About
62
Publications
13,762
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
791
Citations
Introduction
Publications
Publications (62)
Mitotic activity is key for the assessment of malignancy in many tumors. Moreover, it has been demonstrated that the proportion of abnormal mitosis to normal mitosis is of prognostic significance. Atypical mitotic figures (MF) can be identified morphologically as having segregation abnormalities of the chromatids. In this work, we perform, for the...
The evaluation of the Human Epidermal growth factor Receptor-2 (HER2) expression is an important prognostic biomarker for breast cancer treatment selection. However, HER2 scoring has notoriously high interobserver variability due to stain variations between centers and the need to estimate visually the staining intensity in specific percentages of...
Grading precancerous lesions on whole slide images is a challenging task: the continuous space of morphological phenotypes makes clear-cut decisions between different grades often difficult, leading to low inter- and intra-rater agreements. More and more Artificial Intelligence (AI) algorithms are developed to help pathologists perform and standard...
Mitotic activity is key for the assessment of malignancy in many tumors. Moreover, it has been demonstrated that the proportion of abnormal mitosis to normal mitosis is of prognostic significance. Atypical mitotic figures (MF) can be identified morphologically as having segregation abnormalities of the chromatids. In this work, we perform, for the...
In histology, the presence of collagen in the extra-cellular matrix has both diagnostic and prognostic value for cancer malignancy, and can be highlighted by adding Saffron (S) to a routine Hematoxylin and Eosin (HE) staining. However, Saffron is not usually added because of the additional cost and because pathologists are accustomed to HE, with th...
The evaluation of the Human Epidermal growth factor Receptor-2 (HER2) expression is an important prognostic biomarker for breast cancer treatment selection. However, HER2 scoring has notoriously high interobserver variability due to stain variations between centers and the need to estimate visually the staining intensity in specific percentages of...
The density of mitotic figures (MF) within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. Recognition of MF by pathologists is subject to a strong inter-rater bias, limiting its prognostic value. State-of-the-art deep learning methods can support experts but have been observe...
The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse to include their slides in the project, the slide...
Artificial intelligence (AI) solutions that automatically extract information from digital histology images have shown great promise for improving pathological diagnosis. Prior to routine use, it is important to evaluate their predictive performance and obtain regulatory approval. This assessment requires appropriate test datasets. However, compili...
Artificial intelligence (AI) solutions that automatically extract information from digital histology images have shown great promise for improving pathological diagnosis. Prior to routine use, it is important to evaluate their predictive performance and obtain regulatory approval. This assessment requires appropriate test datasets. However, compili...
The density of mitotic figures within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. Recognition of mitotic figures by pathologists is known to be subject to a strong inter-rater bias, which limits the prognostic value. State-of-the-art deep learning methods can support the e...
As the third-place winning method for the MIDOG mitosis detection challenge, we created a cascade algorithm consisting of a Mask-RCNN detector, followed by a classification ensemble consisting of ResNet50 and DenseNet201 to refine detected mitotic candidates. The MIDOG training data consists of 200 frames originating from four scanners, three of wh...
Cervical cancer is the fourth most common cancer in women worldwide. To determine early treatment for patients, it is critical to accurately classify the cervical intraepithelial lesion status based on a microscopic biopsy. Lesion classification is a 4-class problem, with biopsies being designated as benign or increasingly malignant as class 1-3, w...
For the MIDOG mitosis detection challenge, we created a cascade algorithm consisting of a Mask-RCNN detector, followed by a classification ensemble consisting of ResNet50 and DenseNet201 to refine detected mitotic candidates. The MIDOG training data consists of 200 frames originating from four scanners, three of which are annotated for mitotic inst...
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode s...
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode s...
State-of-the-art multi-compartment microstructural models of diffusion MRI (dMRI) in the human brain have limited capability to model multiple tissues at the same time. In particular, the available techniques that allow this multi-tissue modelling are based on multi-TE acquisitions. In this work we propose a novel multi-tissue formulation of classi...
This paper highlights a systematic bias in white matter tissue microstructure modelling via diffusion MRI that is due to the common, yet inaccurate, assumption that all brain tissues have a similar T 2 response. We show that the concept of "sig-nal fraction" is more appropriate to describe what have always been referred to as "volume fraction". Thi...
Non-invasive estimation of brain microstructure features using diffusion MRI (dMRI)-known as Microstructure Imaging-has become an increasingly diverse and complicated field over the last decades. Multi-compartment (MC)-models, representing the measured diffusion signal as a linear combination of signal models of distinct tissue types, have been dev...
Non-invasive estimation of brain white matter microstructure features using diffusion MRI—otherwise known as Microstructure Imaging—has become an increasingly diverse and complicated field over the last decade. Multi-compartment-based models have been a popular approach to estimate these features. In this work, we present Diffusion Microstructure I...
The estimation of the apparent axon diameter (AAD) via diffusion MRI is affected by the incoherent alignment of single axons around its axon bundle direction, also known as orientational dispersion. The simultaneous estimation of AAD and dispersion is challenging and requires the optimization of many parameters at the same time. We propose to reduc...
Purpose
Acquisition time is a major limitation in recovering brain white matter microstructure with diffusion magnetic resonance imaging. The aim of this paper is to bridge the gap between growing demands on spatiotemporal resolution of diffusion signal and the real‐world time limitations. The authors introduce an acquisition scheme that reduces th...
Non-invasive estimation of brain white matter microstructure features using diffusion MRI-otherwise known as Microstructure Imaging-has become an increasingly diverse and complicated field over the last decade. Multi-compartment-based models have been a popular approach to estimate these features. In this work, we present Diffusion Microstructure I...
Acquisition time is a major limitation in recovering brain white matter microstructure with diffusion Magnetic Resonance Imaging. Finding a sampling scheme that maximizes signal quality and satisfies given time constraints is NP-hard. We alleviate that by introducing a relaxed probabilistic model of the problem, for which sub-optimal solutions can...
Effective representation of the four-dimensional diffusion MRI signal - varying over three-dimensional q-space and diffusion time τ - is a sought-after and still unsolved challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this qτ-space. Following recent terminology...
The micro-architecture of brain tissue obstructs the movement of diffusing water molecules, causing tissue-dependent, often anisotropic diffusion profiles. In diffusion MRI (dMRI), the relation between brain tissue structure and diffusion anisotropy is studied using oriented diffusion gradients, resulting in tissue- and orientation-dependent diffus...
A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance imaging (MRI). However, model comparison to date focuses only on specific subclasses, e.g. compartment models or signal models, and little or no information is available in the literature on how performance varies a...
The non-Gaussian noise distribution in magnitude Diffusion-Weighted Images (DWIs) can severely affect the estimation and reconstruction of the true diffusion signal. As a consequence, also the estimated diffusion metrics can be biased. We study the effect of phase correction, a procedure that re-establishes the Gaussianity of the noise distribution...
Current theories hold that brain function is highly related with long-range physical connections through axonal bundles, namely extrinsic connectivity. However, obtaining a groupwise cortical parcellation based on extrinsic connectivity remains challenging. Current parcellation methods are computationally expensive; need tuning of several parameter...
Effective representation of the diffusion signal’s dependence on diffusion time is a sought-after, yet still unsolved, challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this four-dimensional space—varying over gradient strength, direction and diffusion time. In pa...
In this study, we assessed the evolution of diffusion MRI (dMRI) derived markers from different white matter models as progressive neurodegeneration occurs in transgenic Alzheimer rats (TgF344-AD) at 10, 15 and 24 months. We compared biomarkers reconstructed from Diffusion Tensor Imaging (DTI), Neurite Orientation Dispersion and Density Imaging (NO...
This thesis is dedicated to furthering neuroscientific understanding of the human brain using diffusion-sensitized Magnetic Resonance Imaging (dMRI). Within dMRI, we focus on the estimation and interpretation of microstructure-related markers, often referred to as ``Microstructure Imaging''. This thesis is organized in three parts. Part I focuses o...
The recovery of microstructure-related features of the brain's white matter is a current challenge in diffusion MRI. To robustly estimate these important features from multi-shell diffusion MRI data, we propose to analytically regularize the coefficient estimation of the Mean Apparent Propagator (MAP)-MRI method using the norm of the Laplacian of t...
Diffusion magnetic resonance imaging (dMRI) is the modality of choice for investigating in-vivo white matter connectivity and neural tissue architecture of the brain. The diffusion-weighted signal in dMRI reflects the diffusivity of water molecules in brain tissue and can be utilized to produce image-based biomarkers for clinical research. Due to t...
We propose a novel method to simultaneously trace brain white matter (WM) fascicles and estimate WM microstructure characteristics. Recent advancements in diffusion-weighted imaging (DWI) allow multi-shell acquisitions with b-values of up to 10,000 s/mm2 in human subjects, enabling the measurement of the ensemble average propagator (EAP) at distanc...
We propose two strategies to improve the quality of tractography results
computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both
methods are based on the same PDE framework, defined in the coupled space of
positions and orientations, associated with a stochastic process describing the
enhancement of elongated structures whil...
We propose a novel framework to simultaneously represent the diffusion-weighted MRI (dMRI) signal over diffusion times, gradient strengths and gradient directions. Current frameworks such as the 3D Simple Harmonic Oscillator Reconstruction and Estimation basis (3D-SHORE) only represent the signal over the spatial domain, leaving the temporal depend...
Diffusion MRI (dMRI) is used to characterize the directional-ity and microstructural properties of brain white matter (WM) by measuring the diffusivity of water molecules. In clinical practice the number of dMRI samples that can be obtained is limited, and one often uses short scanning protocols that acquire just 32 to 64 different gradient directi...
In diffusion MRI, the accurate description of the entire diffusion signal from sparse measurements is essential to enable the recovery of microstructural information of the white matter. The recent Mean Apparent Propagator (MAP)-MRI basis is especially well suited for this task, but the basis fitting becomes unreliable in the presence of noise. As...
In diffusionMRI, the reconstructed Ensemble Average Propagator (EAP) from the diffusion signal provides detailed insights on the diffusion process and the underlying tissue microstructure. Recently, the Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) basis was proposed as a promising method to reconstruct the EAP. However, th...
In this research we propose a combined cell matching and image alignment method for tracking cells based on their nuclear locations in 3D fluorescent Confocal Laser Scanning Microscopy (CLSM) image sequences. We then apply it to study the cell division pattern in the developing sepal of the small plant Arabidopsis thaliana. The method is based on g...
N.B. This is not the camera-ready, but a submitted first version.
We investigate saddle points in 3D cardiac images. We do so by improving a critical point detection algorithm, the 3D winding number, or Poincaré index. We consider two different applications. We estimate cardiac motion from 3D tagged MRI data, based on tracking of saddle points. We...