
Ryota TanakaNippon Telegraph and Telephone
Ryota Tanaka
Master of Engineering
About
8
Publications
667
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
39
Citations
Introduction
Ryota Tanaka currently works at NTT. Ryota does research in Artificial Intelligence. Their current project is 'Sentence Generation' and 'Vision and Language'
Skills and Expertise
Publications
Publications (8)
Visual question answering on document images that contain textual, visual, and layout information, called document VQA, has received much attention recently. Although many datasets have been proposed for developing document VQA systems, most of the existing datasets focus on understanding the content relationships within a single image and not acro...
Visual question answering on document images that contain textual, visual, and layout information, called document VQA, has received much attention recently. Although many datasets have been proposed for developing document VQA systems, most of the existing datasets focus on understanding the content relationships within a single image and not acro...
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual machine reading comprehension dataset, named VisualMRC, wherein given a question and a document image, a...
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual machine reading comprehension dataset, named VisualMRC, wherein given a question and a document image, a...
End-to-end neural-based dialogue systems can potentially generate tailored and coherent responses for user inputs. However, most of existing systems produce universal and non-informative responses, and they have not gone beyond chitchat yet. To tackle these problems, 7th Dialog System Technology Challenges (DSTC7-Track2) was developed to focus on b...
Fact-based dialogue generation is a task of generating a human-like response based on both dialogue context and factual texts. Various methods were proposed to focus on generating informative words that contain facts effectively. However, previous works implicitly assume a topic to be kept on a dialogue and usually converse passively, therefore the...
This study aims to generate responses based on real-world facts by conditioning context and external facts extracted from information websites. Our system is an ensemble system that combines three modules: generated-based module, retrieval-based module, and reranking module. Therefore, this system can return diverse and meaningful responses from va...
This study aims to generate responses based on real-world facts by conditioning context and external facts extracted from information websites. Our system is an ensemble system that combines three modules: generated-based module, retrieval-based module, and reranking module. Therefore, this system can return diverse and meaningful responses from va...