
Toward Network Access Control With Software-Defined Networking

Dennis Gamayunov, Ivan Platonov, Ruslan Smeliansky

Applied Research Center for Computer Networks

Moscow, Russia

dgamayunov@arccn.ru, iplatonov@arccn.ru, rsmeliansky@arccn.ru

Abstract—This paper addresses the network access control

problem in dynamically changing network topologies using

Software-Defined Networking (SDN). In this article we propose

an approach to network infrastructure migration from

traditional topology with dedicated firewall appliances to SDN

L2 infrastructure, which implements the original filtering

policy with OpenFlow switches and SDN controller only. The

proposed approach allows maximizing throughput of the

switched network preserving the reachability graph of the

original network. Proposed algorithm was implemented as an

application for POX controller and supports rule translation

from Cisco ACL syntax. Experimental evaluation with physical

SDN testbed built upon NEC PF series switches confirms

applicability of the proposed method.

Keywords-SDN; OpenFlow; firewall; network security;

access control

I. INTRODUCTION

In the early days of basic Internet protocols development
no native support for access control was provided at the
network level. It was expected that applications would
connect to each other in the global network without any
restrictions. Along with the growth of commercial use of
Internet mechanisms for L3 (and higher) network access
control became necessary for normal operations, and packet
filtering solutions were developed (including software
implementations in operating systems) — firewalls, Intrusion
Prevention Systems (IPS), network antiviruses, application
layer proxy servers, including WAF — web application
firewalls.

Unfortunately, nowadays with evolved networking
technologies, enormous growth of Internet throughput and a
shift from fixed client devices towards mobile networking
(we have over 1 billion connected smartphones already in
early 2013, and only about 200 million fixed devices)
efficiency of existing access control solutions reduces. More
expensive devices are required for every new version of
Ethernet protocol providing the same level of network
granularity as five or ten years ago. In terms of client devices
mobility, network configuration is changing rapidly and the
information about network topology changes could not be
used directly for access control. That is why the problem of
network access control based on the information about the
expected behavior (flows) of network applications is
becoming more and more important.

New SDN concept allows us not only to save the same
network level access control functionality as traditional
solutions may provide, but also to implement it much more

efficiently. Let us consider a firewall, which implements
access control between applications based on address
information, port numbers (types of applications) and other
service header fields. The use of complex rules is primarily
caused by firewall installation in one certain point of
network topology. The rules syntax should allow us to
accurately distinguish the flows originating from different
applications and clients. Because of the complexity and
richness of the policy language the logic of firewalls
becomes more complex; they need to perform more
operations with each packet header to resolve which action
to perform. At the same time it is known that source based
filtering performed closer to the source node and destination
based filtering closer to the destination node or application
allows simplifying the policy rules and therefore making
filtering logic cheaper.

In this paper we show that any given access control
policy which specifies reachability matrix on a network
graph (implemented in firewall configuration) may be
implemented as an SDN Flow Policy which preserves the
reachability matrix between applications and maximizes the
throughput of the L2 networking infrastructure. We show
that using SDN it is possible both to escape the necessity for
dedicated hardware firewalls and to maximize the overall L2
network throughput. We will formally show how to solve the
problem of migration from traditional network to SDN while
preserving the nodes reachability (the connection matrix).

This paper is organized as follows. In section II we
describe the proposed approach and analysis of its
applicability. In section III we give quantitative results,
which were obtained by probing our tool on an example of
network topology. Section IV gives a survey of related
works and section V closes the paper.

II. PROPOSED APPROACH

The main purpose of this research is to investigate the
possibility of firewall rules optimization in the process of
migration from classic network architecture to its SDN
implementation. The topology in Figure 1 was chosen as an
example of our method evaluation. It consists of a large
amount of subnets (Free WIFI, Web Server, Data Base,
Management Network, Research Network, Development
Network and Accounts Network), switches and firewalls.
There is also a separate subnet called «Internet». We define
it as a subnet with a network address that does not intersect
with any address of the subnets above. Some redundant links
were added to maintain reliability in the network — it is

mailto:dgamayunov@arccn.ru
mailto:iplatonov@arccn.ru
mailto:rsmeliansky@arccn.ru

possible to make more than one route between most of the
subnets.

Sample network topology is divided into Zones (A, B, C
and D). Network traffic inside each zone is not filtered by
any firewall.

The given topology shows the structure of a real LAN
and has complex access control policy, which is provided by
three hardware firewalls. Also some hosts in network
topology could additionally have application firewalls (hosts
in Accounts Network, for example).

Network topology is represented by an undirected graph
with vertexes as network nodes (hosts, routers and firewalls)
and edges as links between them. In Figure 1 every subnet is
shown as a single host for clarity. All firewalls in this sample
network could also perform routing and implement rule-
based network traffic filtering.

Figure 1. Example of classic topology.

The approach for migration from initial (classic)
topology to SDN with security policy preservation proposed
in this article consists of several steps:

Input: The existing network topology and a rule set for
each firewall.

Algorithm of migration to SDN Topology:

1) Rule optimisation:

a) Discovery and removal of intra firewall anomalies;

b) Discovery and removal of inter firewall anomalies;

2) Construction of a single logical (virtual) firewall for

every subnet in topology;

3) Calculation of the minimum required number of

OpenFlow switches and SDN topology selection;

4) Translation of firewall rules to flow rules for each

OF switch.
The result: SDN access control policy of rule sets for

every OpenFlow switch in SDN topology.
Below we will consider each step of this algorithm,

provide implementation details and describe the related
problems.

A. Rule Optimisation

Every filtering rule is represented by a set of patterns,
which describe the possible values of corresponding fields of
packet header in real network traffic. Each field (pattern)
could have a single value or a range of values. Moreover,
each rule defines actions, which will be conducted by the
firewall for packets that match the rule. The most common
actions are «permit» and «deny» further packet transmission.
Most research papers operate with the definition of a filtering
rule as a 7-element tuple:

<Sequence number><Action><Protocol><Source
Address><Source Port><Destination Address><Destination
Port>

Examination of rules during the packet analysis is
performed according to their sequence number (from lowest
to highest). If the packet does not match any rule, then
default action is performed. There are different models of
firewalls available. Some of them produce action of the «first
match» rule, e.g. Cisco Access Control List [5], and some of
them produce action of the «last match» rule, e.g. Packet
Filter OpenBSD [24]. We assume that all firewalls in our
model work as «first match» and the default action is
«deny».

The compliance of firewall rules sequence is critical in
the definition of filtering policy, because examination of
rules is sequential. If rules are completely different, their
sequence is irrelevant, however, such situation is unlikely to
occur when merging multiple rule sets from production
network firewalls. If the original sequence is not respected
some rules may be overlapped by other rules. The research
provided by A. Wool in [1] shows, that the most modern
firewalls contain critical errors.

In our model the filtering policy is represented and stored
as a single root tree on every firewall. Each node in the
policy tree represents a field and each branch originated from
the node represents a possible value of associated field.
Every route in this tree that starts in the root and ends in the
leaf presents a unique rule in the policy. Rules that have the
same values in some nodes share the same branches, which
present these values. The policy tree model allows defining
relations and discovering anomalies between rules easily and
also accelerating the matching by cutting misleading
branches.

As a basis for the rules optimization method two
algorithms proposed by E. Al-Shaer et al in [2], [3] were
adopted. Both of them describe relations between firewall
rules. Work [2] describes the method of intra firewall
anomalies discovery and the technique of inserting the rules
in the policy tree and work [3] is its logical extension and

describes the method of inter firewall anomalies discovery.
Rules that cause an anomaly and do not affect reachability of
any two nodes in topology should be removed. Modeling
relations between the rules in firewalls are necessary for
providing analysis of the rule set and development of the
technique of anomaly discovery and removal. As a result of
providing this step of migration to SDN topology the number
of rules on each firewall either remains the same (in case of
anomaly absence) or decreases (in case of anomaly removal).

B. Construction of logical firewall for each subnet in

topology

The next step, necessary to perform migration from a
classic network topology to SDN, is collecting and
generalizing filtering rules for each subnet in topology.
Filtering rules may be categorized based on the source
address (src_addr) and destination address (dst_addr) fields
values (fields <protocol>, <src_port>, <dst_port> in terms of
provided classification are not significant and could take any
valid value):

1) deny <protocol> const_src_addr <src_port>

const_dst_addr <dst_port>;

2) permit <protocol> const_src_addr <src_port>

const_dst_addr <dst_port>;

3) deny <protocol> src_addr <src_port>

const_dst_addr <dst_port>;

4) permit <protocol> src_addr <src_port>

const_dst_addr <dst_port>;

5) deny <protocol> const_src_addr <src_port>

dst_addr <dst_port>;

6) permit <protocol> const_src_addr <src_port>

dst_addr <dst_port>;

7) deny <protocol> src_addr <src_port> dst_addr

<dst_port>;

8) permit <protocol> src_addr <src_port> dst_addr

<dst_port>.
The detailed description of each type of rules is presented

in Appendix 1.
Statement 1: Each rule in the firewall filtering policy

belongs to exactly one type. Other types of rules do not exist
according to the specified classification.

The problem of constructing a unified logical firewall
between any two points may be reduced to the problem of
redistribution of rule sets of two firewalls, which are located
between two subnets. A similar situation is presented in
Figure 1. In case of more than two firewalls lying on the
route between two considered subnets, two firewalls which
are the nearest to the source subnet are united in one logic
firewall on each step and each following firewall is added to
the constructed logic firewall.

Typically, filtering rules are applied to a specific
interface (port) of network device either on the input
direction (in) or the output direction (out). Thereby, we need
to find all filtering tables which could be met on the packet's
route. For this purpose the logical firewall which is an
aggregation of all filtration rules on all possible routes
between every two end points of topology (subnets) is

constructed using recursive traversal of the graph. We will
define an ordered sequence of network devices and
corresponding input and output ports which take part in
packet transmission as a “route”. If filtering rules on two
different routes between subnets are different, i.e. if an end
point on one route is reachable and on the other is not, the
warning message “Conflict Found” is displayed and
computation stops. In our example topology of three
hardware and one application firewalls (Figure 1) this
situation is not possible; however, the implemented
application allows this case.

When we have discovered all routes, we then find all
firewalls on them. Rules for which “Source Address” field
value is not a subset or superset of the source subnet and
“Destination Address” field value is not a subset or superset
of the destination subnet are deleted from the policy tree of
each found firewall.

The policy tree of the most upstream firewall which is
left after rule removing is taken as a basis of the source
subnet’s policy tree. The remaining rules from other
firewalls are added into this tree.

For rules with “permit” action located on downstream
firewalls we introduce the concept of “compressing” and
“extending” rules. We will call a rule “compressing”, if it
permits only part of network traffic, which could reach the
downstream firewall because the next rule that could be
matched by the same traffic has a “deny” action and every
field in the first rule is a subset of each corresponding field in
the second rule. We will call a rule “extending” if, vice
versa, it could permit transition of all packets which could
come to this firewall. Each field of an “extending” rule is
equal or a superset of each corresponding field in an
upstream firewall rule with action “permit”.

The analysis algorithm, which is applied in constructing a
single logical firewall, is presented further:

1) Define the type of rule;

2) Insert the rule in the policy tree of the logical firewall

according to its type:

 Type 1. If the rule belongs to the first type, it means
that network traffic, which could be matched by this
rule, has already been matched by a rule with
“permit” action on all previous firewalls. Therefore,
it is possible to add rules of this type at the
beginning of the logic firewall’s list, because
network traffic that matches this rule will be
obligatory dropped.

 Type 2. In case of an “extending” rule, there is no
need to insert it, because the security policy may
change and the firewall may start to allow
transmission of packets that were dropped
previously. If the rule is “compressing”, it is
necessary to insert it before the rule, which is its
superset, and delete all the following rules after it
(for which it is a subset).

 Type 3. To accomplish a minimal number of
filtration rules it is desirable to insert rules of this
type in the destination subnet’s policy tree, because

then it will be analyzed once, i.e. when the packet is
addressed exactly to this subnet.

 Type 4. Whereas packets from multiple subnets
could be matched by “Source Address” field value,
a rule of this type is “extending” for each of them.
Therefore, it could be assigned to the source subnet
and processed according to the second type rules,
i.e. to be removed.

 Type 5. While searching for a place to insert this
type of rule we can not define exactly which
“permit” rule was matched on the upstream
firewall. In case of its insertion without changing,
the security policy may change (subnets, which
were available because of other “permit” rules,
could become unavailable, if we insert a rule of this
type before a “permit” rule, or, vice versa, subnets,
which were unavailable because of the presence of
this rule, could become available). Thereby, for
correct adding of rules of this type in the logic
firewall, they need to be specified. We have to
substitute the network address of the considered
source subnet and insert this type of rules according
to the instruction for the first type rules.

 Type 6. In this case all considerations are similar to
Type 5 rules.

 Type 7. It is possible to include this type of rules to
the source subnet policy tree having preliminarily
specified the destination address. In this case, if the
analyzed rule is the last rule on the list and has a
form “deny <protocol> any <src_port> any
<dst_port>”, it does not need to be inserted.

 Type 8. Rules of this type are “extending” rules, so
we should not insert them.

For the most upstream firewall the filtration rules order
does not change while constructing a single firewall, the
rules could only be specified according to their type.

In case of absence of rules with “permit” action for two
considered subnets on any firewall, all the rules which are
related to subnets are deleted, and single a rule with “deny”
action and addresses of source and destination subnets is
inserted into the logical firewall.

The relations between rules have been already defined in
work [2]. The comparison of rules in the policy tree with the
inserted rule is provided according to the algorithm described
in A.

As a result of bypassing all subnets we get (k - 1) policy
trees, where k is the number of subnets. All these trees do not
intersect with each other because of strictly specified source
and destination address fields. Therefore, we could merge
them in one policy tree by sequential rules placement one
after another. The last rule “deny <protocol> any <src_port>
any <dst_port>” does not need to be placed anywhere except
the last tree.

Finally, after providing step 3 we obtain a filtering rule
tree for each subnet in our network topology. However, it
could contain anomalies which need to be removed. The
resulting policy tree is the basis of the SDN access control
policy and rule generation for OpenFlow switches.

It should be pointed out that rules with the same network
addresses, but different ports both on the source side and on
the destination side are completely different and we can not
compare them.

C. Estimation of the required number of OpenFlow

switches and topology selection

Figure 2. Example of resulting topology.

For migration to the SDN-based topology we need to
choose its structure. The most common examples of
topologies are tree, fully connected graph, lattice, star, ring,
3-dimensional cube and etc. Topology is selected depending
on the network size, reliability, resilience and congestion
requirements. For our example of topology we chose a fully
connected graph structure because we assume that the
number of hosts in the network is small, however the speed
of data transmission is a critical factor. It is known that in a
fully connected graph topology every packet can reach its
destination point in three hops.

Then according to the choice it is necessary to calculate
the number of ports for connecting switches with each other.
For example, in a fully connected graph topology which
consists of n switches, (n-1) port will be occupied on each
switch.

The next step in topology replacement is the process of
computing the minimal number of OpenFlow switches,
which will take part in SDN topology. This problem is a sort
of “Bin-Packing Problem”, described in [4]. It consists in
distribution of subnets with a variety number of hosts
between switches with a variety number of ports in such a
way that the number of occupied switches would be
minimal. It is known as NP-complete problem in
computational complexity theory. However, the use of
heuristics (the so-called “greedy” bin packing algorithm)
significantly reduces computational complexity. Herewith,
discovery of optimal solution is not guaranteed, but accurate
results are obtained on practice.

After solving this problem, we can unambiguously
associate with every subnet the unique switch identifier
(DPID) and a group of ports to which this subnet is
connected. In case of several subnets connected to a single
switch it is necessary to unite their policy trees. For this
purpose we consistently insert all rules from one subnet
policy tree into another using the technique described above.
Thereby, after this step the filtration rule tree is associated
with each OF switch that is taking part in SDN topology.

In case of our topology example, SDN will consist of 5
OF switches with different number of ports (2 48-port
switches and 24-, 16- and 8- port switches one at a time).
The example of the resulting SDN is shown in Figure 2.

D. Translation of filtration rules to flow rules

SDN switching equipment supports flow routing tables
(Flow Tables) in which processing rules for packet flows are
installed. The final step of migration from a traditional
topology to an SDN paradigm is installing flow rules into OF
switches flow tables.

Appendix 2 contains Table 3 in which Extended Cisco
ACL syntax [5] is associated with fields of flow rules in
accordance with OpenFlow Specification. With the “action”
term in OpenFlow context we designate an operation that
forwards packets to the specified port or modifies the packets
(e.g. decreases TTL field value or changes MAC/IP source
or destination addresses). Each rule may have multiple
actions.

Every rule field in the Flow Table contains either a
defined value or ANY value which matches any content of
the corresponding packet field. If a switch supports setting
arbitrary bit masks for the source and/or destination Ethernet
address fields and for the source and/or destination IP
address fields, they could define the match more precisely. In
addition to packet headers, input port and metadata fields
may be taken into account. Metadata may be used for
transmitting information between switch tables.

One of the advantages of Extended Cisco ACL syntax is
the possibility of flexible setting of a range of source and
destination ports. OpenFlow protocol specification does not
support this feature. Another ACL advantage is the
possibility of setting the time activity range for rules, e.g. on
weekdays from 10 am to 7 pm. However, this functionality
may be implemented by the SDN controller application
which is involved in installing/removing rules in Flow
Tables. On the contrary, the possibility of simultaneous
packet filtration based on L2-L4 header fields exists in OF
protocol, for example matching network IP address and
MAC address in the same rule. Also it is possible to work
with packets which belong to a specified VLAN or have a
specified MPLS label.

In other cases rule fields either match flow fields
precisely or could be implemented by protocol specification
or functionality of application that works on the controller.
Thereby, Extended Cisco ACL syntax could be taken as a
basis of input language of traffic filtration rules in input
topology.

Functions of traffic filtration in our tool were
implemented in two options: classic Extended Cisco ACL

and Reflexive Cisco ACL. In case of the classic variant of
implementation the rule flows that permit all incoming traffic
with action “CONTROLLER” were installed on every port
which connects the switch to another switch. In the reflexive
variant of implementation all new flow rules for each new
connection with the highest priority were installed on all
switches which participate in packet transmission (proactive
mode). Because of this, the required time for searching the
matching rule is significantly reduced.

II. EXPERIMENTAL RESULTS

The proposed approach was implemented as application
for the POX SDN controller [25] using Python 2.7
programming language. The POX controller supports
protocol OpenFlow version 1.0.

As a testbed switch 48-GbE NEC PF 5820 was used [26].
This model supports OpenFlow version 1.0, up to 80000 L2-
layer flow records and up to 750 L2-tuple flow records. A
laptop (2 Core 2.2 GHz CPU, 2048 Mb RAM) with OS
Ubuntu 12.04 was used as a server for SDN controller
application.

Figure 3. Experimental testbed.

NEC switch supports partitioning into several virtual
switches; however all of them are using a common Flow
Table. In our testbed setup the NEC hardware switch was
divided into 6 virtual switches with 8 ports on each. Then
virtual switches were connected with each other to create a
full mesh network topology. The scheme of the testbed is
shown in Figure 3.

Hosts 1-5 were connected to the virtual switches using
ports 1, 9, 17, 25 and 33 accordingly. Every host was
associated with an IP address from different subnets in the
example topology. The server was connected to the 6-th
virtual switch (port 41).

At first we reproduced the example of the described
above topology and checked the correctness of installation
and translation of filtration rules from Cisco ACL syntax to
flow rules.

Then we performed 2 experiments. The obtained results
are approximate and are performed as an average number for
5 measurements.

1) The measurement of rule installation time depending

on the number of rules.

TABLE I. THE MEASUREMENT OF TIME OF RULES INSTALLATION

DEPENDING ON THE NUMBER OF RULES.

Number Number of rules Required time, ms

1 100 0.02

2 200 0.04

3 300 0.06

4 400 0.08

5 500 0.1

According to the obtained results the required time of
rule installation depends linearly on the number of rules.

2) The measurement of the delay time of new flow

transmission depending on the location of the first match

rule in the Flow Table.
For providing this experiment we used a “ping” utility

that allows determining the time of ICMP Echo-Reply
packet arrival.

TABLE II. THE DELAY TIME IN CASE OF THE FIRST MATCH RULE’S

LOCATION IN THE FIRST PLACE.

Variant of realization Required time, ms

Standard 35

Reflexive 220 (1st packet), 0.2 (subsequent

packets)

We also performed measurements for cases when the

first match rule was located in the last place (for 100, 200,
300, 400, 500 and 600 rules). For both variants of filtration
implementations the delay time remained approximately the
same (about 40 ms and 250 ms accordingly) because the
required time for searching in Flow Table that is located in
Ternary Content Addressable Memory (TCAM) is minimal.

We may conclude from our experiments that the delay
time for packet transmission for classic implementation
remains constant irrespective of the number of flow rules and
for reflexive realization the delay time for packet
transmission increases, however, after installing rule flows
on every switch the packet transmission time is estimated at
0.2 ms, which is 150 times less.

The implementation of the described method may be
found at https://gitorious.org/sdn-network-access-control/.

III. RELATED WORK

There is a lot of already published research in the area of
network access control, provisioning and management. In
this section we will provide the major works that intersect
with the topic of our research in five basic areas – packet
filtering policy modeling, conflict discovery in security
policy, distributed firewall policy management, firewall
performance optimization and modeling the network
reachability. We will also describe the existing solutions for
providing SDN security.

For rule representation and storing some models have
been proposed. The method shown by S. Hazelhusrt in [6]
uses Binary Decision Diagrams (BDD) for optimization of
packet classification. Another model presented by B. Hari et
al in [7] uses the space of tuples. A set of several filters is
generalized in one tuple which is stored in a hash-table.
Binary trees in several dimensions described by V.
Srinivasan in [8] are used for modeling filters. The geometric
model proposed by D. Eppstein et al [9] is used for rules
representation which includes 2 tuples. Since all of these

models were implemented for packet filtering optimization
in high-load networks they are too complex to use in the
security policy analysis. An approach based on filtering
policy tree construction was presented by E. Al-Shaer et al in
[2]. It was chosen for our implementation because of
simplicity and enough descriptive power for the security
policy analysis.

For the analysis of traffic filtering several techniques
(both for centralized and decentralized systems) were
proposed. A technique for anomaly discovery in the policy
of a single firewall was shown by E. Al-Shaer et al in [2]. A
method based on Decision Diagrams was described by M.
Gouda et al in [10] for setting a sequence of rules which is
ordered, complete (every packet in the network matches one
or more rules on the list) and compact (redundant rules are
absent). There are also some analyzers and tools for
managing the network security policy, e.g. Fang [11],
Firmato [12], Fireman [13] et al. Also the problem of
filtration rules optimization was solved by A. Tapdiya in [14]
using heuristics based on genetic algorithms.

In the area of distributed firewalls current research
predominantly focuses on the policy of distributed firewalls
management. The technology of global policy management
described by J. Guttman in [15] defines the global language
for policy setting and filtration rules creation with an
algorithm for its verification. A technique for anomaly
discovery in a multi firewall environment, which consists of
several firewalls, was proposed by E. Al-Shaer et al in [3].

In the area of theoretical presentation of network
topology, its network elements and construction of a
reachability graph of end nodes there have also been
published several works. The work presented by G. G. Xie et
al in [16] is based on a graph theory and the network is
modeled as a triple that consists of routers, their physical
links and a set of functions for defining packet filtration and
transformation rules. Firewalls and NAT devices could be
expressed using this technique. However, this approach is
exclusively theoretical and there are no experimental results.
Also this approach could be used to present only static NAT
and filtration rules based on destination address and it does
not take into account the existing connection-oriented and
non connection-oriented protocols. To eliminate some
restrictions of work [16] its addition [17] has been published.
A more general model is used to describe firewalls, packet
filtration and transformation rules, e.g. adding the
opportunity to process policies that depend on the source
address and filtration stages.

A technique of using Firewall Decision Diagrams (FDD)
for precise computing network reachability was described by
A. R. Khakpour et al in [18]. Implemented model supports
packet routing, filtration and rule transformation. The tool
could be used to obtain reachability of two network nodes
using SQL-like language.

All previous works were focused on the network as an
object, which is managed by a single participant, thus they
require full knowledge of infrastructure and its rules. In real
scenarios it is not always feasible, especially when several
subnets are managed by several participants. The approach
proposed by F. Chen et al in [19] has been implemented to

https://gitorious.org/sdn-network-access-control

solve this problem. In its solution firewalls need to exchange
their ACLs, previously encrypted and encoded to avoid
unauthorized access, with neighbors. Rules are
consequentially compared using binary prefixes and simple
logical operations to find their intersection and, as a result,
network reachability. This realization does not require a
precomputational phase, but does not support any
transformation network devices.

There is a single solution that provides network security
in SDN. It is a SNAC (Simple Network Access Control)
controller [20]. SNAC is an OF controller that is oriented
toward building corporate networks. It is based on the NOX
controller version 0.4 and has a flexible language for policy
definition, a user-friendly interface for setting network
devices and event monitoring. At first SNAC was an Open
Source project (last release v.0.4.2) and was developed by
Big Switch Network company under GPLv2 license.
However, then it became a closed project, developed by
Nicira Networks company. SNAC allows setting a network
using Formal Modeling Language (FML).

The main component of the controller is the application
Policy Manager. It unites the functions of establishing the
connectivity and security policy compliance in high-level
categories. The system defines entities, related to network
(physical switches and physical ports on switches) and
entities, related to clients (hosts and users). Each entity is
associated with unique information and authentication
policies. All hosts that appear in the network are
automatically redirected to the controller for authentication.

The information supplied by OS contains statistics for
every entity in the network: the number of active entities, the
total number of registered entities (both active and inactive)
and the number of entities that have been seen in the network
and the system has not any registration information; policy
statistics: the average number of denied network flows, the
number of rules in the current policy, the number of
configured rules-exceptions; recent events: all events that
were registered by the system and happened higher than L2
layer. All events are associated with a priority number from
1 (the highest priority) to 5 (the lowest priority). However,
SNAC does not perform migration from classic topology to
SDN with security policy protection and we do not know
anything about methods of its implementation not to mention
optimization.

IV. CONCLUSION

In this work we have shown the methodology of
migration from a network with traditional architecture which
uses dedicated hardware firewalls to SDN topology. Also the
approach for solving the problem of filtration rules migration
from dedicated devices to L2 switched network preserving
the reachability matrix and maximizing L2 network
throughput was proposed. The described algorithm reduces
the number of analyzed rules in packet transmission between
subnets by removing anomalies and transferring every rule to
the switches closest to the traffic source. In case of each
subnet connecting to the dedicated OF switch, the number of
processed rules in the worst case would be minimal.

According to our topology example (Figure 1), the
network packet with the source IP address 7.7.7.7 and
destination IP address 172.16.0.25 has to go through 3
hardware firewalls and one application firewall. As a result
41 rules would be analyzed. It is important to say that we
describe the worst case where every packet matches the
penultimate rule (the last rule is the default “deny” rule).
After migration to SDN the number of processed rules for
the same case is significantly reduced — which is 7 (for the
best case) and 32 (for the worst case).

A POX controller is used for implementation of a
network access control application prototype. Its
performance is significantly less than similar solutions on
C++, Java or Ruby. For production-grade implementation of
the proposed approach in real networks it is necessary to port
it to another controller, e.g. NOX.

Although the problem of discovering the optimal
sequence of filtering rules from all linear combinations is an
NP-complete problem, some heuristics have been proposed,
e.g. a heuristic based on changing the order of disjoint rules
according to the probability of their activation was proposed
by E. W. Fulp in [21]. Several algorithms for rule sorting and
a method for merging two policies were shown by A.
Tapdiya et al in [22]. A technique for dynamic rule
reordering depending on collected traffic statistics was
described by E. Al-Shaer et al in [23]. The results shown in
these papers are close to optimal. According to the
OpenFlow specification, counters could be stored for each
Flow Table, flow, port, queue, group and event container.
OpenFlow-compatible counters could be implemented in
software by examining the hardware counters, which have a
more limited range. Also we plan to implement our own
methods for rule order optimization considering the
information from the counters.

The packet pipeline processing using multiple Flow
Tables appeared in protocol OpenFlow version 1.2.
However, all existing hardware OF switches support only
version 1.0. POX also supports only protocol version 1.0.
Thereby, the implementation of packet processing using
several Flow Tables is impossible now. However, when
switches supporting the new version of protocol emerge on
the market it will be possible not to unite several policies to
store them in a single table, but to locate each policy tree in
its own Flow Table in case of connecting several subnets to
one switch. As a result we suppose that the speed of search
in Flow Table would increase significantly.

Despite the fact that the widely used protocol OpenFlow
version 1.0 does not provide the mechanisms of network
security provision, they could be implemented through traffic
filtration on L2 layer, what is more the total filters’
throughput will rise compared to existing hardware
solutions.

REFERENCES

[1] A. Wool, “Trends in Firewall Configuration Errors: Measuring the
Holes in Swiss Cheese,” in IEEE Internet Computing, vol. 14, pp. 58–
65, 2010.

[2] E. Al-Shaer and H. Hamed, “Modeling and Management of Firewall
Policies,” in IEEE eTransactions on Network and Service
Management, vol. 1-1, April 2004.

[3] E. Al-Shaer, H. Hamed, R. Boutaba and M. Hasan, “Conflict
Classification and Analysis of Distributed Firewall Policies,“ in IEEE
Journal on Selected Areas in Communications, vol. 23, No. 10,
October 2005.

[4] D. S. Johnson, “Near Optimal Bin-Packing Algorithms,“
Massachusetts Institute of Technology, Dept. of Mathematics, 1973

[5] Extended Cisco ACL syntax,
http://www.cisco.com/en/US/products/sw/secursw/ps1018/products_t
ech_note09186a00800a5b9a.shtml

[6] S. Hazelhusrt, “Algorithms for Analyzing Firewall and Router Access
Lists,” in Technical Report TR-WitsCS-1999, Department of
Computer Science, University of the Witwatersrand, July 1999.

[7] B. Hari, S. Suri and G. Parulkar, “Detecting and Resolving Packet
Filter Conflicts,” in Proc. of IEEE INFOCOM’00, March 2000.

[8] V. Srinivasan, S. Suri and G. Varghese, “Packet Classification Using
Tuple Space Search,” in Computer ACM SIGCOMM
Communication Review, October 1999.

[9] D. Eppstein and S. Muthukrishnan, “Internet Packet Filter
Management and Rectangle Geometry,” in Proc. of 12-th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), January
2001.

[10] M. Gouda and A. Liu, “Firewall design: consistency, completeness,
and compactness,” in Proc. of the 24th IEEE International Conference
on Distributed Computing Systems, Tokyo, Japan, March 2004, pp.
320-327.

[11] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis
engine,” in Proc. of the 2000 IEEE Symposium on Security and
Privacy (S&P 2000), May 2000, pp. 177.

[12] Y. Bartal, A. Mayer, K. Nissim and A. Wool, “Firmato: A novel
firewall management toolkit,” in ACM Transactions on Computer
Systems, vol. 22, no. 4, Nov. 2004, pp. 381 – 420.

[13] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah and P. Mohapatra
“FIREMAN: A Toolkit for Firewall Modeling and Analysis,” in Proc.
IEEE Symposium on Security and Privacy, May 2006.

[14] A. Tapdiya, “Firewall policy optimization and management,” in
Master’s thesis, Wake Forest University, Computer Science
Department, 2008.

[15] J. Guttman, “Filtering Posture: Local Enforcement for Global
Policies,” in Proc. of 1997 IEEE Symposium on security and Privacy,
May 1997.

[16] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg and G.
Hjalmtysson, “On static reachability analysis of ip networks,” in
INFOCOM ’05 Proc. of the 24-th Annual Joint Conference of the
IEEE Computer and Communications Societies, Miami, USA, 2005,
pp. 2170–2183.

[17] S. Bandhakavi, S. Bhatt, C. Okita, and P. Rao, “Analyzing end-to-end
network reachability,” in IM ’09 Proc. of the 11-th IFIP/IEEE
International Conference on Symposium on Integrated Network Man-
agement, Long Island, USA, 2009, pp. 585–590.

[18] A. R. Khakpour and A. X. Liu, “Quantifying and Querying Network
Reachability,” in CDCS ’10 Proc. of the 2010 IEEE 30-th
International Conference on Distributed Computing Systems, Genoa,
Italy, 2010, pp. 817–826.

[19] F. Chen, B. Bruhadeshwar, and A. X. Liu, “A cross-domain privacy-
preserving protocol for cooperative firewall optimization,” in
INFOCOM ’11 Proc. of the 30-th IEEE International Conference on
Computer Communications, Shanghai, China, 2011, pp. 2903–2911.

[20] SNAC, http://www.openflow.org/wp/snac/

[21] E. W. Fulp, “Optimization of Network Firewall Policies using
Directed Acyclical Graphs” in Proc. of IEEE Internet Management
Conference, 2005.

[22] A. Tapdiya, E. W. Fulp, “Towards Optimal Firewall Rule Ordering
Utilizing Directed Acyclical Graphs,” in Proc of 18-th International
Conference on, August 2009.

[23] E. Al-Shaer, M. El-Alfy and S. Z. Selim, “Dynamic Rule-ordering
Optimization for High-speed Firewall Filtering,” in Proc. of IEEE
International Conference on Computer Systems and Applications,
2007.

[24] Packet Filter OpenBSD, http://www.openbsd.org/faq/pf/

[25] POX, http://www.noxrepo.org/pox/about-pox/

[26] Nec Switch,
http://www.nec.com/en/global/prod/pflow/images_documents/Progra
mmableFlow_Switch_PF5820.pdf

V. APPENDIX 1

Classification of network traffic filtration rules based on
values of fields “Source Address” and “Destination
Address”:

1) deny <protocol> const_src_addr <src_port>

const_dst_addr <dst_port>, where both the source and

destination IP addresses can match packets that belong to

one subnet in the given topology, e.g. rule 3 in Firewall A

(Figure 1).

2) permit <protocol> const_src_addr <src_port>

const_dst_addr <dst_port>, where both the source and

destination IP addresses can match packets that belong to

one subnet in the given topology, e.g. rule 9 in Firewall C

(Figure 1).

3) deny <protocol> src_addr <src_port>

const_dst_addr <dst_port>, where the source IP address can

match packets that belong to several subnets and IP

destination address can match packets that belong to one

subnet in the given topology. A special case of the given rule

type is deny <protocol> any <src_port> const_dst_addr

<dst_port>. For example rule 2 in Firewall X (Figure 1).

4) permit <protocol> src_addr <src_port>

const_dst_addr <dst_port>, where the source IP address can

match packets that belong to several subnets and IP

destination address can match packets that belong to one

subnet in the given topology. A special case of the given rule

type is permit <protocol> any <src_port> const_dst_addr

<dst_port>. For example rule 10 in Firewall B (Figure 1).

5) deny <protocol> const_src_addr <src_port>

dst_addr <dst_port>, where the source IP address can match

packets that belong to one subnet and IP destination address

can match packets that belong to several subnets. A special

case of the given rule type is deny <protocol>

const_src_addr <src_port> any <dst_port>. For example rule

1 in Firewall B (Figure 1).

6) permit <protocol> const_src_addr <src_port>

dst_addr <dst_port>, where the source IP address can match

packets that belong to one subnet and IP destination address

can match packets that belong to several subnets. A special

case of the given rule type is permit <protocol>

const_src_addr <src_port> any <dst_port>. For example rule

8 in Firewall C (Figure 1).

http://www.cisco.com/en/US/products/sw/secursw/ps1018/products_tech_note09186a00800a5b9a.shtml
http://www.cisco.com/en/US/products/sw/secursw/ps1018/products_tech_note09186a00800a5b9a.shtml
http://www.openflow.org/wp/snac/
http://www.openbsd.org/faq/pf/
http://www.noxrepo.org/pox/about-pox/
http://www.nec.com/en/global/prod/pflow/images_documents/ProgrammableFlow_Switch_PF5820.pdf
http://www.nec.com/en/global/prod/pflow/images_documents/ProgrammableFlow_Switch_PF5820.pdf

7) deny <protocol> src_addr <src_port> dst_addr

<dst_port>, where both the source and destination IP

addresses can match packets that belong to several subnets.

A special case of the given rule type is deny <protocol> any

<src_port> any <dst_port>.

8) permit <protocol> src_addr <src_port> dst_addr

<dst_port>, where both the source and destination IP

addresses can match packets from several subnets. A special

case of the given rule type is deny <protocol> any

<src_port> any <dst_port>. For example rule 10 in Firewall

A (Figure 1).

VI. APPENDIX 2

TABLE I. TABLE OF FIELDS OF EXTENDED CISCO ACL SYNTAX AND

ASSOCIATED VALUES OF FILEDS IN FLOW RULES

Description

Extended Cisco

ACL
OpenFlow

Field

name
Necessity Field name Bit length

Telnet

authentication

before
establishing a

new session.

dynami

c
Optional

Only while using

implemented application.

Setting the time

range after
which, in case

of inactivity,

the rule will be
deleted.

timeout Optional

Every rule has two
attributes:

Idle-timeout - rule will be
deleted after specified

period after its last usage.

Hard-timeout – rule will be
deleted after specified

period of time irrespective

of its use. In case of
absence of these values,

rule will be present in Flow

Table constantly.

Action that will
be performed in

match case.

deny /

permit

Obligator

y

The list of actions, which

could be applied to

packets, is defined in
protocol specification.

L3 layer

protocol

Protoco

l

Obligator

y

IPv4
Protocol /

ARP opcode

8

Source IP

address and
mask

source
source-

wildcar

d

Obligator

y

IPv4 source

address
32

Source port or

port range

Operat

or
[port]

Optional

Transport

source port /
ICMP type

16

Destination IP

address and

mask

Destina

tion
destinat

ion-

wildcar
d

Obligator

y

IPv4

destination

address

32

Destination port

or port range

operato

r [port]
Optional

Transport
source port /

ICMP type

16

Permission for

TCP packets

transmission
that are part of

established

establis

hed
Optional

Only while using

implemented application.

Description

Extended Cisco

ACL
OpenFlow

Field

name
Necessity Field name Bit length

TCP session.

Comparison of
packets by

precedence

field value

precede

nce
Optional Absent

Comparison of

packets by TOS

field value

tos Optional
IPv4 ToS
bits

6

Possibility of

writing logs in
case of rule

match

log /

log-

input

Optional
Only in case of removing
the rules.

Setting the time

range of rule
activity

time-

range
Optional

Only while using
implemented application

that would install/remove
flow records depending on

current time.

Comparison of

packets by
ingress port.

Rule is installed on
specified interface

and specified

direction (in/out).

Ingress port 32

Metadata used

for transmitting
information

between Flow

Tables

Not required Metadata 64

Source MAC
address

It is possible to set in
Cisco MAC ACL.

Ethernet

source

address

48

Destination

MAC address

It is possible to set in

Cisco MAC ACL.

Ethernet

destination
address

48

Type of

Ethernet frame

It is possible to set in

Cisco MAC ACL.

Ethernet

type
16

Comparison of

packets by
VLAN ID label

 Not possible VLAN ID 12

Comparison of

packets by
VLAN Priority

label

Not possible
VLAN
Priority

3

Comparison of

packets by

MPLS label

Not possible
MPLS
Label

20

Comparison of

packets by
MPLS traffic

class.

Not possible
MPLS
traffic class

3

