S. Chang

S. Chang
National Tsing Hua University | NTHU · Department of Computer Science

About

455
Publications
49,499
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
24,702
Citations
Citations since 2016
150 Research Items
13965 Citations
201620172018201920202021202205001,0001,5002,000
201620172018201920202021202205001,0001,5002,000
201620172018201920202021202205001,0001,5002,000
201620172018201920202021202205001,0001,5002,000

Publications

Publications (455)
Preprint
Video event extraction aims to detect salient events from a video and identify the arguments for each event as well as their semantic roles. Existing methods focus on capturing the overall visual scene of each frame, ignoring fine-grained argument-level information. Inspired by the definition of events as changes of states, we propose a novel frame...
Chapter
Few-shot object detection (FSOD) aims to detect objects of new classes and learn effective models without exhaustive annotation. The end-to-end detection framework has been proposed to generate sparse proposals and set a stack of detection heads to improve the performance. For each proposal, the predictions at lower heads are fed into deeper heads....
Chapter
Visual entailment is a recently proposed multimodal reasoning task where the goal is to predict the logical relationship of a piece of text to an image. In this paper, we propose an extension of this task, where the goal is to predict the logical relationship of fine-grained knowledge elements within a piece of text to an image. Unlike prior work,...
Preprint
Given a long untrimmed video and natural language queries, video grounding (VG) aims to temporally localize the semantically-aligned video segments. Almost all existing VG work holds two simple but unrealistic assumptions: 1) All query sentences can be grounded in the corresponding video. 2) All query sentences for the same video are always at the...
Chapter
Large-scale multi-modal contrastive pre-training has demonstrated great utility to learn transferable features for a range of downstream tasks by mapping multiple modalities into a shared embedding space. Typically, this has employed separate encoders for each modality. However, recent work suggests that transformers can support learning across mul...
Preprint
Large-scale multi-modal contrastive pre-training has demonstrated great utility to learn transferable features for a range of downstream tasks by mapping multiple modalities into a shared embedding space. Typically, this has employed separate encoders for each modality. However, recent work suggests that transformers can support learning across mul...
Article
Answering complex questions about images is an ambitious goal for machine intelligence, which requires a joint understanding of images, text, and commonsense knowledge, as well as a strong reasoning ability. Recently, multimodal Transformers have made a great progress in the task of Visual Commonsense Reasoning (VCR), by jointly understanding visua...
Article
Few-shot object detection (FSOD) aims to detect objects using only a few examples. How to adapt state-of-the-art object detectors to the few-shot domain remains challenging. Object proposal is a key ingredient in modern object detectors. However, the quality of proposals generated for few-shot classes using existing methods is far worse than that o...
Article
Recently, there has been an increasing interest in building question answering (QA) models that reason across multiple modalities, such as text and images. However, QA using images is often limited to just picking the answer from a pre-defined set of options. In addition, images in the real world, especially in news, have objects that are co-refere...
Preprint
Full-text available
Understanding how events described or shown in multimedia content relate to one another is a critical component to developing robust artificially intelligent systems which can reason about real-world media. While much research has been devoted to event understanding in the text, image, and video domains, none have explored the complex relations tha...
Preprint
Multi-channel video-language retrieval require models to understand information from different modalities (e.g. video+question, video+speech) and real-world knowledge to correctly link a video with a textual response or query. Fortunately, multimodal contrastive models have been shown to be highly effective at aligning entities in images/videos and...
Preprint
The goal of this work is to build flexible video-language models that can generalize to various video-to-text tasks from few examples, such as domain-specific captioning, question answering, and future event prediction. Existing few-shot video-language learners focus exclusively on the encoder, resulting in the absence of a video-to-text decoder to...
Preprint
Full-text available
Cross-modal encoders for vision-language (VL) tasks are often pretrained with carefully curated vision-language datasets. While these datasets reach an order of 10 million samples, the labor cost is prohibitive to scale further. Conversely, unimodal encoders are pretrained with simpler annotations that are less cost-prohibitive, achieving scales of...
Preprint
We study multimodal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection. Most of previous works focus on either few-shot or zero-shot object detection, ignoring the complementarity of visual and semantic information. We first show that meta-learning and prompt-based learni...
Preprint
Visual entailment is a recently proposed multimodal reasoning task where the goal is to predict the logical relationship of a piece of text to an image. In this paper, we propose an extension of this task, where the goal is to predict the logical relationship of fine-grained knowledge elements within a piece of text to an image. Unlike prior work,...
Preprint
Few-shot object detection (FSOD), with the aim to detect novel objects using very few training examples, has recently attracted great research interest in the community. Metric-learning based methods have been demonstrated to be effective for this task using a two-branch based siamese network, and calculate the similarity between image regions and...
Preprint
In this paper we consider the problem of classifying fine-grained, multi-step activities (e.g., cooking different recipes, making disparate home improvements, creating various forms of arts and crafts) from long videos spanning up to several minutes. Accurately categorizing these activities requires not only recognizing the individual steps that co...
Preprint
Full-text available
Contrastive language-image pretraining (CLIP) links vision and language modalities into a unified embedding space, yielding the tremendous potential for vision-language (VL) tasks. While early concurrent works have begun to study this potential on a subset of tasks, important questions remain: 1) What is the benefit of CLIP on unstudied VL tasks? 2...
Preprint
Vision-language (V+L) pretraining models have achieved great success in supporting multimedia applications by understanding the alignments between images and text. While existing vision-language pretraining models primarily focus on understanding objects in images or entities in text, they often ignore the alignment at the level of events and their...
Preprint
Full-text available
Recently, there has been an increasing interest in building question answering (QA) models that reason across multiple modalities, such as text and images. However, QA using images is often limited to just picking the answer from a pre-defined set of options. In addition, images in the real world, especially in news, have objects that are co-refere...
Preprint
Full-text available
Few-shot object detection (FSOD) aims to detect never-seen objects using few examples. This field sees recent improvement owing to the meta-learning techniques by learning how to match between the query image and few-shot class examples, such that the learned model can generalize to few-shot novel classes. However, currently, most of the meta-learn...
Preprint
Full-text available
Answering complex questions about images is an ambitious goal for machine intelligence, which requires a joint understanding of images, text, and commonsense knowledge, as well as a strong reasoning ability. Recently, multimodal Transformers have made great progress in the task of Visual Commonsense Reasoning (VCR), by jointly understanding visual...
Preprint
Full-text available
Videos are a rich source for self-supervised learning (SSL) of visual representations due to the presence of natural temporal transformations of objects. However, current methods typically randomly sample video clips for learning, which results in a poor supervisory signal. In this work, we propose PreViTS, an SSL framework that utilizes an unsuper...
Conference Paper
Full-text available
Event coreference resolution is critical to understand events in a growing number of online news with multiple modalities including text, video, speech, etc. However, the events and entities depicting in different modalities may not be perfectly aligned and can be difficult to annotate, which makes the task especially challenging with little superv...
Preprint
Visual and textual modalities contribute complementary information about events described in multimedia documents. Videos contain rich dynamics and detailed unfoldings of events, while text describes more high-level and abstract concepts. However, existing event extraction methods either do not handle video or solely target video while ignoring oth...
Preprint
Full-text available
Few-shot Learning has been studied to mimic human visual capabilities and learn effective models without the need of exhaustive human annotation. Even though the idea of meta-learning for adaptation has dominated the few-shot learning methods, how to train a feature extractor is still a challenge. In this paper, we focus on the design of training s...
Preprint
Full-text available
The COVID-19 pandemic has accelerated the pace of innovation around virtual care visits and testing technology. Here we present the SafeSwab (Safe Health Systems, Los Angeles, CA), an integrated, universal sample collection and dispensing device that is designed to minimize user error and enable rapid testing in a point of care or self-testing form...
Chapter
Face recognition methods have made great progress in the recent years. These methods most of the time represent a face image as a high-dimensional real-valued feature, often obtained using a deep network. However, comparisons of this high-dimensional feature can be computationally expensive. Furthermore, when dealing with large face images database...
Preprint
Full-text available
Point-of-care lateral flow assays (LFAs) are becomingly increasingly prevalent for diagnosing individual patient disease status and surveying population disease prevalence in a timely, scalable, and cost-effective manner, but a central challenge is to assure correct assay operation and results interpretation as the assays are manually performed in...
Article
The prevailing framework for solving referring expression grounding is based on a two-stage process: 1) detecting proposals with an object detector and 2) grounding the referent to one of the proposals. Existing two-stage solutions mostly focus on the grounding step, which aims to align the expressions with the proposals. In this paper, we argue th...
Preprint
Multimodal self-supervised learning is getting more and more attention as it allows not only to train large networks without human supervision but also to search and retrieve data across various modalities. In this context, this paper proposes a self-supervised training framework that learns a common multimodal embedding space that, in addition to...
Preprint
Full-text available
We present a framework for learning multimodal representations from unlabeled data using convolution-free Transformer architectures. Specifically, our Video-Audio-Text Transformer (VATT) takes raw signals as inputs and extracts multimodal representations that are rich enough to benefit a variety of downstream tasks. We train VATT end-to-end from sc...
Preprint
Full-text available
Few-shot object detection (FSOD) aims to detect objects using only few examples. It's critically needed for many practical applications but so far remains challenging. We propose a meta-learning based few-shot object detection method by transferring meta-knowledge learned from data-abundant base classes to data-scarce novel classes. Our method inco...
Preprint
In this paper, we address the problem of referring expression comprehension in videos, which is challenging due to complex expression and scene dynamics. Unlike previous methods which solve the problem in multiple stages (i.e., tracking, proposal-based matching), we tackle the problem from a novel perspective, \textbf{co-grounding}, with an elegant...
Preprint
We present \textsc{Vx2Text}, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling language, each modality is first converted into a set of language embeddings by a learnable tokenizer. This allows our appro...
Preprint
Full-text available
Recent works seek to endow recognition systems with the ability to handle the open world. Few shot learning aims for fast learning of new classes from limited examples, while open-set recognition considers unknown negative class from the open world. In this paper, we study the problem of few-shot open-set recognition (FSOR), which learns a recognit...
Chapter
As the basic building block of Convolutional Neural Networks (CNNs), the convolutional layer is designed to extract local patterns and lacks the ability to model global context in its nature. Many efforts have been recently devoted to complementing CNNs with the global modeling ability, especially by a family of works on global feature interaction....
Preprint
Full-text available
Despite the remarkable accuracy of deep neural networks in object detection, they are costly to train and scale due to supervision requirements. Particularly, learning more object categories typically requires proportionally more bounding box annotations. Weakly supervised and zero-shot learning techniques have been explored to scale object detecto...
Preprint
Full-text available
Neuro-symbolic representations have proved effective in learning structure information in vision and language. In this paper, we propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning. Our approach uses a dictionary learning-based method of learning relations between videos and their paired tex...
Chapter
Scene graphs are powerful representations that parse images into their abstract semantic elements, i.e., objects and their interactions, which facilitates visual comprehension and explainable reasoning. On the other hand, commonsense knowledge graphs are rich repositories that encode how the world is structured, and how general concepts interact. I...
Chapter
Scene graph generation models understand the scene through object and predicate recognition, but are prone to mistakes due to the challenges of perception in the wild. Perception errors often lead to nonsensical compositions in the output scene graph, which do not follow real-world rules and patterns, and can be corrected using commonsense knowledg...
Preprint
Pre-trained contextual vision-and-language (V&L) models have brought impressive performance improvement on various benchmarks. However, the paired text-image data required for pre-training are hard to collect and scale up. We investigate if a strong V&L representation model can be learned without text-image pairs. We propose Weakly-supervised Visua...
Chapter
Language acquisition is the process of learning words from the surrounding scene. We introduce a meta-learning framework that learns how to learn word representations from unconstrained scenes. We leverage the natural compositional structure of language to create training episodes that cause a meta-learner to learn strong policies for language acqu...
Preprint
The prevailing framework for solving referring expression grounding is based on a two-stage process: 1) detecting proposals with an object detector and 2) grounding the referent to one of the proposals. Existing two-stage solutions mostly focus on the grounding step, which aims to align the expressions with the proposals. In this paper, we argue th...
Article
Deep embedding learning plays a key role in learning discriminative feature representations, where the visually similar samples are pulled closer and dissimilar samples are pushed away in the low-dimensional embedding space. This paper studies the unsupervised embedding learning problem by learning such a representation without using any category l...
Preprint
Children acquire language subconsciously by observing the surrounding world and listening to descriptions. They can discover the meaning of words even without explicit language knowledge, and generalize to novel compositions effortlessly. In this paper, we bring this ability to AI, by studying the task of Visually grounded Language Acquisition (VLA...
Preprint
Full-text available
To combat COVID-19, clinicians and scientists all need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG, which leverages novel semantic representation and external onto...
Preprint
Scene graph generation models understand the scene through object and predicate recognition, but are prone to mistakes due to the challenges of perception in the wild. Perception errors often lead to nonsensical compositions in the output scene graph, which do not follow real-world rules and patterns, and can be corrected using commonsense knowledg...
Article
Given a potentially manipulated probe image, provenance analysis aims to find all images derived from the probe (offspring) and all images from which the probe is derived (ancestors) in a large dataset (provenance filtering), and reconstruct the manipulation history with the retrieved images (provenance graph building). In this paper, we address tw...