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Abstract—This paper addresses the network access control 

problem in dynamically changing network topologies using 

Software-Defined Networking (SDN). In this article we propose 

an approach to network infrastructure migration from 

traditional topology with dedicated firewall appliances to SDN 

L2 infrastructure, which implements the original filtering 

policy with OpenFlow switches and SDN controller only. The 

proposed approach allows maximizing throughput of the 

switched network preserving the reachability graph of the 

original network. Proposed algorithm was implemented as an 

application for POX controller and supports rule translation 

from Cisco ACL syntax. Experimental evaluation with physical 

SDN testbed built upon NEC PF series switches confirms 

applicability of the proposed method. 

Keywords-SDN; OpenFlow; firewall; network security; 

access control 

I. INTRODUCTION  

In the early days of basic Internet protocols development 
no native support for access control was provided at the 
network level. It was expected that applications would 
connect to each other in the global network without any 
restrictions. Along with the growth of commercial use of 
Internet mechanisms for L3 (and higher) network access 
control became necessary for normal operations, and packet 
filtering solutions were developed (including software 
implementations in operating systems) — firewalls, Intrusion 
Prevention Systems (IPS), network antiviruses, application 
layer proxy servers, including WAF — web application 
firewalls.  

Unfortunately, nowadays with evolved networking 
technologies, enormous growth of Internet throughput and a 
shift from fixed client devices towards mobile networking 
(we have over 1 billion connected smartphones already in 
early 2013, and only about 200 million fixed devices) 
efficiency of existing access control solutions reduces. More 
expensive devices are required for every new version of 
Ethernet protocol providing the same level of network 
granularity as five or ten years ago. In terms of client devices 
mobility, network configuration is changing rapidly and the 
information about network topology changes could not be 
used directly for access control. That is why the problem of 
network access control based on the information about the 
expected behavior (flows) of network applications is 
becoming more and more important.  

New SDN concept allows us not only to save the same 
network level access control functionality as traditional 
solutions may provide, but also to implement it much more 

efficiently. Let us consider a firewall, which implements 
access control between applications based on address 
information, port numbers (types of applications) and other 
service header fields. The use of complex rules is primarily 
caused by firewall installation in one certain point of 
network topology. The rules syntax should allow us to 
accurately distinguish the flows originating from different 
applications and clients. Because of the complexity and 
richness of the policy language the logic of firewalls 
becomes more complex; they need to perform more 
operations with each packet header to resolve which action 
to perform. At the same time it is known that source based 
filtering performed closer to the source node and destination 
based filtering closer to the destination node or application 
allows simplifying the policy rules and therefore making 
filtering logic cheaper. 

In this paper we show that any given access control 
policy which specifies reachability matrix on a network 
graph (implemented in firewall configuration) may be 
implemented as an SDN Flow Policy which preserves the 
reachability matrix between applications and maximizes the 
throughput of the L2 networking infrastructure. We show 
that using SDN it is possible both to escape the necessity for 
dedicated hardware firewalls and to maximize the overall L2 
network throughput. We will formally show how to solve the 
problem of migration from traditional network to SDN while 
preserving the nodes reachability (the connection matrix).  

This paper is organized as follows. In section II we 
describe the proposed approach and analysis of its 
applicability. In section III we give quantitative results, 
which were obtained by probing our tool on an example of 
network topology. Section IV gives a survey of related 
works and section V closes the paper. 

II. PROPOSED APPROACH 

The main purpose of this research is to investigate the 
possibility of firewall rules optimization in the process of 
migration from classic network architecture to its SDN 
implementation. The topology in Figure 1 was chosen as an 
example of our method evaluation. It consists of a large 
amount of subnets (Free WIFI, Web Server, Data Base, 
Management Network, Research Network, Development 
Network and Accounts Network), switches and firewalls. 
There is also a separate subnet called «Internet». We define 
it as a subnet with a network address that does not intersect 
with any address of the subnets above. Some redundant links 
were added to maintain reliability in the network — it is 
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possible to make more than one route between most of the 
subnets. 

Sample network topology is divided into Zones (A, B, C 
and D). Network traffic inside each zone is not filtered by 
any firewall. 

The given topology shows the structure of a real LAN 
and has complex access control policy, which is provided by 
three hardware firewalls. Also some hosts in network 
topology could additionally have application firewalls (hosts 
in Accounts Network, for example). 

Network topology is represented by an undirected graph 
with vertexes as network nodes (hosts, routers and firewalls) 
and edges as links between them. In Figure 1 every subnet is 
shown as a single host for clarity. All firewalls in this sample 
network could also perform routing and implement rule-
based network traffic filtering. 

 
Figure 1.  Example of classic topology. 

The approach for migration from initial (classic) 
topology to SDN with security policy preservation proposed 
in this article consists of several steps: 

Input: The existing network topology and a rule set for 
each firewall. 

Algorithm of migration to SDN Topology: 

1) Rule optimisation: 

a) Discovery and removal of intra firewall anomalies; 

b) Discovery and removal of inter firewall anomalies; 

2) Construction of a single logical (virtual) firewall for 

every subnet in topology; 

3) Calculation of the minimum required number of 

OpenFlow switches and SDN topology selection; 

4) Translation of firewall rules to flow rules for each 

OF switch. 
The result: SDN access control policy of rule sets for 

every OpenFlow switch in SDN topology. 
Below we will consider each step of this algorithm, 

provide implementation details and describe the related 
problems. 

A. Rule Optimisation 

Every filtering rule is represented by a set of patterns, 
which describe the possible values of corresponding fields of 
packet header in real network traffic. Each field (pattern) 
could have a single value or a range of values. Moreover, 
each rule defines actions, which will be conducted by the 
firewall for packets that match the rule. The most common 
actions are «permit» and «deny» further packet transmission. 
Most research papers operate with the definition of a filtering 
rule as a 7-element tuple: 

<Sequence number><Action><Protocol><Source 
Address><Source Port><Destination Address><Destination 
Port> 

Examination of rules during the packet analysis is 
performed according to their sequence number (from lowest 
to highest). If the packet does not match any rule, then 
default action is performed. There are different models of 
firewalls available. Some of them produce action of the «first 
match» rule, e.g. Cisco Access Control List [5], and some of 
them produce action of the «last match» rule, e.g. Packet 
Filter OpenBSD [24]. We assume that all firewalls in our 
model work as «first match» and the default action is 
«deny». 

The compliance of firewall rules sequence is critical in 
the definition of filtering policy, because examination of 
rules is sequential. If rules are completely different, their 
sequence is irrelevant, however, such situation is unlikely to 
occur when merging multiple rule sets from production 
network firewalls. If the original sequence is not respected 
some rules may be overlapped by other rules. The research 
provided by A. Wool in [1] shows, that the most modern 
firewalls contain critical errors. 

In our model the filtering policy is represented and stored 
as a single root tree on every firewall. Each node in the 
policy tree represents a field and each branch originated from 
the node represents a possible value of associated field. 
Every route in this tree that starts in the root and ends in the 
leaf presents a unique rule in the policy. Rules that have the 
same values in some nodes share the same branches, which 
present these values. The policy tree model allows defining 
relations and discovering anomalies between rules easily and 
also accelerating the matching by cutting misleading 
branches. 

As a basis for the rules optimization method two 
algorithms proposed by E. Al-Shaer et al in [2], [3] were 
adopted. Both of them describe relations between firewall 
rules. Work [2] describes the method of intra firewall 
anomalies discovery and the technique of inserting the rules 
in the policy tree and work [3] is its logical extension and 

 



describes the method of inter firewall anomalies discovery. 
Rules that cause an anomaly and do not affect reachability of 
any two nodes in topology should be removed. Modeling 
relations between the rules in firewalls are necessary for 
providing analysis of the rule set and development of the 
technique of anomaly discovery and removal. As a result of 
providing this step of migration to SDN topology the number 
of rules on each firewall either remains the same (in case of 
anomaly absence) or decreases (in case of anomaly removal). 

B. Construction of logical firewall for each subnet in 

topology 

The next step, necessary to perform migration from a 
classic network topology to SDN, is collecting and 
generalizing filtering rules for each subnet in topology. 
Filtering rules may be categorized based on the source 
address (src_addr) and destination address (dst_addr) fields 
values (fields <protocol>, <src_port>, <dst_port> in terms of 
provided classification are not significant and could take any 
valid value): 

1) deny <protocol> const_src_addr <src_port> 

const_dst_addr  <dst_port>; 

2) permit <protocol> const_src_addr <src_port> 

const_dst_addr  <dst_port>; 

3) deny <protocol> src_addr <src_port> 

const_dst_addr  <dst_port>; 

4) permit <protocol> src_addr <src_port> 

const_dst_addr  <dst_port>; 

5) deny <protocol> const_src_addr <src_port> 

dst_addr  <dst_port>; 

6) permit <protocol> const_src_addr <src_port> 

dst_addr  <dst_port>;  

7) deny <protocol> src_addr <src_port> dst_addr 

<dst_port>; 

8) permit <protocol> src_addr <src_port> dst_addr 

<dst_port>. 
The detailed description of each type of rules is presented 

in Appendix 1. 
Statement 1: Each rule in the firewall filtering policy 

belongs to exactly one type. Other types of rules do not exist 
according to the specified classification. 

The problem of constructing a unified logical firewall 
between any two points may be reduced to the problem of 
redistribution of rule sets of two firewalls, which are located 
between two subnets.  A similar situation is presented in 
Figure 1. In case of more than two firewalls lying on the 
route between two considered subnets, two firewalls which 
are the nearest to the source subnet are united in one logic 
firewall on each step and each following firewall is added to 
the constructed logic firewall. 

Typically, filtering rules are applied to a specific 
interface (port) of network device either on the input 
direction (in) or the output direction (out). Thereby, we need 
to find all filtering tables which could be met on the packet's 
route. For this purpose the logical firewall which is an 
aggregation of all filtration rules on all possible routes 
between every two end points of topology (subnets) is 

constructed using recursive traversal of the graph. We will 
define an ordered sequence of network devices and 
corresponding input and output ports which take part in 
packet transmission as a “route”. If filtering rules on two 
different routes between subnets are different, i.e. if an end 
point on one route is reachable and on the other is not, the 
warning message “Conflict Found” is displayed and 
computation stops. In our example topology of three 
hardware and one application firewalls (Figure 1) this 
situation is not possible; however, the implemented 
application allows this case. 

When we have discovered all routes, we then find all 
firewalls on them. Rules for which “Source Address” field 
value is not a subset or superset of the source subnet and 
“Destination Address” field value is not a subset or superset 
of the destination subnet are deleted from the policy tree of 
each found firewall.  

The policy tree of the most upstream firewall which is 
left after rule removing is taken as a basis of the source 
subnet’s policy tree. The remaining rules from other 
firewalls are added into this tree. 

For rules with “permit” action located on downstream 
firewalls we introduce the concept of “compressing” and 
“extending” rules. We will call a rule “compressing”, if it 
permits only part of network traffic, which could reach the 
downstream firewall because the next rule that could be 
matched by the same traffic has a “deny” action and every 
field in the first rule is a subset of each corresponding field in 
the second rule. We will call a rule “extending” if, vice 
versa, it could permit transition of all packets which could 
come to this firewall. Each field of an “extending” rule is 
equal or a superset of each corresponding field in an 
upstream firewall rule with action “permit”. 

The analysis algorithm, which is applied in constructing a 
single logical firewall, is presented further:    

1) Define the type of rule; 

2) Insert the rule in the policy tree of the logical firewall 

according to its type: 

 Type 1. If the rule belongs to the first type, it means 
that network traffic, which could be matched by this 
rule, has already been matched by a rule with 
“permit” action on all previous firewalls. Therefore, 
it is possible to add rules of this type at the 
beginning of the logic firewall’s list, because 
network traffic that matches this rule will be 
obligatory dropped. 

 Type 2. In case of an “extending” rule, there is no 
need to insert it, because the security policy may 
change and the firewall may start to allow 
transmission of packets that were dropped 
previously. If the rule is “compressing”, it is 
necessary to insert it before the rule, which is its 
superset, and delete all the following rules after it 
(for which it is a subset).  

 Type 3. To accomplish a minimal number of 
filtration rules it is desirable to insert rules of this 
type in the destination subnet’s policy tree, because 



 

then it will be analyzed once, i.e. when the packet is 
addressed exactly to this subnet. 

 Type 4. Whereas packets from multiple subnets 
could be matched by “Source Address” field value, 
a rule of this type is “extending” for each of them. 
Therefore, it could be assigned to the source subnet 
and processed according to the second type rules, 
i.e. to be removed. 

 Type 5. While searching for a place to insert this 
type of rule we can not define exactly which 
“permit” rule was matched on the upstream 
firewall. In case of its insertion without changing, 
the security policy may change (subnets, which 
were available because of other “permit” rules, 
could become unavailable, if we insert a rule of this 
type before a “permit” rule, or, vice versa, subnets, 
which were unavailable because of the presence of 
this rule, could become available). Thereby, for 
correct adding of rules of this type in the logic 
firewall, they need to be specified. We have to 
substitute the network address of the considered 
source subnet and insert this type of rules according 
to the instruction for the first type rules. 

 Type 6. In this case all considerations are similar to 
Type 5 rules. 

 Type 7. It is possible to include this type of rules to 
the source subnet policy tree having preliminarily 
specified the destination address. In this case, if the 
analyzed rule is the last rule on the list and has a 
form “deny <protocol> any <src_port> any 
<dst_port>”, it does not need to be inserted. 

 Type 8. Rules of this type are “extending” rules, so 
we should not insert them. 

For the most upstream firewall the filtration rules order 
does not change while constructing a single firewall, the 
rules could only be specified according to their type. 

In case of absence of rules with “permit” action for two 
considered subnets on any firewall, all the rules which are 
related to subnets are deleted, and single a rule with “deny” 
action and addresses of source and destination subnets is 
inserted into the logical firewall. 

The relations between rules have been already defined in 
work [2]. The comparison of rules in the policy tree with the 
inserted rule is provided according to the algorithm described 
in A. 

As a result of bypassing all subnets we get (k - 1) policy 
trees, where k is the number of subnets. All these trees do not 
intersect with each other because of strictly specified source 
and destination address fields. Therefore, we could merge 
them in one policy tree by sequential rules placement one 
after another. The last rule “deny <protocol> any <src_port> 
any <dst_port>” does not need to be placed anywhere except 
the last tree. 

Finally, after providing step 3 we obtain a filtering rule 
tree for each subnet in our network topology. However, it 
could contain anomalies which need to be removed. The 
resulting policy tree is the basis of the SDN access control 
policy and rule generation for OpenFlow switches. 

It should be pointed out that rules with the same network 
addresses, but different ports both on the source side and on 
the destination side are completely different and we can not 
compare them. 

C. Estimation of the required number of OpenFlow 

switches and topology selection 

Figure 2.  Example of resulting topology. 

For migration to the SDN-based topology we need to 
choose its structure. The most common examples of 
topologies are tree, fully connected graph, lattice, star, ring, 
3-dimensional cube and etc. Topology is selected depending 
on the network size, reliability, resilience and congestion 
requirements. For our example of topology we chose a fully 
connected graph structure because we assume that the 
number of hosts in the network is small, however the speed 
of data transmission is a critical factor. It is known that in a 
fully connected graph topology every packet can reach its 
destination point in three hops. 

Then according to the choice it is necessary to calculate 
the number of ports for connecting switches with each other. 
For example, in a fully connected graph topology which 
consists of n switches, (n-1) port will be occupied on each 
switch. 

The next step in topology replacement is the process of 
computing the minimal number of OpenFlow switches, 
which will take part in SDN topology. This problem is a sort 
of “Bin-Packing Problem”, described in [4]. It consists in 
distribution of subnets with a variety number of hosts 
between switches with a variety number of ports in such a 
way that the number of occupied switches would be 
minimal. It is known as NP-complete problem in 
computational complexity theory. However, the use of 
heuristics (the so-called “greedy” bin packing algorithm) 
significantly reduces computational complexity. Herewith, 
discovery of optimal solution is not guaranteed, but accurate 
results are obtained on practice. 



After solving this problem, we can unambiguously 
associate with every subnet the unique switch identifier 
(DPID) and a group of ports to which this subnet is 
connected. In case of several subnets connected to a single 
switch it is necessary to unite their policy trees. For this 
purpose we consistently insert all rules from one subnet 
policy tree into another using the technique described above. 
Thereby, after this step the filtration rule tree is associated 
with each OF switch that is taking part in SDN topology. 

In case of our topology example, SDN will consist of 5 
OF switches with different number of ports (2 48-port 
switches and 24-, 16- and 8- port switches one at a time). 
The example of the resulting SDN is shown in Figure 2.  

D. Translation of filtration rules to flow rules 

SDN switching equipment supports flow routing tables 
(Flow Tables) in which processing rules for packet flows are 
installed. The final step of migration from a traditional 
topology to an SDN paradigm is installing flow rules into OF 
switches flow tables. 

Appendix 2 contains Table 3 in which Extended Cisco 
ACL syntax [5] is associated with fields of flow rules in 
accordance with OpenFlow Specification. With the “action” 
term in OpenFlow context we designate an operation that 
forwards packets to the specified port or modifies the packets 
(e.g. decreases TTL field value or changes MAC/IP source 
or destination addresses). Each rule may have multiple 
actions. 

Every rule field in the Flow Table contains either a 
defined value or ANY value which matches any content of 
the corresponding packet field. If a switch supports setting 
arbitrary bit masks for the source and/or destination Ethernet 
address fields and for the source and/or destination IP 
address fields, they could define the match more precisely. In 
addition to packet headers, input port and metadata fields 
may be taken into account. Metadata may be used for 
transmitting information between switch tables. 

One of the advantages of Extended Cisco ACL syntax is 
the possibility of flexible setting of a range of source and 
destination ports. OpenFlow protocol specification does not 
support this feature. Another ACL advantage is the 
possibility of setting the time activity range for rules, e.g. on 
weekdays from 10 am to 7 pm. However, this functionality 
may be implemented by the SDN controller application 
which is involved in installing/removing rules in Flow 
Tables. On the contrary, the possibility of simultaneous 
packet filtration based on L2-L4 header fields exists in OF 
protocol, for example matching network IP address and 
MAC address in the same rule. Also it is possible to work 
with packets which belong to a specified VLAN or have a 
specified MPLS label. 

In other cases rule fields either match flow fields 
precisely or could be implemented by protocol specification 
or functionality of application that works on the controller. 
Thereby, Extended Cisco ACL syntax could be taken as a 
basis of input language of traffic filtration rules in input 
topology. 

Functions of traffic filtration in our tool were 
implemented in two options: classic Extended Cisco ACL 

and Reflexive Cisco ACL. In case of the classic variant of 
implementation the rule flows that permit all incoming traffic 
with action “CONTROLLER” were installed on every port 
which connects the switch to another switch. In the reflexive 
variant of implementation all new flow rules for each new 
connection with the highest priority were installed on all 
switches which participate in packet transmission (proactive 
mode). Because of this, the required time for searching the 
matching rule is significantly reduced. 

II. EXPERIMENTAL RESULTS 

The proposed approach was implemented as application 
for the POX SDN controller [25] using Python 2.7 
programming language. The POX controller supports 
protocol OpenFlow version 1.0. 

As a testbed switch 48-GbE NEC PF 5820 was used [26]. 
This model supports OpenFlow version 1.0, up to 80000 L2-
layer flow records and up to 750 L2-tuple flow records. A 
laptop (2 Core 2.2 GHz CPU, 2048 Mb RAM) with OS 
Ubuntu 12.04 was used as a server for SDN controller 
application.

 
Figure 3.  Experimental testbed. 

NEC switch supports partitioning into several virtual 
switches; however all of them are using a common Flow 
Table. In our testbed setup the NEC hardware switch was 
divided into 6 virtual switches with 8 ports on each. Then 
virtual switches were connected with each other to create a 
full mesh network topology. The scheme of the testbed is 
shown in Figure 3. 

Hosts 1-5 were connected to the virtual switches using 
ports 1, 9, 17, 25 and 33 accordingly. Every host was 
associated with an IP address from different subnets in the 
example topology. The server was connected to the 6-th 
virtual switch (port 41). 

At first we reproduced the example of the described 
above topology and checked the correctness of installation 
and translation of filtration rules from Cisco ACL syntax to 
flow rules. 

Then we performed 2 experiments. The obtained results 
are approximate and are performed as an average number for 
5 measurements. 

1) The measurement of rule installation time depending 

on the number of rules. 

TABLE I.  THE MEASUREMENT OF TIME OF RULES INSTALLATION 

DEPENDING ON THE NUMBER OF RULES. 

 



Number Number of rules Required time, ms 

1 100 0.02 

2 200 0.04 

3 300 0.06 

4 400 0.08 

5 500 0.1 

According to the obtained results the required time of 
rule installation depends linearly on the number of rules. 

2) The measurement of the delay time of new flow 

transmission depending on the location of the first match 

rule in the Flow Table. 
For providing this experiment we used a “ping” utility 

that allows determining the time of ICMP Echo-Reply 
packet arrival. 

TABLE II.  THE DELAY TIME IN CASE OF THE FIRST MATCH RULE’S 

LOCATION IN THE FIRST PLACE. 

Variant of realization Required time, ms 

Standard 35 

Reflexive 220 (1st packet), 0.2 (subsequent 

packets) 

 
We also performed measurements for cases when the 

first match rule was located in the last place (for 100, 200, 
300, 400, 500 and 600 rules). For both variants of filtration 
implementations the delay time remained approximately the 
same (about 40 ms and 250 ms accordingly) because the 
required time for searching in Flow Table that is located in 
Ternary Content Addressable Memory (TCAM) is minimal. 

We may conclude from our experiments that the delay 
time for packet transmission for classic implementation 
remains constant irrespective of the number of flow rules and 
for reflexive realization the delay time for packet 
transmission increases, however, after installing rule flows 
on every switch the packet transmission time is estimated at 
0.2 ms, which is 150 times less. 

The implementation of the described method may be 
found at https://gitorious.org/sdn-network-access-control/.          

III. RELATED WORK 

There is a lot of already published research in the area of 
network access control, provisioning and management. In 
this section we will provide the major works that intersect 
with the topic of our research in five basic areas – packet 
filtering policy modeling, conflict discovery in security 
policy, distributed firewall policy management, firewall 
performance optimization and modeling the network 
reachability. We will also describe the existing solutions for 
providing SDN security.  

For rule representation and storing some models have 
been proposed. The method shown by S. Hazelhusrt in [6] 
uses Binary Decision Diagrams (BDD) for optimization of 
packet classification. Another model presented by B. Hari et 
al in [7] uses the space of tuples. A set of several filters is 
generalized in one tuple which is stored in a hash-table.  
Binary trees in several dimensions described by V. 
Srinivasan in [8] are used for modeling filters. The geometric 
model proposed by D. Eppstein et al [9] is used for rules 
representation which includes 2 tuples. Since all of these 

models were implemented for packet filtering optimization 
in high-load networks they are too complex to use in the 
security policy analysis. An approach based on filtering 
policy tree construction was presented by E. Al-Shaer et al in 
[2]. It was chosen for our implementation because of 
simplicity and enough descriptive power for the security 
policy analysis. 

For the analysis of traffic filtering several techniques 
(both for centralized and decentralized systems) were 
proposed. A technique for anomaly discovery in the policy 
of a single firewall was shown by E. Al-Shaer et al in [2]. A 
method based on Decision Diagrams was described by M. 
Gouda et al in [10] for setting a sequence of rules which is 
ordered, complete (every packet in the network matches one 
or more rules on the list) and compact (redundant rules are 
absent). There are also some analyzers and tools for 
managing the network security policy, e.g. Fang [11], 
Firmato [12], Fireman [13] et al. Also the problem of 
filtration rules optimization was solved by A. Tapdiya in [14] 
using heuristics based on genetic algorithms. 

In the area of distributed firewalls current research 
predominantly focuses on the policy of distributed firewalls 
management. The technology of global policy management 
described by J. Guttman in [15] defines the global language 
for policy setting and filtration rules creation with an 
algorithm for its verification. A technique for anomaly 
discovery in a multi firewall environment, which consists of 
several firewalls, was proposed by E. Al-Shaer et al in [3]. 

In the area of theoretical presentation of network 
topology, its network elements and construction of a 
reachability graph of end nodes there have also been 
published several works. The work presented by G. G. Xie et 
al in [16] is based on a graph theory and the network is 
modeled as a triple that consists of routers, their physical 
links and a set of functions for defining packet filtration and 
transformation rules. Firewalls and NAT devices could be 
expressed using this technique. However, this approach is 
exclusively theoretical and there are no experimental results. 
Also this approach could be used to present only static NAT 
and filtration rules based on destination address and it does 
not take into account the existing connection-oriented and 
non connection-oriented protocols. To eliminate some 
restrictions of work [16] its addition [17] has been published. 
A more general model is used to describe firewalls, packet 
filtration and transformation rules, e.g. adding the 
opportunity to process policies that depend on the source 
address and filtration stages. 

A technique of using Firewall Decision Diagrams (FDD) 
for precise computing network reachability was described by 
A. R. Khakpour et al in [18]. Implemented model supports 
packet routing, filtration and rule transformation. The tool 
could be used to obtain reachability of two network nodes 
using SQL-like language. 

All previous works were focused on the network as an 
object, which is managed by a single participant, thus they 
require full knowledge of infrastructure and its rules. In real 
scenarios it is not always feasible, especially when several 
subnets are managed by several participants. The approach 
proposed by F. Chen et al in [19] has been implemented to 
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solve this problem. In its solution firewalls need to exchange 
their ACLs, previously encrypted and encoded to avoid 
unauthorized access, with neighbors. Rules are 
consequentially compared using binary prefixes and simple 
logical operations to find their intersection and, as a result, 
network reachability. This realization does not require a 
precomputational phase, but does not support any 
transformation network devices. 

There is a single solution that provides network security 
in SDN. It is a SNAC (Simple Network Access Control) 
controller [20]. SNAC is an OF controller that is oriented 
toward building corporate networks. It is based on the NOX 
controller version 0.4 and has a flexible language for policy 
definition, a user-friendly interface for setting network 
devices and event monitoring. At first SNAC was an Open 
Source project (last release v.0.4.2) and was developed by 
Big Switch Network company under GPLv2 license. 
However, then it became a closed project, developed by 
Nicira Networks company. SNAC allows setting a network 
using Formal Modeling Language (FML). 

The main component of the controller is the application 
Policy Manager. It unites the functions of establishing the 
connectivity and security policy compliance in high-level 
categories. The system defines entities, related to network 
(physical switches and physical ports on switches) and 
entities, related to clients (hosts and users). Each entity is 
associated with unique information and authentication 
policies. All hosts that appear in the network are 
automatically redirected to the controller for authentication. 

The information supplied by OS contains statistics for 
every entity in the network: the number of active entities, the 
total number of registered entities (both active and inactive) 
and the number of entities that have been seen in the network 
and the system has not any registration information; policy 
statistics: the average number of denied network flows, the 
number of rules in the current policy, the number of 
configured rules-exceptions; recent events: all events that 
were registered by the system and happened higher than L2 
layer. All events are associated with a priority number from 
1 (the highest priority) to 5 (the lowest priority). However, 
SNAC does not perform migration from classic topology to 
SDN with security policy protection and we do not know 
anything about methods of its implementation not to mention 
optimization. 

IV. CONCLUSION 

In this work we have shown the methodology of 
migration from a network with traditional architecture which 
uses dedicated hardware firewalls to SDN topology. Also the 
approach for solving the problem of filtration rules migration 
from dedicated devices to L2 switched network preserving 
the reachability matrix and maximizing L2 network 
throughput was proposed. The described algorithm reduces 
the number of analyzed rules in packet transmission between 
subnets by removing anomalies and transferring every rule to 
the switches closest to the traffic source. In case of each 
subnet connecting to the dedicated OF switch, the number of 
processed rules in the worst case would be minimal. 

According to our topology example (Figure 1), the 
network packet with the source IP address 7.7.7.7 and 
destination IP address 172.16.0.25 has to go through 3 
hardware firewalls and one application firewall. As a result 
41 rules would be analyzed. It is important to say that we 
describe the worst case where every packet matches the 
penultimate rule (the last rule is the default “deny” rule). 
After migration to SDN the number of processed rules for 
the same case is significantly reduced — which is 7 (for the 
best case) and 32 (for the worst case). 

A POX controller is used for implementation of a 
network access control application prototype. Its 
performance is significantly less than similar solutions on 
C++, Java or Ruby. For production-grade implementation of 
the proposed approach in real networks it is necessary to port 
it to another controller, e.g. NOX. 

Although the problem of discovering the optimal 
sequence of filtering rules from all linear combinations is an 
NP-complete problem, some heuristics have been proposed, 
e.g. a heuristic based on changing the order of disjoint rules 
according to the probability of their activation was proposed 
by E. W. Fulp in [21]. Several algorithms for rule sorting and 
a method for merging two policies were shown by A. 
Tapdiya et al in [22]. A technique for dynamic rule 
reordering depending on collected traffic statistics was 
described by E. Al-Shaer et al in [23]. The results shown in 
these papers are close to optimal. According to the 
OpenFlow specification, counters could be stored for each 
Flow Table, flow, port, queue, group and event container. 
OpenFlow-compatible counters could be implemented in 
software by examining the hardware counters, which have a 
more limited range. Also we plan to implement our own 
methods for rule order optimization considering the 
information from the counters. 

The packet pipeline processing using multiple Flow 
Tables appeared in protocol OpenFlow version 1.2. 
However, all existing hardware OF switches support only 
version 1.0. POX also supports only protocol version 1.0. 
Thereby, the implementation of packet processing using 
several Flow Tables is impossible now. However, when 
switches supporting the new version of protocol emerge on 
the market it will be possible not to unite several policies to 
store them in a single table, but to locate each policy tree in 
its own Flow Table in case of connecting several subnets to 
one switch. As a result we suppose that the speed of search 
in Flow Table would increase significantly. 

Despite the fact that the widely used protocol OpenFlow 
version 1.0 does not provide the mechanisms of network 
security provision, they could be implemented through traffic 
filtration on L2 layer, what is more the total filters’ 
throughput will rise compared to existing hardware 
solutions. 
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V. APPENDIX 1 

Classification of network traffic filtration rules based on 
values of fields “Source Address” and “Destination 
Address”: 

1) deny <protocol> const_src_addr <src_port> 

const_dst_addr <dst_port>, where both the source and 

destination IP addresses can match packets that belong to 

one subnet in the given topology, e.g. rule 3 in Firewall A 

(Figure 1). 

2) permit <protocol> const_src_addr <src_port> 

const_dst_addr <dst_port>, where both the source and 

destination IP addresses can match packets that belong  to 

one subnet in the given topology, e.g. rule 9 in Firewall C 

(Figure 1). 

3) deny <protocol> src_addr <src_port> 

const_dst_addr <dst_port>, where the source IP address can 

match packets that belong to several subnets and IP 

destination address can match packets that belong to one 

subnet in the given topology. A special case of the given rule 

type is deny <protocol> any <src_port> const_dst_addr 

<dst_port>. For example rule 2 in Firewall X (Figure 1). 

4) permit <protocol> src_addr <src_port> 

const_dst_addr <dst_port>, where the source IP address can 

match packets that belong to several subnets and IP 

destination address can match packets that belong to one 

subnet in the given topology. A special case of the given rule 

type is permit <protocol> any <src_port> const_dst_addr 

<dst_port>. For example rule 10 in Firewall B (Figure 1). 

5) deny <protocol> const_src_addr <src_port> 

dst_addr <dst_port>, where the source IP address can match 

packets that belong to one subnet and IP destination address 

can match packets that belong to several subnets. A special 

case of the given rule type is deny <protocol> 

const_src_addr <src_port> any <dst_port>. For example rule 

1 in Firewall B (Figure 1). 

6) permit <protocol> const_src_addr <src_port> 

dst_addr <dst_port>, where the source IP address can match 

packets that belong to one subnet and IP destination address 

can match packets that belong to several subnets. A special 

case of the given rule type is permit <protocol> 

const_src_addr <src_port> any <dst_port>. For example rule 

8 in Firewall C (Figure 1). 

http://www.cisco.com/en/US/products/sw/secursw/ps1018/products_tech_note09186a00800a5b9a.shtml
http://www.cisco.com/en/US/products/sw/secursw/ps1018/products_tech_note09186a00800a5b9a.shtml
http://www.openflow.org/wp/snac/
http://www.openbsd.org/faq/pf/
http://www.noxrepo.org/pox/about-pox/
http://www.nec.com/en/global/prod/pflow/images_documents/ProgrammableFlow_Switch_PF5820.pdf
http://www.nec.com/en/global/prod/pflow/images_documents/ProgrammableFlow_Switch_PF5820.pdf


7) deny <protocol> src_addr <src_port> dst_addr 

<dst_port>, where both the source and destination IP 

addresses can match packets that belong to several subnets. 

A special case of the given rule type is deny <protocol> any 

<src_port> any <dst_port>. 

8) permit <protocol> src_addr <src_port> dst_addr 

<dst_port>, where both the source and destination IP 

addresses can match packets from several subnets. A special 

case of the given rule type is deny <protocol> any 

<src_port> any <dst_port>. For example rule 10 in Firewall 

A (Figure 1). 

VI. APPENDIX 2 

TABLE I.  TABLE OF FIELDS OF EXTENDED CISCO ACL SYNTAX AND 

ASSOCIATED VALUES OF FILEDS IN FLOW RULES 

Description 

Extended Cisco 

ACL 
OpenFlow 

Field 

name 
Necessity Field name Bit length 

Telnet 

authentication 

before 
establishing a 

new session. 

dynami

c  
Optional 

Only while using 

implemented application. 

Setting the time 

range after 
which, in case 

of inactivity, 

the rule will be 
deleted. 

 

timeout Optional 

Every rule has two 
attributes: 

Idle-timeout - rule will be 
deleted after specified 

period after its last usage. 

Hard-timeout – rule will be 
deleted after specified 

period of time irrespective 

of its use. In case of 
absence of these values, 

rule will be present in Flow 

Table constantly.  

Action that will 
be performed in 

match case. 

deny / 

permit 

Obligator

y 

The list of actions, which 

could be applied to 

packets, is defined in 
protocol specification. 

L3 layer 

protocol 

Protoco

l  

Obligator

y 

IPv4 
Protocol / 

ARP opcode 

8 

Source IP 

address and 
mask 

source 
source-

wildcar

d 

Obligator

y 

IPv4 source 

address 
32 

Source port or 

port range 

Operat

or 
[port] 

Optional 

Transport 

source port / 
ICMP type 

16 

Destination IP 

address and 

mask 

Destina

tion 
destinat

ion-

wildcar
d 

Obligator

y 

IPv4 

destination 

address 

32 

Destination port 

or port range 

operato

r  [port] 
Optional 

Transport 
source port / 

ICMP type 

16 

Permission for 

TCP packets 

transmission 
that are part of 

established 

establis

hed 
Optional 

Only while using 

implemented application. 

Description 

Extended Cisco 

ACL 
OpenFlow 

Field 

name 
Necessity Field name Bit length 

TCP session.  

Comparison of 
packets by 

precedence 

field value 

precede

nce 
Optional Absent 

Comparison of 

packets by TOS 

field value 

tos Optional 
IPv4 ToS 
bits 

6 

Possibility of 

writing  logs in 
case of rule 

match 

log / 

log-

input 

Optional 
Only in case of removing 
the rules. 

Setting the time 

range of rule 
activity 

time-

range 
Optional 

Only while using 
implemented application 

that would install/remove 
flow records depending on 

current time.    

Comparison of 

packets by 
ingress port. 

Rule is installed on 
specified interface 

and specified 

direction (in/out). 

Ingress port 32 

Metadata used 

for transmitting 
information 

between Flow 

Tables 

Not required Metadata 64 

Source MAC 
address 

It is possible to set in 
Cisco  MAC ACL. 

Ethernet 

source 

address 

48 

Destination 

MAC address 

It is possible to set in 

Cisco  MAC ACL. 

Ethernet 

destination 
address 

48 

Type of 

Ethernet frame 

It is possible to set in 

Cisco  MAC ACL. 

Ethernet 

type 
16 

Comparison of 

packets by 
VLAN ID label 

 Not possible VLAN ID 12 

Comparison of 

packets by 
VLAN Priority 

label  

Not possible 
VLAN 
Priority 

3 

Comparison of 

packets by 

MPLS label 

Not possible 
MPLS 
Label 

20 

Comparison of 

packets by 
MPLS traffic 

class. 

Not possible 
MPLS 
traffic class 

3 

 


