Ruth C Wilkins

Ruth C Wilkins
Health Canada | HC · Consumer and Clinical Radiation Protection Bureau

PhD

About

126
Publications
19,967
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,976
Citations
Citations since 2017
46 Research Items
1523 Citations
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
Additional affiliations
September 1996 - present
Health Canada
Position
  • Research Scientist/ Chief, Radiobiology Division

Publications

Publications (126)
Article
Full-text available
Background: Exposure to different forms of ionizing radiation occurs in diverse occupational, medical, and environmental settings. Improving the accuracy of the estimated health risks associated with exposure is therefore, essential for protecting the public, particularly as it relates to chronic low dose exposures. A key aspect to understanding h...
Article
Purpose: The Adverse Outcome Pathway (AOP) framework, a systematic tool that can link available mechanistic data with phenotypic outcomes of relevance to regulatory decision-making, is being explored in areas related to radiation risk assessment. To examine the challenges including the use of AOPs to support the radiation protection community, an i...
Article
Background: The Organisation for Economic Co-operation and Development (OECD), through its Chemical Safety Programme, is delegated to ensure the safety of humans and wildlife from harmful toxicants. To support these needs, initiatives to increase the efficiency of hazard identification and risk management are under way. Amongst these, the adverse...
Article
Full-text available
Background: The purpose of toxicology is to protect human health and the environment. To support this, the Organisation for Economic Co-operation and Development (OECD), operating via its Extended Advisory Group for Molecular Screening and Toxicogenomics (EAGMST), has been developing the Adverse Outcome Pathway (AOP) approach to consolidate eviden...
Article
Full-text available
The dicentric chromosome assay (DCA) is considered the gold standard for radiation biodosimetry, but it is limited by its long dicentric scoring time and need for skilled scorers. The automation of scoring dicentrics has been considered a strategy to overcome the constraints of DCA. However, the studies on automated scoring methods are limited comp...
Article
Purpose: Health protection agencies require scientific information for evidence-based decision-making and guideline development. However, vetting and collating large quantities of published research to identify relevant high-quality studies is a challenge. One approach to address this issue is the use of adverse outcome pathways (AOPs) that provid...
Article
Purpose: Benchmark dose (BMD) modeling is a method commonly used in chemical toxicology to identify the point of departure (POD) from a dose-response curve linked to a health-related outcome. Recently, it is being explored on transcriptional data and in adverse outcome pathways (AOPs). As AOPs are informed by diverse data types, it is important to...
Article
Purpose: A vast amount of data regarding the effects of radiation stressors on transcriptional changes has been produced over the past few decades. These data have shown remarkable consistency across platforms and experimental design, enabling increased understanding of early molecular effects of radiation exposure. However, the value of transcrip...
Article
Full-text available
As COVID-19 emerged, there are parallels between the responses needed for managing SARS-CoV-2 infections and radiation injuries. While some SARS-CoV-2-infected individuals present as asymptomatic, others exhibit a range of symptoms including severe and rapid onset of high-risk indicators of mortality. Similarly, a variety of responses are also obse...
Article
In 2008 the World Health Organization established an international network of biodosimetry laboratories, the BioDoseNet. The goal of this network is to support international cooperation and capacity building in the area of biodosimetry, including harmonisation of protocols and techniques to enable them to provide mutual assistance during a mass cas...
Article
Full-text available
Purpose Based on the experience of biodosimetry laboratories during the COVID-19 pandemic, the purpose of this paper is to describe the challenges of providing biodosimetry service in the event of a major radiation incident during a pandemic. This includes describing some of the preparations and planning made by biodosimetry laboratories and specia...
Article
Full-text available
Background: The circulatory system distributes nutrients, signaling molecules, and immune cells to vital organs and soft tissues. Epidemiological, animal, and in vitro cellular mechanistic studies have highlighted that exposure to ionizing radiation (IR) can induce molecular changes in cellular and subcellular milieus leading to long-term health i...
Article
Full-text available
Purpose Canadian Organization on Health Effects from Radiation Exposure (COHERE) is a government initiative to better understand biological and human health risks from ionizing radiation exposures relevant to occupational and environmental settings (< 100 mGy, < 6 mGy/hr). It is currently a partnership between two federal agencies, Health Canada (H...
Article
Purpose The dicentric chromosome assay (DCA), the gold standard for radiation biodosimetry, evaluates an individual absorbed radiation dose by the analysis of DNA damage in human lymphocytes. The conventional (C-DCA) and QuickScan (QS-DCA) scoring methods are sensitive for estimating radiation dose. The Biodosimetry Laboratory at Institute of Nucle...
Article
Full-text available
Purpose In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely...
Article
Full-text available
The dicentric chromosome (DC) assay accurately quantifies exposure to radiation; however, manual and semi-automated assignment of DCs has limited its use for a potential large-scale radiation incident. The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates unattended DC detection and determines radiation exposure...
Article
Full-text available
Background: Decades of research to understand the impacts of various types of environmental occupational and medical stressors on human health have produced a vast amount of data across many scientific disciplines. Organizing these data in a meaningful way to support risk assessment has been a significant challenge. To address this and other chall...
Article
Full-text available
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity,...
Article
Purpose: Adverse outcome pathways (AOPs) provide a modular framework for describing sequences of biological key events (KEs) and key event relationships (KERs) across levels of biological organization. Empirical evidence across KERs can support construction of quantified AOPs (qAOPs). Using an example AOP of energy deposition from ionizing radiatio...
Article
Purpose Inhomogeneous exposures to ionizing radiation can be detected and quantified with the dicentric chromosome assay (DCA) of metaphase cells. Complete automation of interpretation of the DCA for whole-body irradiation has significantly improved throughput without compromising accuracy, however, low levels of residual false positive dicentric c...
Preprint
Full-text available
Purpose Inhomogeneous exposures to ionizing radiation can be detected and quantified with the Dicentric Chromosome Assay (DCA) of metaphase cells. Complete automation of interpretation of the DCA for whole body irradiation has significantly improved throughput without compromising accuracy, however low levels of residual false positive dicentric ch...
Article
Full-text available
Purpose Benchmark dose (BMD) modeling is used to determine the dose of a stressor at which a predefined increase in any biological effect above background occurs (e.g. 10% increase from control values). BMD analytical tools have the capacity to model transcriptional dose-response data to derive BMDs for genes, pathways and gene ontologies. We recen...
Article
Purpose: Dose-response curve (DRC) generation is an important aspect in cytogenetic biodosimetry for accurate dose estimation for individuals suspected of prior irradiation. DRC construction with dicentric chromosomes after acute radiation is well-established following the publication of the IAEA EPR-Biodosimetry 2011 and ISO 19238:2014. However, t...
Preprint
Full-text available
Introduction The dicentric chromosome (DC) assay accurately quantifies exposure to radiation, however manual and semi-automated assignment of DCs has limited its use for a potential large-scale radiation incident. The Automated Dicentric Chromosome Identifier and Dose Estimator Chromosome (ADCI) software automates unattended DC detection and determ...
Chapter
Concerns about the adverse health effects of chemicals and radiation present in the environment and at workplaces have created the need for better detection systems to assess their potential to cause DNA damage in humans and other organisms across ecosystems. The Micronucleus Assay in Toxicology is the first comprehensive volume concerning the use...
Article
Full-text available
The dicentric chromosome assay (DCA) is a well-established biodosimetry test to estimate exposure to ionizing radiation. The Korea Institute of Radiological and Medical Sciences (KIRAMS) established a DCA protocol as a medical response to radiation emergencies in South Korea. To maintain its accuracy and performance, intercomparison exercises with...
Article
The cytokinesis-block micronucleus (CBMN) assay has become a fully-validated and standardized method for radiation biodosimetry. The assay is typically performed using microscopy, which is labor intensive, time consuming and impractical after a large-scale radiological/nuclear event. Imaging flow cytometry (IFC), which combines the statistical powe...
Article
Full-text available
Accuracy of the automated dicentric chromosome (DC) assay relies on metaphase image selection. This study validates a software framework to find the best image selection models that mitigate inter-sample variability. Evaluation methods to determine model quality include the Poisson goodness-of-fit of DC distributions for each sample, residuals afte...
Article
Full-text available
Purpose: Routine dental X-rays are among the most common sources of ionizing radiation exposure for healthy individuals globally, with approximately 300 examinations/1000 individuals/year as documented by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) global survey of medical radiation usage and exposure. Furt...
Article
Biological dosimetry enables individual dose reconstruction in the case of unclear or inconsistent radiation exposure situations, especially when a direct measurement of ionizing radiation is not or is no longer possible. To be prepared for large-scale radiological incidents, networking between well-trained laboratories has been identified as a use...
Article
Purpose: In 2012, the Organization for Economic Cooperation and Development (OECD) formally launched the Adverse Outcome Pathway (AOP) Programme. The AOP framework has the potential for predictive utility in identifying early biological endpoints linked to adverse effects. It uses the weight of correlative evidence to identify a minimal set of meas...
Article
The lymphocyte Cytokinesis-Block Micronucleus (CBMN) assay was originally developed for the measurement of micronuclei (MN) exclusively in binucleated (BN) cells, which represent the population of cells that can express MN because they completed nuclear division. Recently the assay has evolved into a comprehensive cytome method to include biomarker...
Article
Full-text available
While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (h...
Article
Full-text available
Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency....
Article
Health Canada is the lead department for coordinating the federal response to a Canadian nuclear emergency event. The framework to manage a radiological consequence is outlined in the Federal Nuclear Emergency Plan (FNEP). In 2014, a full scale exercise (FSX) was held to test the capacity of the federal government to handle a nuclear facility emerg...
Article
A workshop entitled "Radiation-Induced Fibrosis: Mechanisms and Opportunities to Mitigate" (held in Rockville, MD, September 19, 2016) was organized by the Radiation Research Program and Radiation Oncology Branch of the Center for Cancer Research (CCR) of the National Cancer Institute (NCI), to identify critical research areas and directions that w...
Preprint
Full-text available
Software to automate digital pathology relies on image quality and the rates of false positive and negative objects in these images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received from the frequency of DCs. We present image segmentation methods to r...
Article
Full-text available
Biodosimetry methods, including the dicentric chromosome assay, the cytokinesis-block micronucleus assay and the γH2AX marker of DNA damage are used to determine the dose of ionizing radiation. These techniques are particularly useful when physical dosimetry is absent or questioned. While these assays can be very sensitive and specific, the standar...
Chapter
Biodosimetry is a method for measuring the dose of radiation to individuals using biological markers such as chromosome damage. Following mass casualty events, it is important to provide this information rapidly in order to assist with the medical management of potentially exposed casualties. Currently, the gold standard for biodosimetry is the dic...
Article
Full-text available
Purpose: Two quality controlled inter-laboratory exercises were organized within the EU project ‘Realizing the European Network of Biodosimetry (RENEB)’ to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. Materials and methods: The general study design i...
Article
Full-text available
Recent advances in "-omics" technologies have simplified capacity to concurrently assess expression profiles of thousands of targets in a cellular system. However, compilation and analysis of "omics" data in support of human health protection remains a challenge. Benchmark dose (BMD) modeling is currently being employed in chemical risk assessment...
Article
Full-text available
Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Materials and methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simu...
Article
Biodosimetry is an important tool for triage in the case of large-scale radiological or nuclear emergencies, but traditional microscope-based methods can be tedious and prone to scorer fatigue. While the dicentric chromosome assay (DCA) has been adapted for use in triage situations, it is still time-consuming to create and score slides. Recent adap...
Article
In 2014, Health Canada was approached by the Canadian Nuclear Safety Commission to conduct biodosimetry for a possible overexposure 4 y prior to assessment. Dose estimates were determined by means of two cytogenetic assays, the dicentric chromosome assay (DCA) and translocations as measured by the fluorescent in situ hybridization (FISH). As dicent...
Article
In cases of overexposure to ionizing radiation, the cytokinesis-block micronucleus (CBMN) assay can be performed in order to estimate the dose of radiation to an exposed individual. However, in the event of a large-scale radiation accident with many potentially exposed casualties, the assay must be able to generate accurate dose estimates to within...
Article
Full-text available
In 2007 the World Health Organization established an international network of biodosimetry laboratories, the BioDoseNet. The goal of this network was to support international cooperation and capacity building in the area of biodosimetry around the world, including harmonisation of protocols and techniques to enable them to provide mutual assistance...
Article
The dose from ionizing radiation exposure can be interpolated from a calibration curve fit to the frequency of dicentric chromosomes (DCs) at multiple doses. As DC counts are manually determined, there is an acute need for accurate, fully automated biodosimetry calibration curve generation and analysis of exposed samples. Software, the Automated Di...
Article
The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of ~25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analys...
Article
Full-text available
Accurate detection of the human metaphase chromosome centromere is a critical element of cytogenetic diagnostic techniques, including chromosome enumeration, karyotyping and radiation biodosimetry. Existing centromere detection methods tends to perform poorly in the presence of irregular boundaries, shape variations and premature sister chromatid s...
Article
The cytokinesis-block micronucleus (CBMN) assay is a well-established technique that can be employed in triage radiation biodosimetry to estimate whole body doses of radiation to potentially exposed individuals through quantitation of the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated us...
Article
Dose from radiation exposure can be estimated from dicentric chromosome (DC) frequencies in metaphase cells of peripheral blood lymphocytes. We automated DC detection by extracting features in Giemsa-stained metaphase chromosome images and classifying objects by machine learning (ML). DC detection involves (i) intensity thresholded segmentation of...
Preprint
Full-text available
Dose from radiation exposure can be estimated from dicentric chromosome (DC) frequencies in metaphase cells of peripheral blood lymphocytes. We automated DC detection by extracting features in Giemsa-stained metaphase chromosome images and classifying objects by machine learning (ML). DC detection involves i) intensity thresholded segmentation of m...
Preprint
Full-text available
Accurate detection of the human metaphase chromosome centromere is an critical element of cytogenetic diagnostic techniques, including chromosome enumeration, karyotyping and radiation biodosimetry. Existing image processing methods can perform poorly in the presence of irregular boundaries, shape variations and premature sister chromatid separatio...
Code
Matlab code files used in analysing the chromosome images together with Automatic Dicentric Chromosome Identifier (ADCI) software (V6.1)
Article
The cytokinesis-block micronucleus assay can be employed in triage radiation biodosimetry to determine the dose of radiation to an exposed individual by quantifying the frequency of micronuclei in binucleated lymphocyte cells. Partially automated analysis of the assay has been applied to traditional microscope-based methods, and most recently, the...
Article
Biodosimetry of astronaut lymphocyte samples, taken prior to- and post-flight, provides an important in vivo measurement of radiation-induced damage incurred during space flight which can be included in the medical records of the astronauts. Health Canada has been developing their astronaut biodosimetry program since 2007 and since then has analyze...
Article
Full-text available
Purpose: To evaluate the importance of annual intercomparisons for maintaining the capacity and capabilities of a well-established biodosimetry network in conjunction with assessing efficient and effective analysis methods for emergency response. Materials and methods: Annual intercomparisons were conducted between laboratories in the Canadian N...
Article
The cytokinesis-block micronucleus (CBMN) assay is an established technique in radiation biological dosimetry for estimating the dose to an individual by measuring the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using slide-scoring algorithms, but an automated multiparameter method wi...
Article
Full-text available
Background The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed...
Article
Response to a large-scale radiological incident could require timely medical interventions to minimize radiation casualties. Proper medical care requires knowing the victim's radiation dose. When physical dosimetry is absent, radiation-specific chromosome aberration analysis can serve to estimate the absorbed dose in order to assist physicians in t...
Article
We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF)...
Article
The cytokinesis-block micronucleus (CBMN) assay is employed in biological dosimetry to determine the dose of radiation to an exposed individual from the frequency of micronuclei (MN) in binucleated lymphocyte cells. The method has been partially automated for the use in mass casualty events, but it would be advantageous to further automate the meth...
Article
Purpose: In order to evaluate fluorescent in situ hybridization (FISH) as a method for predicting radiosensitivity, this study examined the incidence of translocations, after exposure to in vitro radiation, in both normally responding patients and those exhibiting severe late effects after radiotherapy treatment. Materials and methods: Patients...
Article
The Dicentric Chromosome Assay (DCA), which involves counting the frequency of dicentric chromosomes in mitotic lymphocytes and converting it to a dose-estimation for ionizing radiation exposure, is considered to be the gold standard for radiation biodosimetry. Furthermore, for emergency response, the DCA has been adapted for triage by simplifying...
Article
Full-text available
Background and Purpose. This project examined the in vitro γH2AX response in lymphocytes of prostate cancer patients who had a radiosensitive response after receiving radiotherapy. The goal of this project was to determine whether the γH2AX response, as measured by flow cytometry, could be used as a marker of individual patient radiosensitivity. Ma...