedia). The error bar is estimated to be 10% on
the periods and up to 25% on the damping times, due to the limited signal-to-
noise ratio and to the rapid damping of the oscillations.

Tosc (fs) τosc (fs)

Z-ZW-NAIP in CH3OH (see SI) 650 270
Z-ZW-NAIP in CD3OD 700a 290a

E-ZW-NAIP in CD3OD – –
Z-ZW-NAIP in CH3(CH2)3OH 660 360
Z-ZW-NAIP in CH3(CH2)9OH 720 250

a Results of the fit displayed in figure 4 (see also the SI, figure S2).

4. Discussion

The TA signatures of the excited state dynamics of the ZW-NAIP starting either from the E-
or the Z-Franck–Condon states are like in other IP compounds where ground state vibrational
coherence is observed [19, 20]. In all cases, the excited state deactivation is very rapid, with non-
exponential kinetic traces (at 320–340 nm) featuring a dynamic blue-shift of the ESA (S1 − Sn

absorption), and a shorter-lived SE (S1–S0 transition). This is a direct fingerprint of an excited
state wavepacket, which can be probed with its S1 − Sn absorption during its progression along
the reaction coordinate on a barrierless excited state potential energy surface [19, 20, 27–29].
Instead, the S1 − S0 transition dipole moment probes a smaller region of the configuration space
close to the Franck–Condon region, in line with the prediction of a rapid drop of the S1 − S0

transition dipole moment along the reactive motion [20]. Note that observing ESA lifetimes
longer than SE decay is not uncommon [16].

In the IP compounds, the observation of a dynamic blue shift, rather than excited-state
oscillations like in other photoisomerizing molecules, indicates that the wavepacket does not
bounce back, but drops irreversibly into the CI seam after the first ≈ 90◦ dihedral angle change.
This physical picture is further supported by the sudden crossover between SE and PA in the
red edge of the detection window and subsequent blue shift of the PA, which are qualitatively
the same as the prototypical behavior reported for the coherent photoisomerization of Rh, and
indicate the passage of a vibrationally coherent population through the CI [18]. Finally, as
already argued [19, 20] in the case of Z-ZW-NAIP, the observed oscillations are attributed to
a ground state vibrational wavepacket which most likely results from the reactive motion in
the excited-state, rather than from a resonant impulsive stimulated Raman scattering process
[2, 4, 33]. Hence the vibrational coherence appears to be preserved after the decay to the ground
state. In the case of the cationic Z-MeO-NHIP as well as Z- and E- MeO-NAIP, very similar
ground state oscillations are observed and have been assigned to ring deformations (in particular
inversions at C3), which contribute to the reaction coordinate and are triggered by the reactive
motion in the excited state [20]. The present observation on Z-ZW-NAIP, that the period and
damping of the oscillations accompanying the forward reaction are not affected by a 20-fold
increase of the solvent viscosity further supports the assignment to such a space saving mode.
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Remarkably, in the case of E-ZW-NAIP, despite a very similar coherent excited-state
dynamics, and a similar photoproduct appearance time (470 versus 400 fs for the forward
reaction, see figure 3(A)) the quantum yield is 2.5 times lower and no vibrational coherence
is detected in the photoproduct state. These two observations have important implications.

First of all, invoking the Landau–Zener (LZ) model for non-adiabatic transitions it has
been argued that the high photoisomerization speed of Rh would be responsible for its high
quantum yield [1]. In the case of azobenzene (AB) and AB derivatives [16] it is indeed observed
that the reaction speed correlates with the quantum yield. However, in other retinal proteins
where the all-trans to 13 cis and reverse photoisomerizations of retinal are involved, it is
observed that the fastest photoreaction is the less efficient [34]. In the IP molecular switches
also, it has been observed that a very high photoreaction speed (<300 fs) is not sufficient to
achieve a very high isomerization yield, which is only ∼20% in the case of the cationic MeO-
NAIP [28]. Conversely, a ‘de-methylated’ MeO-NAIP, where C5 carries a hydrogen atom rather
than a methyl group, was reported to have a longer excited-state lifetime and a similar quantum
yield [30] as compared to the parent MeO-NAIP [28]. Also, experiments on retinal in solution
evidenced that methylation of the carbon backbone simultaneously reduces the excited-state
lifetime and the photoisomerization quantum yield [35], or that the quantum yield is influenced
by the solvent, without any clear correlation to the reaction speed [36]. Here, we discuss a
case where in both isomerization directions, the early excited state dynamics and photoreaction
speeds are almost equal, pointing to very similar PES topologies, but the quantum yields differ
by a factor of 2.5. Hence, as already described by the LZ model [37], not only the reaction speed
governs the quantum yield, but certainly also the details of the topology of the PES (which is
taken into account in the LZ model by the difference in the PES slopes) and their coupling in the
vicinity of the CI. What is more, based on the present observations, we may not even exclude
that the quantum yield is influenced by further dynamics on the ground state potential soon after
the CI. Such a scenario goes beyond the LZ picture and has been suggested by recent theoretical
developments including dynamic electron correlations in the computation of the ground state
PES of a retinal model system [38].

The second important observation is the direction-dependent occurrence of vibrational
coherence in the product of the internal conversion. Previous investigations of the parent cationic
MeO-NAIP revealed a similarly fast photoreaction and the occurrence of vibrational coherence
in both isomerization directions [20]. This would suggest that provided the departure from
the FC region and the crossing of the CI are sufficiently fast, one may observe a reaction-
driven vibrational coherence in the photoproduct [33]. Instead, the ‘de-methylated’ dMe-MeO-
NAIP, was reported to have a longer excited-state lifetime (∼500 fs) and no ground state
oscillations [30] (see figure 7 for atom numbering). The latter observation may be rationalized
by arguing that the initial reactive motion in the excited-state is significantly slower, and
in particular, slower than vibrational dephasing, which precludes the build-up of vibrational
coherence along low-frequency modes. In the present case of ZW-NAIP, although the excited-
state dynamics is similarly fast in both directions, vibrational coherence is observed only in one
direction.

More precisely, given the relative quantum yields in both photoisomerization directions, the
Z isomer formation yield is 0.65 (1–0.35) in the forward direction (from Z back to Z) and 0.15
only in the backward direction (from E to Z). If the vibrational coherence would be associated to
the formation of the Z isomer only, independent of the way the population reaches the Z ground
state potential well, one would see a reduction of a factor ∼4 in the amplitude of the oscillations
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Figure 7. Schemes of the ground state structures of various NAIP compounds.
In the Z isomer of ZW-NAIP, steric hindrance between the methyl group carried
by C5 and the hydrogen carried by C8′ induces a 13◦ torsion of the C1′ =C4

bond (see SI of [29]). In the E-ZW-NAIP, the methyl substitute of C5 can fit
between both methyl groups carried by C2′ , but residual stress induces significant
pyramidilization of C1′ and C4 (among other deformations) and produces a non-
planar structure too. In the case of Z-MeO-NAIP, the C1′ =C4 bond is twisted by
11◦ in the ground state [27]. Instead in the dMe-MeO-NAIP, where C5 carries a
H atom instead of the methyl group, the E isomer is planar.

in the backward direction as compared to the forward direction. Given the high signal to noise
ratio (S/N) achieved here (see figure S2 (available from stacks.iop.org/NJP/15/105022/mmedia)
and discussion above (), the first oscillation periods, with a four-times reduced amplitude
(>0.5 × 10−3), would be clearly detected on top of the noise floor (<0.2 × 10−3). Hence we
conclude that although a similar vibrational wavepacket is produced by the initial fast relaxation
in S1 in both forward and backward directions (evidenced by the same dynamic blue shift of the
ESA), vibrational dephasing seems to occur in the vicinity of the CI, with a damping efficiency
depending on the exact pathway through the intersection seam between S1 and S0. In addition,
the lack of influence of solvent viscosity on the period and damping of the oscillations observed
in the forward direction indicates that the vibrational dephasing is essentially an intramolecular
process.

As was discussed in various photoisomerizing systems [16, 39–41], different degrees of
C=C twisting in the ground state may be invoked to rationalize the difference in photoreaction
speeds and corollary in the occurrence of vibrational coherence. In the MeO-NAIP, the steric
hindrance of the methyl group carried by C5 induces a deviation from planarity of the molecule
while in dMe-MeO-NAIP is planar in the ground state (see figure 7). Hence, in analogy with the
case of the planar E- versus twisted Z- AB [39] we argue that in the case of the planar E isomer
of dMe-MeO-NAIP, the initial reactive motion in the excited-state is significantly slower, which
would possibly explain both the lower speed and lack of any wavepacket character before and
after the internal conversion. In contrast, for the case of Z- and E-ZW-NAIP, both ground state
structures have been computed by Melloni et al [29], and appear to be significantly distorted
from planarity, not only due the methyl group carried by C5, but also most likely to enhanced
intramoleculer electrostatic interaction between the pyrrolinium C=N charge and the anionic
carboxylate substituent. This may help rationalizing the observation that the reaction speed is
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similar and an excited state wavepacket is observed for both directions, but does not reveal
anything regarding the vibrational dephasing or the branching (toward the reactant and product)
occurring upon decay at the CI. These may assist the building-up of low-frequency vibrational
quantum coherence along the reactive molecular mode. Further experimental and theoretical
studies are therefore needed to reveal the multimodal non-adiabatic evolution of the molecular
ensemble.

5. Conclusion

Like other IP switches [20], the spectro-temporal signatures of the photoisomerization of ZW-
NAIP shows remarkable similarities with those of retinal in Rh, including the observation of
reaction driven vibration coherences in the photoproduct. It should be noted that, to the best
of our knowledge, transfer of excited state coherence onto the ground state potential energy
surface is not reported for any other photoisomerizing molecule in solution. Hence the IP
photoswitches appear as a good model system to investigate the mechanisms that control the
photoisomerization dynamics, yield and the accompanying vibrational coherence.

Here, the forward and backward reaction dynamics of the zwitterionic ZW-NAIP switch
are studied by broadband TA spectroscopy with 80 fs resolution. Although the excited state
dynamics and photoreaction speeds are very similar in both directions, the quantum yields
are significantly different, and the vibrational coherence observed upon light excitation of the
Z form is not observed when exciting the E form. We conclude that a very high isomerization
speed neither enables a high quantum yield nor preserves vibrational coherence through the CI.
Mechanisms usually invoked fail here to rationalize the experimental observations. In particular,
we speculate that ground state dynamics, soon after crossing the CI may contribute to the
determination of the quantum yield unlike the Landau–Zener physical picture. Most likely,
quantum yield and vibrational dephasing are strongly influenced by the exact pathway through
the intersection seam between S1 and S0 states. Ground state structural information does not help
rationalizing these observations. This work calls for further theoretical modeling addressing
specifically the mechanisms that control the photoreaction yield as well as reaction driven
vibrational coherence.
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