Ruud Lucas van den Brink

Ruud Lucas van den Brink
University Medical Center Hamburg - Eppendorf · Department of Neurophysiology and Pathophysiology

PhD

About

25
Publications
4,706
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
606
Citations

Publications

Publications (25)
Article
Full-text available
The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogeneous across the brain. However, the brain is equipped with a variety of catecholamine re...
Article
Full-text available
Unlabelled: The brain commonly exhibits spontaneous (i.e., in the absence of a task) fluctuations in neural activity that are correlated across brain regions. It has been established that the spatial structure, or topography, of these intrinsic correlations is in part determined by the fixed anatomical connectivity between regions. However, it rem...
Article
Full-text available
Unlabelled: Neurophysiological evidence suggests that neuromodulators, such as norepinephrine and dopamine, increase neural gain in target brain areas. Computational models and prominent theoretical frameworks indicate that this should enhance the precision of neural representations, but direct empirical evidence for this hypothesis is lacking. In...
Article
Full-text available
Our ability to sustain attention for prolonged periods of time is limited. Studies on the relationship between lapses of attention and psychophysiological markers of attentional state, such as pupil diameter, have yielded contradicting results. Here, we investigated the relationship between tonic fluctuations in pupil diameter and performance on a...
Article
Full-text available
Oftentimes, we perceive our environment by integrating information across multiple senses. Recent studies suggest that such integration occurs at much earlier processing stages than once thought possible, including in thalamic nuclei and putatively unisensory cortical brain regions. Here, we used diffusion tensor imaging (DTI) and an audiovisual in...
Preprint
Full-text available
Humans and non-human primates can acquire, and rapidly switch between, arbitrary rules that govern the mapping from sensation to action. It has remained unknown if and how the brain configures large-scale sensory-motor circuits to establish such flexible information flow. Here, we developed an approach that elucidates the dynamic configuration of t...
Article
Full-text available
Influential theories postulate distinct roles of catecholamines and acetylcholine in cognition and behavior. However, previous physiological work reported similar effects of these neuromodulators on the response properties (specifically, the gain) of individual cortical neurons. Here, we show a double dissociation between the effects of catecholami...
Article
Full-text available
Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex...
Article
Full-text available
The ability to predict the timing of forthcoming events, known as temporal expectation, has a strong impact on human information processing. Although there is growing consensus that temporal expectations enhance the speed and accuracy of perceptual decisions, it remains unclear whether they affect the decision process itself, or non-decisional (sen...
Preprint
Full-text available
Influential accounts postulate distinct roles of the catecholamine and acetylcholine neuromodulatory systems in cognition and behavior. But previous work found similar effects of these modulators on the response properties of individual cortical neurons. Here, we report a double dissociation between catecholamine and acetylcholine effects at the le...
Preprint
Full-text available
Complex cognitive functions such as working memory and decision-making require the maintenance of information over many timescales, from transient sensory stimuli to long-term contextual cues ¹ . However, while theoretical accounts predict that a corresponding hierarchy of neuronal timescales likely emerges as a result of graded variations in recur...
Preprint
Full-text available
The ability to predict the timing of forthcoming events, known as temporal expectation, has a strong impact on human information processing. Although there is growing consensus that temporal expectations enhance the speed and accuracy of perceptual decisions, it remains unclear whether they affect the decision process itself, or non-decisional (sen...
Article
Full-text available
Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone...
Preprint
Full-text available
Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone...
Article
Full-text available
Our ability to stay focused is limited: prolonged performance of a task typically results in mental fatigue and decrements in performance over time. This so-called vigilance decrement has been attributed to depletion of attentional resources, though other factors such as reductions in motivation likely also play a role. In this study, we examined t...
Preprint
Full-text available
Our ability to stay focused is limited: prolonged performance of a task typically results in mental fatigue and decrements in performance over time. This so-called vigilance decrement has been attributed to depletion of attentional resources, though other factors such as reductions in motivation likely also play a role. In this study, we examined t...
Preprint
Full-text available
The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogenous across the brain. However, the brain is equipped with a variety of catecholamine rec...
Article
Full-text available
Author Summary There is emerging evidence that the flexible network structure of the brain is related to activity within the ascending arousal systems of the brain, such as the noradrenergic locus coeruleus. Here, we explored the role of catecholaminergic activity on network architecture by analyzing the graph structure of the brain measured using...
Thesis
Full-text available
The locus coeruleus (LC) is a nucleus in the brainstem, and projects widely to the forebrain where it releases norepinephrine (NE). Catecholamines such as NE do not have a unitary effect on their target neurons, but instead influence the function of other neurotransmitters, a process that is known known as neuromodulation. By virtue of the LC’s wid...
Article
Full-text available
For some patients, coma is followed by a state of unresponsiveness, while other patients develop signs of awareness. In practice, detecting signs of awareness may be hindered by possible impairments in the patient's motoric, sensory, or cognitive abilities, resulting in a substantial proportion of misdiagnosed disorders of consciousness. Task-free...
Article
Full-text available
A common finding across many reaction time tasks is that people slow down on trials following errors, a phenomenon known as post-error slowing. In the present study, we tested a novel hypothesis about the neural mechanism underlying post-error slowing. Recent research has shown that when task-relevant stimuli occur in a rhythmic stream, neuronal os...

Network

Cited By

Projects