About
344
Publications
52,753
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,349
Citations
Introduction
Ryuho Kataoka is challenging the space weather forecast of energetic particles such as aurora, radiation belt, magnetic storm, solar protons, and cosmic rays. His research interests include the atmospheric response and radiation dose to the energetic particles. DL Papers here: https://polaris.nipr.ac.jp/~ryuho/pub0/
Current institution
Additional affiliations
April 2007 - July 2009
March 2006 - March 2007
March 2005 - February 2006
Position
- JSPS PD
Education
April 2001 - March 2004
Publications
Publications (344)
Great magnetic storms are recorded as aurora sightings in historical documents. The earliest known example of “prolonged” aurora sightings, with aurora persistent for two or more nights within a seven-day interval at low latitudes, in Japan was documented on February 21-23, 1204 in Meigetsuki, when a big sunspot was also recorded in China. We have...
Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere, and the air showers are simulated by well-tested Monte-Carlo simulations, such as PHITS code. We use the latest version of PHITS to evaluate the possible ionization of protoplanetary disks by galactic cosmic rays (GCRs), solar protons, and by supernova remnants. The a...
The charge detector (CHD) of the Calorimetric Electron Telescope (CALET) on board the International Space Station (ISS) has a huge geometric factor for detecting MeV electrons and is sensitive to relativistic electron precipitation (REP) events. During the first 4months, CALET CHD observed REP events mainly at the dusk to midnight sector near the p...
We propose a “pileup accident” hypothesis, based on the solar wind data analysis and magnetohydrodynamics modeling, to explain unexpectedly geoeffective solar wind structure which caused the largest magnetic storm so far during the solar cycle 24 on 17 March 2015: First, a fast coronal mass ejection with strong southward magnetic fields both in the...
Modern life depends on satellite observations and communications Thus large enhancements of the radiation belt electron flux can sometimes cause a serious problem because these energetic particles can cause deep dielectric charging of satellites which in turn can lead to spacecraft anomalies and or complete failure A major problem exists to predict...
The north–south (NS) anisotropy of galactic cosmic rays (GCRs) is dominated by a diamagnetic drift flow of GCRs in the interplanetary magnetic field (IMF), allowing us to derive key parameters of cosmic-ray propagation, such as the density gradient and diffusion coefficient. We propose a new method to analyze the rigidity spectrum of GCR anisotropy...
Recent direct measurements of the energy spectra of the charged cosmic ray have revealed unexpected spectral features, most notably the onset of a progressive hardening at few hundreds of GeV/n not only of proton and He spectra but also observable for heavier nuclei. Thus, the study of the spectra behavior of heavy elements may shed light on unders...
During large geomagnetic storms, red auroras are typically observed from low-latitude countries such as Japan. The color arises from a specific emission line of oxygen atoms at high altitudes. However, during the May 10-11th 2024 superstorm, magenta auroras were observed above Japan instead of the typical red. In this study, we demonstrate that the...
This paper presents the global analysis of two extended decreases in the galactic cosmic-ray intensity observed by worldwide networks of ground-based detectors in 2012. This analysis is capable of separately deriving the cosmic-ray density (or omnidirectional intensity) and anisotropy, each as a function of time and rigidity. A simple diffusion mod...
The north-south (NS) anisotropy of galactic cosmic rays (GCRs) is dominated by a diamagnetic drift flow of GCRs in the interplanetary magnetic field (IMF), allowing us to derive key parameters of cosmic-ray propagation, such as the density gradient and diffusion coefficient. We propose a new method to analyze the rigidity spectrum of GCR anisotropy...
This paper presents the global analysis of two extended decreases of the galactic cosmic ray intensity observed by world-wide networks of ground-based detectors in 2012. This analysis is capable of separately deriving the cosmic ray density (or omnidirectional intensity) and anisotropy each as a function of time and rigidity. A simple diffusion mod...
To gain deeper insights into radiation belt loss into the atmosphere, a statistical study of MeV electron precipitation during radiation belt dropout events is undertaken. During these events, electron intensities often drop by an order of magnitude or more within just a few hours. For this study, dropouts are defined as a decrease by at least a fa...
The solar wind‐magnetosphere‐ionosphere interaction at Jupiter is reproduced numerically adopting the nine‐component magnetohydrodynamic simulation. Calculations take into account the magnetosphere‐ionosphere coupling, Jovian rotation, and Io plasma source. High‐speed rotating plasma inside restricted magnetospheric space causes expansion and contr...
During large geomagnetic storms, red auroras are typically observed from low-latitude countries such as Japan ¹ . The color arises from the specific emission line of Oxygen atoms at high altitudes 2,3,4 . However, during the May 10-11th 2024 superstorm, magenta auroras were observed above Japan instead of the typical red. In this study, we demonstr...
Revealing the origins of aurorae in Earth’s polar cap has long been a challenge since direct precipitation of energetic electrons from the magnetosphere is not always expected in this region of open magnetic field lines. Here, we introduce an exceptionally gigantic aurora filling the entire polar cap region on a day when the solar wind had almost d...
We report a citizen science‐motivated study on the cause of an unusually bright red aurora as witnessed from Hokkaido, Japan during a magnetic storm on 1 December 2023. The auroral brightness of 5 kR is unusual for the Dst index peak of only −107 nT. In spite of the moderate storm amplitude, the extremely high solar wind density of >50/cc and dynam...
Relativistic electron precipitation (REP) refers to the release of high‐energy electrons initially trapped in the outer radiation belt, which then precipitate into Earth's upper atmosphere, contributing significantly to the rapid depletion of radiation belt electron flux. This study presents a statistical analysis of REP observations collected by t...
From the global simulation, we reproduce the solar wind‐magnetosphere‐ionosphere (S‐M‐I) interaction under the northward interplanetary magnetic field (IMF) with negative By. Reconnection structures, the plasma sheet, and lobes are formed in magnetospheric convection, while lobe/round‐merging/reciprocal/nightside cells appear in the ionosphere. Ass...
Relativistic electron precipitation (REP) refers to the release of high energy electrons initially trapped in the outer radiation belt that precipitate into the Earth’s upper atmosphere. REP plays an important role in the magnetosphere as it contributes to the fast depletion of radiation belt electron flux. This study presents a statistical analysi...
We selected three superstorms (disturbance storm time [Dst] index less than −350 nT) of 2003–04 to study the thermospheric energy budget with a particular emphasis on the thermospheric cooling emission by nitric oxide via a wavelength of 5.3 μ m. The nitric oxide radiative emission data are obtained from the Sounding of the Atmosphere by Broadband...
Relativistic electron precipitation (REP) is a relatively high‐latitude phenomenon where high‐energy electrons trapped in the outer radiation belt are lost into the Earth’s atmosphere. REP events observed at low Earth orbit show varying temporal profiles and global distributions. While the precipitation origin has been attributed to specific wave m...
We report a citizen science-motivated study on the cause of an unusually bright red aurora as witnessed from Hokkaido, Japan during a magnetic storm on December 1, 2023. Such an intense red aurora event has occurred in the Halloween 2003 super storm, but the Dst index peak of this December 2023 storm was only -107 nT. In spite of the moderate storm...
Electromagnetic ion cyclotron (EMIC) waves have been shown to be able to drive strong electron precipitation, particularly at MeV energies. However, the spatio‐temporal evolution of both the waves and the resulting precipitation is still not well understood. Here we investigate the evolution of relativistic electron precipitation driven by EMIC wav...
Using a machine learning technique called echo state network (ESN), we have developed an emulator to model the physics‐based global magnetohydrodynamic simulation results of REPPU (REProduce Plasma Universe) code. The inputs are the solar wind time series with date and time, and the outputs are the time series of the ionospheric auroral current sys...
Energetic particles from space deposit their energies on the Earth's atmosphere and contribute to variations in the concentration of neutral components such as ozone which controls the atmospheric temperature balance. Comprehensive understandings of their global impact on the atmosphere require whole pictures of spatiotemporal ionization distributi...
Glancing blows of three interplanetary shocks caused an unexpectedly large magnetic storm on November 4-6, 2023, which was popular for citizen scientists because of the surprising appearance of the crimson-red auroras world-wide in middle latitudes. Based on the analysis of the in-situ interplanetary magnetic field data at DSCOVR and STEREO-A, we s...
Precipitation of solar energetic particles (SEPs) into planetary atmospheres causes changes in atmospheric chemical composition through ionization, dissociation, and excitation of atmospheric molecules. In contrast to the terrestrial atmosphere, where depletion of ozone in the polar mesosphere has been studied by observations and models for decades...
The relationship between solar-wind conditions and substorm activity is modelled with an approach based on an echo state network. Substorms are a fundamental physical phenomenon in the magnetosphere–ionosphere system, but the deterministic prediction of substorm onset is very difficult because the physical processes that underlie substorm occurrenc...
Detailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station. The instrument, consisting of a charge detector, an imaging calorimeter, and a total absorption calorimete...
Using a machine learning technique called echo state network (ESN), we have developed an emulator to model the physics-based global magnetohydrodynamic (MHD) simulation results of REPPU (REProduce Plasma Universe) code. The inputs are the solar wind time series with date and time, and the outputs are the time series of the ionospheric auroral curre...
Using a machine learning technique called echo state network (ESN), we have developed an emulator to model the physics-based global magnetohydrodynamic (MHD) simulation results of REPPU (REProduce Plasma Universe) code. The inputs are the solar wind time series with date and time, and the outputs are the time series of the ionospheric auroral curre...
The CALorimetric Electron Telescope, CALET, has been measuring high-energy cosmic rays on the International Space Station since October 13, 2015. The scientific objectives addressed by the mission are to search for possible nearby sources of high-energy electrons and potential signatures of dark matter, and to investigate the details of galactic co...
Physics-based simulations are important for elucidating the fundamental mechanisms behind the time-varying complex ionospheric conditions, such as ionospheric potential, against unprecedented solar wind variations incident on the Earth’s magnetosphere. However, carrying out an extensive parameter survey for comprehending the nonlinear solar wind de...
DOI:https://doi.org/10.1103/PhysRevLett.131.109902
A specialized ground‐based system has been developed for simultaneous observations of pulsating aurora (PsA) and related magnetospheric phenomena with the Arase satellite. The instrument suite is composed of (a) six 100 Hz sampling high‐speed all‐sky imagers (ASIs), (b) two 10 Hz sampling monochromatic ASIs observing 427.8 and 844.6 nm auroral emis...
Galactic cosmic rays are one of the possible mediators of the solar influence on climate. However, the impacts of GCR on clouds and climate systems are not fully understood. In this paper, we show that the high-altitude clouds associated with deep convective activities are responding to the decadal-scale cycles of GCRs and that the susceptible area...
We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the CALorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count...
We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count...
The solar wind‐Jovian magnetosphere‐ionosphere interaction is studied from the global magnetohydrodynamic simulation. The calculation considers the high‐speed solar wind, Io plasma emission, high‐speed rotation, ionospheric ions, and precession of magnetic field, and consequently reproduces the confinement of Jovian magnetic field, distributions of...
We present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015 to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed to collect helium data over a l...
We present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium d...
The relationship between solar wind conditions and substorm activity is modelled with an approach based on an echo state network. Substorms are a fundamental physical phenomenon in the magnetosphere–ionosphere system, but the deterministic prediction of substorm onset is very difficult because the physical processes that underlie substorm occurrenc...
Physics-based simulations are important for elucidating the fundamental mechanisms behind the time-varying complex ionospheric conditions, such as field-aligned currents (FACs) and plasma convection patterns, against unprecedented solar wind variations incidents in the Earth’s magnetosphere. However, to perform a huge parameter survey for understan...
The accidental reentry of 38 Starlink satellites occurred in early February 2022, associated with the occurrence of moderate magnetic storms. A poorly understood structure of coronal mass ejections (CMEs) caused the magnetic storms at unexpected timing. Therefore, a better understanding of minor CME structures is necessary for the modern space weat...
We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon...
We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux \textcolor{black}{in an energy interval from 8.4 GeV$/n$ to 3.8 TeV$/n$} based on the data collected by the CALorimetric Electron Telescope (CALET) during $\sim 6.4$ years of operation on the International Space Station. An update o...
Solar modulation of galactic cosmic rays around the solar minimum in 2019-2020 looks different in the secondary neutrons and muons observed at the ground. To compare the solar modulation of primary cosmic rays in detail, we must remove the possible seasonal variations caused by the atmosphere and surrounding environment. As such surrounding environ...
We analyze the cosmic-ray variations during a significant Forbush decrease observed with worldwide networks of ground-based neutron monitors and muon detectors during 2021 November 3–5. Utilizing the difference between primary cosmic-ray rigidities monitored by neutron monitors and muon detectors, we deduce the rigidity spectra of the cosmic-ray de...
Relativistic electron precipitation (REP) from the Earth’s radiation belt plays an important role in mesospheric ozone loss as a connection between space weather and the climate system. However, the rapid (tens of minutes) destruction of mesospheric ozone directly caused by REP has remained poorly understood due to the difficulty of recognizing its...
We analyze the cosmic-ray variations during a significant Forbush decrease observed with world-wide networks of ground-based neutron monitors and muon detectors during November 3-5, 2021. Utilizing the difference between primary cosmic-ray rigidities monitored by neutron monitors and muon detectors, we deduce the rigidity spectra of the cosmic-ray...
A precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during $\sim$6.2 years of smooth operations aboard the Internatio...
A precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International S...
The arc aurora can be considered as the visualization of the field‐aligned current (FAC). In various cases, the numerically reproduced FAC morphologically matches well with that of the observed arc aurora. Such example can be seen in the sun‐aligned arc, the fan arc, and the theta aurora under the northward interplanetary magnetic field (IMF), and...
The theta aurora is reproduced by global simulation. First, we construct a solution for the stationary northward interplanetary magnetic field (IMF) forming the separatrices, the separators, the nulls, and the stemlines. From the drawing of last‐closed field lines, the overall structure under this condition is summarized as the northern lobe is gen...
Solar modulation of galactic cosmic rays around the solar minimum in 2019-2020 looks different in the secondary neutrons and muons observed at the ground. To compare the solar modulation of primary cosmic rays in detail, we must remove the possible seasonal variations caused by the atmosphere and surrounding environment. As such surrounding environ...
The CALorimetric Electron Telescope (CALET) on the International Space Station (ISS) consists of a high-energy cosmic ray CALorimeter (CAL) and a lower-energy CALET Gamma ray Burst Monitor (CGBM). CAL is sensitive to electrons up to 20 TeV, cosmic ray nuclei from Z = 1 through Z $\sim$ 40, and gamma rays over the range 1 GeV - 10 TeV. CGBM observes...
The CALorimetric Electron Telescope (CALET) on the International Space Station consists of a high-energy cosmic-ray CALorimeter (CAL) and a lower-energy CALET Gamma-ray Burst Monitor (CGBM). CAL is sensitive to electrons up to 20 TeV, cosmic-ray nuclei from Z = 1 through Z ∼ 40, and gamma rays over the range 1 GeV–10 TeV. CGBM observes gamma rays f...
Many studies have been conducted about the impact of energetic charged particles on the atmosphere during geomagnetically active times, while quiet time effects are poorly understood. We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP...
Plain Language Summary
The wave frequency of a chorus wave, which is one of the electromagnetic wave emissions in magnetized plasmas, is an important parameter for characterizing energetic particles in the Earth's magnetosphere. Even though chorus waves are classified into two bands—lower‐ and upper‐band frequencies separated at half the electron g...
Large-amplitude meteotsunamis were observed in many areas in Japan, following the arrival of barometric Lamb waves emitted by an underwater volcanic eruption of Hunga Tonga-Hunga Ha‘apai in January 2022. We modeled the power spectra of the tidal level data obtained from 12 tide stations of the Geospatial Information Authority of Japan, based on a m...
The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other trans-iron elements, therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with r...
The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with re...
The accidental reentry of 38 Starlink satellites occurred in early February, 2022, associated with the occurrence of moderate magnetic storms. Poorly understood structure of coronal mass ejections (CMEs) caused the magnetic storms at unexpected timing. Better understanding of minor CME structures is therefore necessary for modern space weather fore...
Plain Language Summary
Relativistic electron precipitation (REP) is a space‐weather phenomenon commonly observed at high latitudes, in which energetic electrons trapped in the geomagnetic field are lost into the Earth's atmosphere. Along with outward radial diffusion associated with magnetopause shadowing, it represents the primary loss mechanism f...
Large-amplitude meteotsunamis were observed in many areas in Japan, following the arrival of barometric Lamb waves emitted by an underwater volcanic eruption of Hunga Tonga-Hunga Ha‘apai in January 2022. We modeled the power spectra of the tidal level data obtained from 12 tide stations of the Geospatial Information Authority of Japan, based on a s...
The Solar Energetic Particle and imaging ultraviolet spectrograph (IUVS) instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft discovered diffuse aurora that span across the nightside of Mars due to the interaction of solar energetic particles (SEPs) with the Martian atmosphere. However, it is unclear whether the diffuse...
The properties of the auroral electrojets are examined on the basis of a trained machine-learning model. The relationships between solar-wind parameters and the AU and AL indices are modeled with an echo state network (ESN), a kind of recurrent neural network. We can consider this trained ESN model to represent nonlinear effects of the solar-wind i...