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Abstract—This paper intends to provide an overview on recent 

development of knowledge transfer for rotary machine fault 

diagnosis (RMFD) by using different transfer learning techniques. 

After brief introduction of parameter-based, instance-based, 

feature-based and relevance-based knowledge transfer, the 

applications of knowledge transfer in RMFD are summarized 

from four categories: transfer between multiple working 

conditions, transfer between multiple locations, transfer between 

multiple machines, and transfer between multiple fault types. 

Case studies on four datasets including gears, bearing, and motor 

faults verified effectiveness of knowledge transfer on improving 

diagnostic accuracy. Meanwhile, research trends on transfer 

learning in the field of RMFD are discussed.  

 
Index Terms—Transfer learning, rotary machine fault 

diagnosis, multiple working conditions, multiple locations, 

multiple machines, multiple fault types. 
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I. INTRODUCTION 

RANSFER learning (TL), which is motivated by the fact 

that people can flexibly apply the knowledge learned 

before to solve new problem faster or better [1-7], has been 

increasingly applied in the rotary machine fault diagnosis 

(RMFD) in recent years. The integration of knowledge transfer 

into machine fault diagnosis [8-13] has become an important 

and hot topic to address due to the following reasons:  

 Over the last 10 years, TL techniques have achieved 

successes in some fields of engineering, such as 

image/text processing [14,15], biological recognition 

[16,17];  

 There is an increasing need for high-accuracy, real-time, 

low-cost RMFD products, whose function will not be 

affected by external factors, such as varying working 

conditions of the rotary machine [18,19]; 

 The application of  deep neural network models in RMFD 

is more and more popular, such as convolutional neural 

networks (CNNs) [13,20]. 

Although Pan [21] and Weiss [4] provided a detailed survey 

on transfer learning in 2010 and 2016, respectively, they 

focused on the general introduction and engineering 

applications of knowledge transfer. Taylor [22] also 

summarized transfer learning in reinforcement learning 

domains in 2009. In addition, Zheng [23] presented a 

systematic introduction of the research works about 

cross-domain fault diagnosis. Meanwhile, they gave a 

comprehensive summary and several future research directions 

of the open-source datasets for facilitating readers to start 

studies of cross-domain fault diagnosis. On the whole, 

TL-based RMFD is almost to be summarized up to now 

because it only lasts about five years from its first application in 

this area [24,25]. In fact, some specific engineering questions 

need to be solved before transfer learning can be applied in 

RMFD, e.g., the applicability of transfer strategy when facing 

with a specific fault diagnosis problem. In this case, we observe 

that more and more literatures begin to pay close attention to a 

certain RMFD problem with TL algorithms, but without 

providing a systematic guidance. Therefore, this paper attempts 

to provide an overview of the latest applications of knowledge 

transfer on rotary machine fault diagnosis, and guide 

researchers in this field to carry out relevant studies. In this 

paper, some key questions will be answered, including: 1) The 

motivation of knowledge transfer in RMFD; 2) The 

applicability of knowledge transfer in RMFD; 3) The 

effectiveness of knowledge transfer in RMFD; and 4) Other 

issues.  

The remainder of this paper is organized as follows. In 

Section 2, the theoretical background of transfer learning is 

introduced, and the main knowledge transfer strategies are 

categorized and discussed in detail. Section 3 reviews and 

summarizes applications of transfer learning in rotary machine 

fault diagnosis, and offers some case studies. After that, Section 

4 discusses the future research trends of TL-based RMFD from 

several aspects, such as applicability, effectiveness, and 

real-time capability. 

II. THEORETICAL BACKGROUND OF KNOWLEDGE TRANSFER 

Transfer learning is known as a tool to solve the basic 

problem of unlabeled and insufficient data in target domain, by 

utilizing the available knowledge from source domain. To 

begin with, we refer to Pan’s [21] notations and definitions of 

transfer learning, which will be used in our work. Given source 

domain    , source task   , target domain    and target task   , 

transfer learning aims to optimize predictive function    in 

target domain using the knowledge from predictive function    

in source domain. Here   *   ( )+  is composed of the 

feature space   and its marginal probability distribution (MPD) 

 ( )  [26-34],   *       +   .   *   +  is composed 

of the label space  , and the predictive function  . In 

non-transfer learning,       and      , but in transfer 

learning,       or      . 

       means that        and/or  (  )   (  ). 

T 
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       means that        and/or  (     )   (     ). 

where  (   )  represents the conditional probability 

distribution (CPD) [35-37],   *       +   . 

According to Weiss [4], existing models can be divided into 

four categories, including parameter-based, instance-based, 

feature-based, and relevance-based knowledge transfer 

strategies, which will be introduced in the following 

subsections in detail. 

A. Parameter-based Knowledge Transfer 

In parameter-based knowledge transfer model, some special 

parameters are considered as the carriers of transfer learning. 

Although Rozantsev [38] listed only one transfer case, his idea 

can be extended to other parameter-based knowledge transfer 

models. In this model, it is assumed that    and    share 

parameter spaces partly [39]. Therefore, part of parameters of 

    can be replaced using corresponding parameters in    after 

appropriate adjustment. Basically, the representation of 

predictive function    in target domain can be defined as 

  (      )  〈   (    )〉 (1) 

where   is the parametric mapping function from space    to 

  , which contains the parameter   (    ). Here    is the 

subset of a normed space. Another parameter   (    ) is 

also introduced to have a convolution operation with   to 

obtain the expression of   . Here    is a subset of   . So, the 

whole sets    of predictive function in target domain can be 

parameterized using   and   by 

   *  (   )          + (2) 

In a similar way, the whole sets    of predictive function in 

source domain can also be parameterized using   and   by 

   *  (   )          + (3) 

where         or        , which means that a part of 

common space exists between    and   , or between    and 

  .  

Let   
    and   

     represent trained parameters 

which possess the strong predictive ability in   . After giving 

two risk functions    and   , the high-quality parameters 

  
    , and   

     can be calculated and adjusted using the 

processes from Eq.(4) to Eq.(6): 

Training in   :  

,  (      )   -  ,  
    

 - (4) 

Transferring  parameters:  

  
        

    

  ,  *  
   +-        

    

  (  
   )  

  
        

    

  ,  *    
 +-        

    

  (    
 ) (5) 

Model application in   :  

,  
    

 -  ,  (      )   - (6) 

where      (  ),   ( )    (  ). 

For the implementation of parameter-based knowledge 

transfer, many algorithms have demonstrated impressive 

performance empirically. One of the major methods is to 

explore two key parameters in support vector machine (SVM) 

[40-42]: the direction parameter   (          ) and the 

distance parameter   (          ) of the hyper plane for 

classification, and to extend them to the domain adaptation 

framework. For example, Tommasi [36,43] proposed a 

multi-model knowledge transfer (MMKT) target function, 

which used a group of coefficients from multiple prior models 

to replace single coefficient in classical least square support 

vector machine (LSSVM) [44,45], and made LSSVM possess 

the transfer ability. Bruzzone’s [46] presented a domain 

adaptation support vector machine (DASVM) that extended 

SVM to the domain adaptation framework by exploiting 

labeled samples in    and unlabeled samples in    during the 

iteration of the algorithm. Different from DASVM, the domain 

independent support vector machine (DISVM) model [47] 

simultaneously minimized the SVM empirical risk and the 

dependence via Hilbert-Schmidt independence criterion (HSIC) 

[48] to realize domain adaptation. Other extended algorithms 

include domain adaptation machine (DAM) [49] and domain 

selection machine (DSM) [50]. The advantage of these models 

is that SVM parameters have clear physical meanings, and can 

be easily utilized. 

 Another method is to extend the convolutional neural 

networks (CNNs) to the domain adaptation framework. At first, 

the parameters of CNNs are obtained by the pre-training 

process in source domain   . Then, they are transferred to the 

CNNs in target domain    after fine-tuning. Shin [1] evaluated 

the transfer capability of different CNN architectures, with 

different widths and depths, as well as different dataset scales. 

The most critical issue in CNNs-based transfer model is to 

select transferred parameters because there are too many 

parameters. For example, Krizhevsky’s deep CNN structure 

[51] is composed of 5 convolutional layers and 3 

fully-connected layers, and has more than 60 million 

parameters. Other 19 layers [52] and 22 layers [53] deep CNN 

structures contain even more parameters. Therefore, to simply 

the parameter model and obtain better transfer ability, Han [54] 

only transferred the useful parameters in max pooling layers 

and achieved outstanding performance in image classification. 

In addition, abstract CNN parameters have better learning 

ability but higher complexity than SVM parameters [55]. 

Beside two methods described above, other parameter-based 

knowledge transfer models were also studied, such as hidden 

parameter Markov decision process [56,57], domain transfer 

multiple kernel learning [26,58], sparse coding [59-61], etc. 

Overall, such a model has wide range of application due to 

small cost of only transferring parameters.  

B. Instance-based Knowledge Transfer 

Instance-based knowledge transfer strategy is able to solve 

the TL problem when both low quality and high quality 

samples exist in source domain   . Here low quality samples 

hamper the modeling of    while high quality samples boost the 

modeling of   . Its main idea is to improve the predictive 

performance of    by weakening the weight of low quality 

samples and enhancing the weight of high quality instances in 

  . Weight adjustment [62] and domain separation [63] are two 
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major means for implementation of instance-based knowledge 

transfer. The later can be regarded as the particular case of the 

former where the weights of some samples are set as one and 

others are set as zero. Mathematically, in instance-based 

knowledge transfer model,    and    can be defined as 

  (  )  〈     (  )〉  

  (  )  〈     (  )〉 (7) 

where    and    are the mapping functions from spaces    

and    to   , respectively.    and    represent the vectors 

which have a convolution with    and   .  

In such a model, source domain    is separated into positive 

domain   
 

       and negative domain   
       

 
. 

Therefore, the weight trend factors *  
    

 + can be calculated 

during iterations as 

  
 (  

 )  
 

 
[ (  

    
 
)     (  

    
 )]  

  
 (  

 )  
 

 
[ (  

    
 )     (  

    
 
)] (8) 

where   
  represents the i-th sample in   ;   

 (  
 )  and 

  
 (  

 )  represent the positive and negative weight trend, 

respectively;  (   )  ,   -  defines the normalized 

discrimination function between sample   and domain  . As 

an example,  (   ) can be defined as [64] 

 (   )  
 

 
∑   ‖  ( )   (  )‖

    

 (9) 

where    represents the predictive function in the r-th iteration. 

The  (r+1)-th weight of sample   
  can be updated by 

    (  
 )    (  

 )   ,  
 (  

 )    
 (  

 )- (10) 

where      and    represent the r-th and (r+1)-th weights, 

respectively;   ,   -  represents the weight regulator. 

According to description above, the general process of 

instance-based knowledge transfer strategy is generalized as 

[65]: 

Input: 

 A small quantity of labeled samples from   
 ;  

 A large quantity of unlabeled samples from   
 ;  

 A large quantity of labeled samples from   ;  

Iteration:  

   (  
 )=1;   

 
 random samples in   ;   

       
 
; 

 While         , Do 

 Update the weight trend factors *  
    

 + using Eq.(8); 

 Update the weight of samples in    using Eq.(10); 

 A basic classier    is carried out in domain {  
 ;   }, and 

the effectiveness of   
  is calculated using evaluation 

function  (  
 ). If qualified then Break; 

   
 

 properly classified samples in   ;   
 

 wrongly 

classified samples in   ;      ; 

End While 

Output: 

      ;      (  ); 

Although such a model is limited by the characteristics of 

samples in   , some algorithms have been studied in recent 

years. Liu [64] proposed a selective multiple instance transfer 

learning (SMITL) model, which used the bi-memberships 

factor to solve the instance transfer problem for text 

classification. Chattopadhyay [66] successfully applied the 

weight vector in conditional probability based multi-source 

domain adaptation (CP-MDA) strategy to surface 

electromyography (SEMG), by minimizing the difference in 

predicted labels between two nearby points in   . Cheng [67] 

designed a weighted multi-source TrAdaboost strategy to take 

full advantage of valuable information from multiple domains, 

which enhanced the generalization ability of classical 

TrAdaboost [68]. Other related algorithms include 

Chattopadhyay’s two stage weighting framework for 

multi-source domain adaptation (2SW-MDA) [66], Kotzias’s 

deep multi-instance transfer [69], Xie’s semantic instance 

annotation-based transfer [70], Hasse’s active appearance 

model-based transfer [71], Huang’s adaptive instance 

normalization [72], and Babenko’s  multiple instance transfer 

learning (MITL) [73]. Particularly, to overcome the drawback 

that most existing MITL methods cannot solve the problem of 

insufficient samples, Tan [74] presented an adaptive knowledge 

transfer for multiple instances learning (AKT-MIL), which was 

successfully applied to image classification. Overall, the 

advantage of these models is that they are helpful to solve the 

transfer problem with more than one source domains because 

they focus more on characteristics of samples than domains. 

C. Feature-based Knowledge Transfer 

Different from instance-based knowledge transfer, 

feature-based knowledge transfer pays attention to the different 

feature spaces between source domain and target domain. The 

marginal distribution difference and conditional distribution 

difference exist between    and    [75]. Therefore, the 

purpose of such a model is to close their feature spaces through 

some means such as feature mapping. Two strategies are 

usually used in this kind of model, including symmetric and 

asymmetric feature transfer, which are compared in Fig. 1.  

 
Fig. 1.  The comparison between symmetric and asymmetric feature transfer. 
 

Among symmetric feature transfer methods, both    and    

are mapped to two new feature spaces   
  and   

 , where the 

differences between source domain and target domain are 

weakened. The general process of symmetric feature-based 

knowledge transfer strategy is generalized as 

Input: 
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 A large quantity of unlabeled samples from   ;  

 A large quantity of labeled samples from   ; 

Feature mapping:   
    ;   

    ; 

   
     

   , (   )  (   )-

    , ( ̂      )  ( ̂      )- 
(11) 

Training in   
 : 

,     -  ,  
    -    

    
  (12) 

Model application in   
 : 

,     
 -  ,  

    
 -     (13) 

Inverse mapping:      
  

,  
    -  ,     - (14) 

where        (     ) ,    (     )  represents the 

mapped feature space of    using the projected vector   ; 

       (     ) ,    (     )  represents the mapped 

feature space of    using the projected vector   ;    defines 

the divergence function;  ( )  represents the marginal 

distribution;  ( ̂  )  represents the likelihood distribution 

where  ̂ is the estimation of  ;   represents the weight factor to 

adjust two divergence values. 

As a typical symmetric feature transfer model, the goal of 

transfer component analysis (TCA) [33,76,77] is to discover 

common latent features that have the same marginal 

distribution between   
  and   

 . Meanwhile, the intrinsic 

structures before and after mapping are the same. Some 

projection methods are often used to optimize the target 

function of TCA, such as maximum mean discrepancy [78,79], 

manifold regularization [80,81]. Another typical symmetric 

feature transfer model is the deep CNNs [82,83]. Different from 

deep CNNs in parameter-based knowledge transfer strategy, 

the middle neurons of CNNs are considered as transferred 

features here. Therefore, the middle layers of deep CNNs can 

be seen as new feature space, where the feature differences 

between source and target domains are weakened. In Long’s 

deep adaptation networks (DAN) [84], the neurons in the 1-st to 

the 3-rd convolutional layers are general thus being frozen, and 

the neurons in the 4-th and 5-th convolutional layers are slightly 

less transferable, thus being learned via fine-tuning, and the 

neurons in the 6-th to the 8-th fully connected layers are tailored 

to fit specific tasks, thus being adapted with multiple kernel 

variant of MMD (MK-MMD) [85]. In addition, many other 

algorithms were also studied. For example, Pan’s [32] spectral 

feature alignment (SFA) used the domain-independent features 

as a bridge to build a relationship between    and   . Glorot 

[27] and Kandaswamy [86] proposed the stacked denoising 

autoencoder (SDA) model to discover the common invariant 

latent feature space. Gong [29] used geodesic flow kernel (GFK) 

to map two original spaces to a new low-dimensional feature 

space for reducing the marginal distribution differences. Rajesh 

[87] presented the joint nonnegative matrix tri-factorizations 

(NMTF) to adapt the differences in both marginal and 

conditional distributions of feature spaces.  

Among asymmetric feature transfer methods,    is directly 

mapped to   
 , which has the same characteristic with   . The 

general process of asymmetric feature-based knowledge 

transfer strategy is generalized as 

Input: 

 A large quantity of unlabeled samples from   ;  

 A large quantity of labeled samples from   ; 

Feature mapping:   
    ;  

   
 

   , (  )  (  )-

    , ( ̂    )  ( ̂    )- 
(15) 

Training in   
 : 

,     -  ,  
    -    

     (16) 

Model application in   : 

,     -  ,  
    -     (17) 

where      (    ) ,   (    )  represents the mapped 

feature space of    using the projected vector  . 

As two typical asymmetric feature transfer models, the joint 

domain adaptation (JDA) [77] and the adaptation regularization 

based transfer learning (ARTL) [88] were proposed by Long. 

Here, the marginal distribution adaptation (MDA), the 

conditional distribution adaptation (CDA) and manifold 

regularization (MR) were carried out in proper order in    to 

match the feature space of   . Finally,    and    had the same 

feature distribution for successfully image classification. Later, 

Nguyen [89] modified JDA to joint hierarchical domain 

adaptation (JHDA), which prevented excessively rapid growth 

of data dimension when the number of layer increases. Kulis 

[90] proposed an asymmetric regularized cross-domain 

transformation (ARC-t) to adjust the heterogeneous feature 

space, where a regularization term was contained in the 

objective function to the learned transformation matrix from    

to   . Excellent learning ability of ARC-t model was proved by 

Kulis in solving the problem of multiple object recognition. 

Kandemir [91] achieved the aim of asymmetric transfer by the 

deep gaussian process, which performed knowledge transfer 

not only by projecting    onto    but also projecting    onto 

  , thus possessing higher transfer performance than single 

transfer from    to   .  Especially, multiple source domains 

and one target domain existed in Harel’s transfer method [92], 

where all source feature spaces were transferred to the target 

feature space. Here, each individual source domain was paired 

with the corresponding target domain, and the singular value 

decomposition (SVD) [93,94] was performed to obtain the 

transformation matrix of each source domain. Wang [95] 

improved Harel’s method later, which replaced the SVD matrix 

with sparse feature transformation matrix, and further enhanced 

the domain similarity. Finally, the idea of descending 

dimension was also introduced into asymmetric feature-based 

transfer to select more similar features between    and   , 

such as, gain ratio [96], Chi square [97], relief-F [98], and 

decision tree [99]. Although directly mapping from source 

domain to target domain is faster, its classification accuracy is 

lower than symmetric feature transfer methods, because its 

performance depends on the quality of target feature space. 
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D. Relevance-based Knowledge Transfer 

Generally, more than one object exists in the source domain 

and target domain. In some situations, the relevance between 

two objects in source domain can be transferred to the 

relevance between two similar objects in target domain. For 

example, the relation between student and teacher can be 

transferred to the relation between underling and leader, called 

relevance-based knowledge transfer model. If the label space   

is seen as the object space, the general process of 

relevance-based knowledge transfer strategy will be 

generalized as 

Input: 

 A large quantity of unlabeled samples from   ;  

 A large quantity of labeled samples from   ; 

 

Obtain the relevance between labels in   :  

   
   [  

    
 
]      (  

 )    
      (  

 
)    

  (18) 

Relevance mapping:    
     

   

   
   (   

 ) (19) 

Relevance application in   :  

  (  
 )    

      (  
 
)    

 ,       { [  
    

 
]     

 } (20) 

where the    *  
      

 +  and    *  
      

 +  represent 

the label space in source task and target task, respectively; 

   {   
 } and    {   

 }   ,   -   ,   -     represent 

the relational space in source and target tasks.   
    

  and   
  

represents the source domain whose label is   ;   represents 

the relation function between two datasets;   defines an adjust 

function from    
  to    

 , which depends on the known 

knowledge. 

Of all important transfer strategies, relevance-based 

knowledge transfer has been the least studied because it has to 

meet the conditions of multiple objects. Based on the work of 

Qiu [100] and Jakob [101], Li [30] proposed a relational 

adaptive bootstrapping (RAP) method to extract the key words 

from a text document, which was applied to analyzing the cross 

domains of sentiment and topic words. In Li’s model, all 

domains were equally treated, which could be replaced by other 

cross domain algorithms, such as the domain transfer networks 

(DTNs) [102], the residual transfer networks (RTNs) [103], the 

latent sparse domain transfer (LSDT) [104], etc. Mihalkova 

[105] and Torrey [106] proposed the transfer via automatic 

mapping and revision (TAMAR) model that transferred 

relevance with markov logic networks (MLNs) and was applied 

to transferring between three real-world domains: movie 

relationship domain (IMDB dataset) [107], academic 

relationship domain (UW-CSE dataset) [108] and education 

relationship domain (WebKB dataset) [109]. Davis [110] 

modified Mihalkova’s approach to further expand application, 

called the deep transfer via markov logic (DTM). This method 

had a successful application in the transfer between the 

molecular biology domain and the Web domain. Overall, 

relevance-based knowledge transfer strategy possesses the 

outstanding advantages in transfer between two very different 

domains as compared with other three models. 

III. APPLICATIONS OF KNOWLEDGE TRANSFER IN ROTARY 

MACHINE FAULT DIAGNOSIS 

The purpose of rotary machine fault diagnosis is to recognize 

the mechanical faults by analyzing signals collected from key 

rotating units, such as gears [111-114], bearings [115-120], 

motor [20,121-123], etc. In traditional RMFD, the signals for 

training dataset   and testing dataset   are from the same 

condition. Therefore, their marginal distributions  ( )  and 

conditional distributions  (   ) are the same. However, 

varying working conditions and other factors always happen 

during the actual signal acquisition process, which affects final 

diagnostic results. Generally, there are three major strategies to 

reduce these influences:  

 Fusing multiple algorithms to overcome the drawback 

when single algorithm is difficult to deal with unknown 

working conditions. For example, Liu [124] fused the 

Hilbert-Huang transform and singular value 

decomposition (SVD), and Wang [125] fused the wavelet 

packet transform and manifold learning (ML) for rolling 

element bearing fault diagnosis; 

 Improving single algorithm to adapt the change of 

working conditions. For example, Valencia [126] 

promoted the Fourier transform to short-frequency 

Fourier transform for fault diagnosis of induction 

machines working in transient regime. Wang [127] 

modified the synchronous squeezing transform (SST) to 

the matching SST (MSST) for machine fault diagnosis 

under fast varying instantaneous frequency. 

 Building a robust RMFD model to resist the change of 

external factors. For example, Mulumba [128] developed 

a model-based fault diagnosis method by applying SVM 

techniques to model parameters calculated online. 
 

TABLE I 

SIMILARITIES IN THE SIGNAL SPACE OF MECHANICAL SYSTEM 

No. Similarities Transfer style 

1 

Similar signal’s singular values 

under two different rotating 
speeds 

Transfer between multiple 

working conditions 

2 
Similar vibrational frequency in 

two meshed gears 

Transfer between multiple 

locations 

3 

The same fault types of gear 

installed in two different 

machines 

Transfer between multiple 
machines 

4 
Wear and crack both grow in 

approximately exponential style 

Transfer between multiple fault 

types 

 

Alternatively, the TL theory has been introduced into the 

field of RMFD [129,130]. The idea of knowledge transfer can 

be applied to this field due to the fact that some similarity 

characteristics exist in the signal space of mechanical system, 

as listed in Table I. Taking advantage of these similarity 

characteristics, four types of knowledge transfer applications 

can be realized for rotary machine fault diagnosis, including 

transfer between multiple working conditions, transfer between 

multiple locations, transfer between multiple machines, and 

transfer between multiple fault types.  



7 

> IEEE SENSORS< 

It should be noted that TL-based rotary machine fault 

diagnosis has the following advantages: 1) The useful 

information in training dataset can be utilized to assist the 

learning of testing datasets when number of samples in the 

latter is insufficient, thus improving the diagnostic performance; 

2) The pre-training in source domain can save the diagnostic 

time in target domain, even they have different distributions, 

thus offering an effective way for real-time fault diagnosis.  

A. Transfer between Multiple Working Conditions 

1) Transfer goals. As shown in Fig. 2, the principle of this 

type of knowledge transfer is that model trained using data 

under one working condition will be applied to process the data 

under another working condition. Its goal is to obtain effective 

diagnostic results when the machine runs in a new working 

environment while using the model built in the old working 

environment. In fact, most of TL-based RMFD literatures focus 

on this kind of studies, which includes domain selection, 

varying rotating speed, and varying load studies. 

 
Fig. 2.  The transfer style between multiple working conditions. 

 

 
Fig. 3.  The working condition scan method for domain selection. 

 

2) Domain selection studies. Although transfer learning 

models have better domain adaption capacity than traditional 

models, the data quality in source domain still has direct 

influence on the final diagnostic performance. Therefore, 

selecting suitable data in source working condition is one of the 

main topics for discussion. The first measure is to extract high 

quality features from the measured signals, which are less 

affected by varying working conditions. Cao [130], Zhang 

[131], Cheng [132], and Han [133] made use of deep CNNs as 

the feature extractor from signal’s time-frequency distribution, 

where the middle layer neurons of CNNs are considered as 

features for transfer learning. Other features have  also been 

utilized to weaken the difference between    and   , e.g., the 

sparse coding features [134], the principal components features 

[135] and the singular value features [65]. The second measure 

is to design the indexes to assess the domain similarity between 

   and   , and then select suitable    for analysis. For 

example, Cao [136] defined a joint task kernel   to 

automatically model the cross task-link similarity by 

          (21) 

where   is the positive semi-definite (PSD) matrix that 

specifies the inter-task similarities;   is the kernel matrix for 

link modeling using kernel function  ;   represents the 

Gaussian variance;   represents the unit matrix;   represents 

the operation of multiplying elements. Other assessment 

indexes include the Kullback-Leibler divergence [137], 

L1-distance [138], Jensen-Shannon divergence [139], and 

Jaccard distance [140], etc. In this study, a working condition 

scan method is used as an example for domain selection, as 

shown in Fig. 3. With time passing by, measured signals in 

current moment are considered as the target domain, and the 

signals in its nearest historical moment are considered as the 

source domain, whose length depends on the rate of working 

conditions. Long target domain signals are selected in slow 

change, e.g.  ( )   ( )   ( )   ( ) in Fig.3, where   
represents the length of target domain. 

 
Fig. 4.  Deep CNNs model for RMFD. 
 

3) Varying rotating speed transfer models. Change of 

rotating speed affects the corresponding frequency information.  

In this case, the role of transfer learning is to weaken the 

frequency difference between source domain and target domain 
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when facing with varying rotating speed. Deep CNNs model 

[129] is one of the solutions for RMFD, as shown in Fig.4. Cao 

[130] used this model to transfer between different rotating 

speeds, and it was consisted of two processes: Extracting the 

features with a pre-trained deep neural network and designing a 

fully connected stage to classify these CNNs features. Although 

Cao’s method was tested against other methods such as the 

angle-frequency domain synchronous analysis (AFS)-SVM  

using gear fault data[141], the limitations still exist because it 

selected both    and    randomly. As the improvement of Cao’ 

method, Cheng [132] presented a Wasserstein distance based 

deep transfer learning (WD-DTL), which also treated the deep 

CNNs as the feature extractor, but further minimized the 

frequency difference through the adversarial training process. 

The diagnostic accuracy of WD-DTL was proved to be higher 

than TCA [33,76], JDA[77], Correlation alignment (CORAL) 

[142], CNNs [13,20], and deep adaptation network (DAN) 

[143,144]. When mixing more than one rotating speed, 

instance-based knowledge transfer is a good solution. Shen [65] 

utilized the TrAdaboost algorithm to transfer from multiple 

source rotating speeds (from 20Hz to 50Hz) to the target 

rotating speed (30Hz), and those similar signals (around 30Hz) 

in source domain were assigned high weights during iteration, 

leading to improved  diagnostic performance for bearings. It 

was also concluded that the instance-based transfer method is 

superior to feature-based transfer method when the speed 

changes quickly.  

4) Varying load transfer models. Different from rotating 

speed, varying load tends to change the time domain features of 

measured signals, such as the waveform, pulse, skewness [145] 

and kurtosis [146]. Han [133] proposed a DTN with JDA 

framework to solve the varying load problem. For CNNs, the 

features always change with the increase of layer depth. The 

upper layers tend to be more abstract and the lower layers are 

more specific [147]. Therefore, the JDA regularization term 

was designed by Han [133] in the lowest hidden 

fully-connected layer to minimize the discrepancy between    

and   . Using the wind turbine dataset, the DTN with JDA 

framework was proved to be superior to other algorithms, such 

as transfer joint matching (TJM) [148], TCA, JDA, and DTN 

with marginal distribution adaptation (MDA) [149], with high 

accuracy and robustness under varying load conditions. 

Furthermore, Shao [129] presented a fine-tuning strategy to 

overcome the difference of motor vibration when the load 

began to change. The features from the first three convolution 

blocks were transferred, and the last two convolution blocks as 

well as the fully connected layers were fine-tuned to match the 

target domain. All these works, including Li’s deep distance 

metric learning[150], Pan’s deep belief network[151], Wen’s 

negative correlation ensemble transfer learning based on 

CNNs[152], Zhang’s convolution neural networks with 

training interference (TICNN) [131], proved that deep transfer 

learning (DTL) provided an effective approach for machine 

fault diagnosis resulting from varying load conditions.  

In addition, Jia [132,153,154] presented a local connection 

network with normalized sparse auto-encoder (NSAE-LCN) to 

overcome the limitations of classical auto-encoder when 

rotating speed and load change together. In NSAE-LCN, the 

weight matrices of local layers and feature layers were trained 

separately. Then, they were simultaneously updated using a 

fine-tuning strategy to improve final fault recognition accuracy.  

However, in Jia’s method, the parameters required to be given 

in advance, unless some optimization techniques were 

introduced, such as the particle swarm optimization (PSO) 

[155]. Overall, the DTL technique is easier to be implemented 

for machine diagnosis than other algorithms because 

parameters can be automatically adjusted with change of load.  

B. Transfer between Multiple Locations 

1) Transfer goals. As shown in Fig. 5, the principle of this 

type of knowledge transfer is that model trained using data in 

one location can be applied to process the data in other 

locations. Its goal is to obtain effective diagnostic results when 

the sensors cannot be installed in target location due to physical 

limitation. Since signal coupling always exists in different 

locations of the gear drive system shown in Fig. 5, especially in 

two adjacent gearboxes, this offers the possibility of knowledge 

transfer. Generally, the locations near fault have stronger signal 

response and are more important than those far from fault 

location.  

 
Fig. 5. The transfer style between multiple locations. 

 

2) Domain selection studies. Although some distance or 

similarity measures were mentioned in existing literatures, such 

as Euclidean distance [6,156], n-dimensional Manhattan 

distance [157], and Minkowski distance [158], the relationship 

between signals at different locations are often ignored. In fact, 

signals measured from the machine system contain different 

components related to fault, environmental noise, and machine 

structure itself. Therefore, a signal separation method is 

recommended in Fig. 6 for domain selection, where the signals 

from all locations are separated into multiple vibration 

components by the blind source separation (BSS) [159] 

technique, such as the variational Bayesian hidden Markov 

model (VBHMM) [160], and continuous wavelet 

transform-based BSS (CWT-BSS) [161]. The signal which 

contains the strongest fault component will be considered in the 

target domain and other signals will be considered in the source 

domains according to the separation matrixes. 
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Fig. 6. The signal separation method for domain selection. 
 

3) Specific transfer models. Compared with varying 

working conditions, knowledge transfer between multiple 

locations seems more complex because the mechanical 

structure between two sensors may be unknown. Meanwhile, 

the noise always exists between them. But some links still exist 

in the signal space between    and   . For example,       , 

where    represents a certain fault frequency in target location; 

   represents corresponding fault frequency in source location; 

  represents the transmission ratio between two sensors. Also, 

the amplitude trend is approximately the same between two 

signal acquisition locations. Tong [162] proposed a domain 

adaptation using transferable features (DATF), where 

difference of marginal and conditional distributions was 

reduced simultaneously across domains based on maximum 

mean discrepancy (MMD) in feature space by refining pseudo 

test labels. The general domain adaptation method [88] 

includes three processes: marginal distribution adaptation 

(MDA), conditional distribution adaptation (CDA) and target 

function modeling (TFM). Particularly, Tong and Long’s 

methods are both suitable for varying working conditions and 

varying locations because they adjusted the feature space of 

source domain to match the target domain. Furthermore, 

another two dimension reduction techniques, including the 

transfer component analysis (TCA) [163] and the transfer 

factor analysis (TFA) [164], were applied for fault diagnosis, 

respectively, by mapping the original high-dimensional space 

to a new low-dimensional space. In TCA, a distance estimator 

    (     ) between two domains was defined and minimized, 

by 

    (     )  ‖
 

 
∑  (   

)
 

   
 

 

 
∑  (   

)
 

   
‖

 

 

 (22) 

where   represents the kernel transformation function;   is the 

subspace;   and   represent the number of samples in source 

and target domains, respectively. In TFA, two different 

diagonal covariance matrixes    and    were introduced in    

and   , which were linked by a weight matrix   . Then, 

parameters   ,    and    were updated to obtain the 

approximate log likelihood functions:     (  )      (  ). 

Although Wang’s diagnostic results proved that the 

performance of TFA outperforms TCA, TFA costs more time 

than TCA to adjust the transfer parameters. In Wen’s 

work[165], a three-layer sparse auto-encoder (SAE) [166] was 

utilized to extract the features from raw data, and then the 

MMD term was applied to minimizing the discrepancy penalty 

of two domains. The SAE-MMD method is effective on 

transferring between multiple locations. In addition, some other 

algorithms were also carried out, such as neural networks [167]. 

Particularly, Zhang [168] presented an unsupervised domain 

adaptation using subspace alignment (SA) to overcome the 

drawback that the classifier trained in one location cannot be 

directly used to other locations. This method can distinguish 

not only bearing faults categories, but also fault severities. 

C. Transfer between Multiple Machines 

1) Transfer goals. As shown in Fig. 7, the principle of this 

type of knowledge transfer is that model trained using data 

measured on the machine in laboratory can be applied to 

process data measured on another machine in industrial field. 

Its goal is to obtain effective diagnostic results when signals of 

target machine are not available in time. Once the model built 

in one machine can be transferred to another, the diagnostic 

cost of the target machine will be greatly saved. Generally, 

there are two kind of strategies for transfer between multiple 

machines:  Abstract feature-based transfer and relevance-based 

transfer. 

 
Fig. 7. The transfer style between multiple machines. 

 

2) Abstract feature-based transfer. For abstract 

feature-based transfer, Yang [24] proposed a feature-based 

transfer neural network (FTNN) model to transfer from 

laboratory bearings to locomotive bearings. In Yang’s method, 

a domain-shared CNN was employed to simultaneously extract 

the abstract vibrational features from both laboratory and 

real-case machines. Then the model was trained by jointly 

minimizing the error between the predicted and real labels in 

source domain, and the error between the predicted and pseudo 

labels in target domain. From experiment results, this method 

was superior to other algorithms, including CNN, TCA, 

multi-layer adaptation CNN (MACNN) [169], domain 

adaptation fault diagnosis (DAFD) [165], etc. Meanwhile, Guo 

[170] presented a deep convolutional transfer learning network 

(DCTLN), which consists of condition recognition and domain 
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adaptation processes. The former was constructed by a 1D 

CNN to automatically recognize health conditions of machines. 

The latter facilitated the CNN to learn domain invariant 

features by maximizing domain recognition errors and 

minimizing probability distribution distance. Finally, This 

approach was utilized to transfer three datasets, including the 

CWRU bearing dataset [171], the IMS bearing dataset [172], 

and the RL bearing dataset [173]. In addition to deep CNNs, 

other algorithms can also be utilized for abstract features 

extraction, such as fast self-organizing feature mapper [174].  

3) Relevance-based transfer. For relevance-based transfer, 

the link between two kinds of faults in source machine can be 

extracted and applied in the target machine. Fig. 8 gives an 

example of gearbox fault diagnosis, where the categories of 

testing gears include healthy (HEA), surface wear fault (SWF), 

tooth crack fault (TCF), chipped tooth fault (CTF) and missing 

tooth fault (MTF) in both two devices. The relevance vectors 

*           +  and *           +  can be learned using some 

association rule mining (ARM) [175] algorithms, such as fuzzy 

threshold [176,177] and neutrosophic theory [178,179]. After 

substituting these algorithms into Eq. (18) to (20), the fault 

gears in target machine can be recognized, thus offering an 

effective way for transferring between multiple machines. 

 
Fig. 8.  An example of relevance-based transfer for gear fault diagnosis. 

 

D. Transfer between Multiple Fault Types 

1) Transfer goals. Transfer models described in previous 

sections attempt to solve the RMFD problem when  (  )  
 (  ), or  (     )   (     ) resulting from  (  )   (  ). 

However, the label difference (i.e., different fault types) may 

exist in practical RMFD. The principle of knowledge transfer 

between multiple fault types is that model trained using data 

from some types of faults in source domain can be applied  to 

process data from other types of faults in target domain. Its goal 

is to obtain effective diagnostic results when unknown fault 

types appear in target domain. Based on the gear fault diagnosis 

examples shown in Fig.9, three knowledge transfer model can 

be summarized: the similar tasks transfer model, the over-tasks 

transfer model, and the under-tasks transfer model.  

2) The similar tasks transfer model. In this model, the fault 

types in source and target domains are not exactly the same. 

Han [133] gave an example, where two types (outer race fault, 

gear root crack) were involved in source domain but other two 

types (roller fault; tooth surface spalling) were involved in 

target domain. In such case, successful diagnosis not only 

depends on the quality of knowledge transfer model, but also 

relies on the links of fault types between source and target 

domains. For example, the outer race fault and roller fault are 

from the same type of bearing, and the gear root crack and tooth 

surface spalling are from the same type of gear. Kim [180] also 

proposed a selective parameter freezing (SPF) method for fault 

diagnosis of rolling element bearings. In the tests, four fault 

types (normal, ball fault, inner raceway fault, and outer 

raceway fault) exist in source domain, but other five types 

(normal, early spalling, early flaking, severe spalling, and 

severe flaking) exist in target domain. Transfer process was 

successfully implemented by adjusting the sensitivity to 

distinguish available or unavailable parameters of the 

pre-trained network. The key to success in the similar tasks 

transfer model is that the corresponding fault types in two 

domains are similar enough. 

 
Fig. 9.  The gear fault diagnosis examples of three main transfer styles. 

 

3) The over-tasks transfer model. In this model, the number 

of tasks in source domain is more than those in target domain. 

Most of existing transfer algorithms is appropriate for this 

situation, such as deep CNNs model [130], TJM model [148], 

deep distance metric learning model [149], and TICNN model 

[131], etc. However, an extra decision algorithm requires to be 

added, aiming to allocate redundant fault types to existing fault 

types after transferring. Some basic classifiers are always 

considered in this stage because the differences between    

and    have been weakened after domain adaptation, such as K 

nearest neighbor (KNN) [181], non-convex sparse 

regularization [182], and adaptive neuro fuzzy classifier [183] 

etc. In other words, the over-tasks transfer model will cost more 
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time than basic transfer learning due to the redundant fault 

types in source domain. 

4) The under-tasks transfer model. In this model, although 

the tasks in each source domain are less than those in the target 

domain, more than one source domain is selected, thus 

including all tasks. To solve the under-tasks transfer problem, 

two general steps are included: Firstly, the basic domain 

adaptation algorithms are designed to transfer the diagnostic 

model from each source domain to the target domain. And each 

domain adaptation may not be the same, which depends on the 

signal property of each source domain. Secondly, diagnostic 

results by these domain adaptation algorithms are fused using 

related measures, such as multi-agent decision fusion [184], 

class-specific Bayesian fusion [185], Dempster-Shafer 

evidence theory [186], etc. For example, Wang [187] proposed 

a hierarchical deep domain adaptation (HDDA) approach to 

transfer the classifier under one load to identify faults under 

another load, where the effective information for diagnosis was 

fused by layer-wisely capturing representative features. 

Wang’s model achieved good under-tasks transfer performance 

in the fault diagnosis of power plant thermal system. In addition, 

this type of transfer strategy relies on basic transfer models, and 

then adds extra steps to adapt the change of fault types. 

However, the under-tasks transfer model will not be considered 

if optional source domains are sufficient. 

E. Case Studies 

1) Descriptions of datasets. To systematically investigate the 

performance of TL-based RMFD, datasets from four systems 

were analyzed in this study: 

 CWRU bearing dataset. Dataset was collected from a 

platform provided by CWRU, and included signals from 

fan end (FE) and drive end (DE). Testing bearings contain 

four categories: normal condition (NC), inner race fault 

(IF), outer race fault (OF) and ball fault (BF). Rotating 

speeds were set from 1730 to1797RPM, and loads were 

set from 0 to 3HP. 

 DDS gear dataset. Dataset was collected from a drivetrain 

dynamics simulator provided by Yan’s group [129], and 

included signals from six channels in reduction gearbox 

(RG) and planetary gearbox (PG). Testing gears contain 

five categories: normal condition (NC), root crack fault 

(RCF), chipped tooth fault (CTF), miss tooth fault (MTF), 

surface wear fault (SWF). Rotating speeds were set from 

20 to50Hz. Loads were set from 0 to 12.8N m.  

 Qianpeng gear dataset. Dataset was collected from a 

platform provided by Xi'an Jiaotong University, and 

included signals from four channels in drive end (DE) and 

follower end (FE). Testing gears contain three categories: 

normal condition (NC), root crack fault (RCF), miss tooth 

fault (MTF). Rotating speeds were set from 30 to 50Hz, 

and loads were set as 0N m. 

 Induction motor dataset. Dataset was collected from a 

platform provided by Sun’s group [188], and included 

signals from motor end (ME) and bearing end (BE). 

Testing motors contain six categories: normal condition 

(NC), broken rotor bar (BRB), stator winding fault 

(SWDF), build-in bowed rotor (BBR), build-in rotor 

unbalance (BRU), build-in fault bearing (BFB). Rotating 

speed conditions were set from 5 to50Hz, and loads were 

set as 0N m. 

2) Experimental setup. In this study, Table II lists selected 

source and target domains with different working conditions, 

different locations, different machines as well as different fault 

types. Meanwhile, seven diagnostic models are compared as 

follows: 

 SVM: Support vector machine [40]; 

 LSSVM: Least square support vector machine [44]; 

 TCA: Transfer component analysis [76]; 

 JDA: Joint domain adaptation [77]; 

 DAM: Domain adaptation machine [49]; 

 DSM: Domain selection machine [50]; 

 DTL: Deep transfer learning [132,189,190]; 
 

TABLE II 

RELATED EXPERIMENT CONDITIONS 

No. Dataset Channel 
Rotating 

speed 
Load 

A 
CWRU bearing dataset  

(NC, IF, OF,BF) 
FE 

1730 

RPM 
3HP 

B 
CWRU bearing dataset  

(NC, IF, OF,BF) 
DE 

1730 

RPM 
3HP 

C 
CWRU bearing dataset 

 (NC, IF, OF,BF) 
DE 

1797  
RPM 

0HP 

D 
DDS gear dataset  

(NC, RCF, CTF, MTF, SWF) 
RG 30Hz 0N m 

E 
DDS gear dataset  

(NC, RCF, CTF, MTF, SWF) 
PG 30Hz 0N m 

F 
DDS gear dataset  

(NC, RCF, CTF, MTF, SWF) 
PG 30Hz 

12.8N 
m 

G 
DDS gear dataset  

(NC, RCF, CTF) 
RG, PG 30Hz 0N m 

H 
DDS gear dataset  

(NC, MTF, SWF) 
RG, PG 30Hz 0N m 

I 
Qianpeng gear dataset  

(NC, RCF, MTF) 
FE 30Hz 0N m 

J 
Qianpeng gear dataset  

(NC, RCF, MTF) 
DE 30Hz 0N m 

K 
Qianpeng gear dataset  

(NC, RCF, MTF) 
DE 50Hz 0N m 

L 

Induction motor dataset (NC, 

BRB, SWDF, BBR, BRU, 

BFB) 

ME 30Hz 0N m 

M 
Induction motor dataset (NC, 

BRB, SWDF, BBR, BRU, 

BFB) 

ME 50Hz 0N m 

N 
Induction motor dataset (NC, 

BRB, SWDF, BBR, BRU, 

BFB) 

BE 30Hz 0N m 

 

In SVM algorithm, the number of training samples was set as 

50 N. In other transfer algorithms, the number of samples in 

target domain and source domain was set as 10 N and 40 N 

respectively. Finally, the machine fault diagnostic results will 

be assessed using the root mean square error (RMSE) index, by 

     √
 

 
∑ (  ̃    )

  
     (24) 

where N represents the number of fault types;   ̃  and    

represent the predicted and real fault types. 

3) Experimental results. Table III gives the RMSE values 

under four knowledge transfer strategies with different models. 
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Some conclusions can be obtained:  

Firstly, by comparing SVM with other transfer models, the 

RMSE value of the former are much greater than those of the 

latter. It proves the effectiveness of knowledge transfer on 

rotary machine fault diagnosis field. During varying working 

conditions, DSM is superior to others because the difference on 

time frequency plane can be adjusted well by this kind of 

domain adaptation machine. During varying locations, TCA 

has the highest diagnostic performance, thus illustrating that the 

mapping feature spaces are close between different locations. 

During varying machines and fault types, DTL model can 

obtain the best transfer results, which shows that the main 

transfer components in these two cases are the abstract features.  

 
TABLE III 

THE RMSE VALUES IN TRANSFER TESTS 

Model 

Transfer between multiple 
working conditions 

Transfer between multiple 
locations 

B C E F L M A B E D N L 
SVM 28.11 25.78 28.03 36.76 40.77 38.04 

LSSVM 17.03 15.94 17.66 19.78 23.65 20.32 

TCA 16.44 14.78 19.20 7.09 10.57 9.42 

JDA 11.99 10.05 13.51 12.66 15.87 13.23 
DAM 11.30 10.95 12.04 10.75 18.56 14.07 

DSM 7.03 6.79 9.11 9.53 12.54 11.01 
DTL 10.7 9.16 13.06 8.96 10.87 10.55 

Model 

Transfer between multiple 

machines 

Transfer between multiple fault 

types 

D I E I I D D G {G,H} D 
SVM 47.12 50.77 45.25 24.30 30.21 

LSSVM 20.56 24.63 18.62 17.33 21.46 
TCA 13.20 14.30 13.28 10.94 17.22 

JDA 15.94 16.30 10.83 15.30 19.36 

DAM 14.00 18.29 16.24 10.03 15.28 
DSM 14.17 15.63 12.02 9.40 15.00 

DTL 10.74 12.11 9.96 7.12 10.38 

 

Secondly, by observing the RMSE values when transfer 

between multiple working conditions, the indexes are ordered 

by: RMSE(E F)<RMSE(B C)<RMSE(L M), which proves 

that signals measured from motor are easier to be affected by 

external conditions than those measured from gears and 

bearings. On the contrary, signals from gears are the easiest to 

be affected by sensor locations, especially in the complex 

mechanical system like DDS.  

Thirdly, by observing the RMSE values when transfer 

between multiple machines, the indexes are ordered by: 

RMSE(D I) > RMSE(I D), which means that it is easier to 

transfer from simple Qianpeng device to the complex DDS 

device than transfer from complex system to simple system. 

Therefore, these tests offer an idea for source machine selection 

in this case. Meanwhile, by observing the RMSE values when 

transfer between multiple fault types, the diagnostic 

performance of over-tasks transfer model (RMSE=7.12) is 

superior to the under-tasks transfer model (RMSE=10.38).  

Through these case studies, along with other experiments in 

[191-195], transfer learning has been proved a useful tool for 

rotatory machine fault diagnosis when insufficient data is not 

available in the target domain.  

IV. RESEARCH TRENDS OF KNOWLEDGE TRANSFER IN 

ROTARY MACHINE FAULT DIAGNOSIS 

A. The Applicability of TL in RMFD 

Suitable knowledge transfer strategies require to be taken 

into consideration when facing with different RMFD tasks. 

Referring to [24,169,196-198], we recommend several rules for 

selecting appropriate transfer strategy.  

 If part of features in source domain is affected by external 

conditions, the feature-based knowledge transfer strategy 

is recommended. If part of samples in source domain are 

affected by external conditions, the instance-based 

knowledge transfer strategy is recommended; 

 Models like DANN and TCA are helpful to weaken the 

difference of MPD. Models like LSSVM and TrAdaboost 

are helpful to weaken the difference of CPD. Models like 

DAM and DSM are helpful to weaken the difference of 

both [4]; 

 Among available datasets, the priority is sorted by: 

labeled target domain samples > labeled source domain 

samples > unlabeled target domain samples > unlabeled 

source domain samples. 

Although rules above are helpful to select a suitable transfer 

strategy, the design of knowledge transfer model relies on 

specific RMFD task. In [198], the transfer compact coding for 

hyper plane classifier (TCCHC) was proposed to assess the 

transfer ability between historical and current bearing vibration 

signals using the minimum description length (MDL) theory 

[199,200]. The historical data with the smallest code length 

were selected to help learning of current data. By combining 

TCCHC with exponential semi-deterministic extended Kalman 

filter (EKF) [201], Shen succeeded in tracking the bearing 

degradation curves. Tzeng [202] proposed an adversarial 

discriminative domain adaptation (ADDA) method, which 

added two domain discriminator modules to maximize loss 

function [203,204] between source and target domains, as 

shown in Fig. 10. By the feedback of domain discriminator, the 

details of selected transfer strategy can be understood, 

including: generative or discriminative model, tied or untied 

weights, and adversarial objectives. Despite these studies, how 

to select a suitable transfer strategy is still challenging due to 

the uncertainty of signals measured on real mechanical system, 

thus needing further investigation in the future. 

 
Fig. 10.  The adversarial discriminative domain adaptation framework [202]. 
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B. The Effectiveness of TL in RMFD 

1) Negative transfer study. Negative transfer [37,205,206] 

may lead to the failure of RMFD model, which means that the 

diagnostic performance of transfer learning is even worse than 

traditional methods. The following strategies can be carried out 

to avoid negative transfer:  

 Excluding the non-useful information from the measured 

signals. For example, the DTN with JDA framework [133] 

can exclude the upper layer information and achieved 

better diagnostic results; 

 Evaluating the task similarity between signals, and 

selecting suitable source domains. For example, the 

working condition scan method, the signal separation 

method, and the factor analytical method can be applied.  

 Improving classical domain mapping algorithms to 

achieve similar feature distributions between measured 

signals. For example, joint domain adaptation (JDA) [77] 

can be improved to the adaptation regularization based 

transfer learning (ARTL) [88]. 

2) Sample quantity study. The sample quantity has direct 

influence on final diagnostic performance, which always 

improves with the increase of number of samples in target 

domain samples. In Cao’s [130] experiments, 2% to 80% target 

samples were included in training dataset and more samples 

indicated higher diagnostic accuracy. However, too many 

target samples may bring negative effects if their quality is poor 

because target samples are always considered as standard in 

most transfer models. For example, they may be also poor in the 

time-varying mechanical system [65], so two basic rules are 

recommended to determine the sample quantity: 

 The length of signals in target domain depends on the rate 

of working conditions. The faster the working condition 

changes, the less the target samples are selected. 

 The signals of at least one running cycle are selected each 

time for full fault information. 

Table IV lists fault diagnostic accuracy under the case of 

B C in Table III. It can be seen that the classification accuracy 

has up to 27.2% improvement if knowledge transfer models are 

used when the number of samples in target domain is less 

(   =20), but only 2% improvement when the number of 

samples is large in target domain (  =120), which indicates that 

transfer learning is more suitable for the situation of insufficient 

data samples in target domain. It is believed that further study is 

needed on investigating the effect of the sample quantity for 

performance improvement when the TL-based RMFD 

technology is applied. 
TABLE IV 

FAULT DIAGNOSTIC ACCURACIES UNDER THE CASE OF B→C 

Model 
  :    

20:120 30:120 50:120 80:120 120:120 

SVM 
0.642 

(20:0) 

0.781 

(30:0) 

0.899 

(50:0) 

0.927 

(80:0) 

0.939 

(120:0) 

LSSVM 0.894 0.901 0.923 0.944 0.945 
TCA 0.902 0.913 0.925 0.952 0.959 

JDA 0.887 0.887 0.901 0.932 0.938 

DAM 0.860 0.894 0.925 0.945 0.952 
DSM 0.914 0.954 0.975 0.976 0.976 

DTL 0.885 0.911 0.937 0.968 0.969 

3) Transfer parameter study. Some transfer parameters have 

been designed to improve the diagnostic accuracy. For example, 

in Cheng’s WD-DTL [132] and Wang’s improved deep 

learning network [207], the max pooling layer was applied to 

extracting the maximum feature values. As a result, the CNN 

features within the small window are similar over disjoint 

regions for fault diagnosis. In Li’s deep distance metric 

learning [150], 2000 epochs were first run to initialize the 

parameters of the model. Then, the objective function was used 

for another 2000 training epochs. Consequently, the extracted 

features were expected to be domain-invariant and robust 

against noise, that serves the final fault classification. Other 

parameters have also been designed to improve the diagnostic 

speed. For example, Tong [162] reduced the impact of 

discrepancies from both the marginal and conditional 

distributions simultaneously by resorting the pseudo labels of 

test data on diagnosis. In Cao’s deep convolutional neural 

network [130], small datasets for gear fault diagnosis were 

utilized to speed up the implementation of transfer learning. 

Stochastic gradient descent (SGD) method [208] was also used 

for network minimization during knowledge transfer-based 

RMFD.  
 

TABLE V 

DETAILED CONFIGURATION OF VGG-16 ARCHITECTURE 

Layer Block Type 

Field size - 

number of 

channels 

Output 

1 

Block1 

Convolution 3 3-64 224 224 64 

2 Convolution 3 3-64 224 224 64 

 MaxPooling 2 2 112 112 64 
3 

Block2 

Convolution 3 3-128 112 112 128 
4 Convolution 3 3-128 112 112 128 
 MaxPooling 2 2 56 56 128 

5 

Block3 

Convolution 3 3-256 56 56 256 
6 Convolution 3 3-256 56 56 256 
7 Convolution 3 3-256 56 56 256 
 MaxPooling 2 2 28 28 256 

8 

Block4 

Convolution 3 3-512 28 28 512 
9 Convolution 3 3-512 28 28 512 

10 Convolution 3 3-512 28 28 512 
 MaxPooling 2 2 14 14 512 

11 

Block5 

Convolution 3 3-512 14 14 512 
12 Convolution 3 3-512 14 14 512 
13 Convolution 3 3-512 14 14 512 

 MaxPooling 2 2 7 7 1024 

14 

Block6 

Fully-connected 1 1 4096 4096 

15 Fully-connected 1 1 4096 4096 

16 Fully-connected 1 1 4 4 

 

TABLE VI 

FAULT DIAGNOSTIC RESULTS UNDER THE CASE OF A→B 

Locked layers Accuracy Training time (s) 

Only Block1 0.960 1664 

Block1 ~ Block2 0.957 751 
Block1 ~ Block3 0.956 339 

Block1 ~ Block4 0.923 153 

Block1 ~ Block5 0.890 69 

 

To illustrate the influence of transfer parameters on 

diagnostic performance, a VGG-16 network in Table V is 

adopted for the case of A B in Table III, which contains 6 

blocks. Then, the diagnostic results by locking different layers 



14 

> IEEE SENSORS< 

are listed in Table VI. It can be found that the diagnostic 

accuracy and time consumption both increase with the growth 

of locked layers. Therefore, the effectiveness of transfer 

learning is affected by structure of the VGG-16 network. 

C. The Flexibility of TL in RMFD 

1) Automatic transfer study. As one of the main automated 

transfer strategies, DTL can adaptively transfer after giving 

network structure, thus being widely used in rotary machine 

fault diagnosis, such as VGG-16 [209], LeNet-5 [210], DBN 

[166] as well as auto-encoder [211] networks. However, some 

necessary parameters still need to be fine-tuned to match target 

domain using known knowledge in these models, e.g., the 

weights of neurons and the locked layers. So, some automatic 

fine-tuning algorithms have been developed to match different 

domains without priori knowledge (e.g., rotating speed), such 

as between-layer scale adjustment, and deep random forest 

[212]. Self-taught clustering [213] is another automatic transfer 

strategy, which aims to minimize the reformulated objective 

function, as 

   (    )   (  ̃  ̃)   [ (    )   (  ̃  ̃)]  (25) 

where target data    and source domain    share the same 

features clustering  ̃ on the feature set  ;   denotes the mutual 

information [214];  (    )-  (  ̃  ̃) is the clustering term on 

the   ;  (    ) -   (  ̃  ̃)  is clustering term on the   ;   

represents the compensation parameter. Besides, the self-taught 

clustering offers a valid idea for automatic TL because it is a 

kind of unsupervised knowledge transfer classifier, like 

TFusion [215], unsupervised deep learning [216,217]. 

However, it is hard to make the transfer model automatic 

compared with traditional models because the parameters in the 

latter are basically stable and can be pre-trained. So, automatic 

transfer provides a new direction for future research.  

 
Fig. 11. The diagnostic results of continuous varying rotating speed. 
 

2) Real-time transfer study. In recent years, some fast 

transfer algorithms have been developed to improve the 

computational efficiency by 30%~70% in different diagnostic 

datasets. Xu [218] proposed an online fault diagnosis method 

based on transfer convolutional neural networks (TCNN), 

which is made up of an online CNN based on LeNet-5 and 

several offline CNNs with a shallow structure. Experimental 

study proved that TCNN method significantly improved the 

real-time performance and successfully addressed the issue of 

achieving the desired diagnostic accuracy within limited 

training time. Except for fast transfer algorithms, the domain 

updating is another strategy to speed up transfer process by 

leaving out old training samples. A domain updating 

framework for real-time transfer is recommended, which 

includes three major steps: Firstly, all low-quality samples in 

source domain are discarded and all high-quality samples in 

target domain are added to source domain. Secondly, the 

earliest samples in source domain are discarded if too many 

samples are added into source domain. Finally, all new samples 

are put into target domain. To verify real-time capability of 

domain updating framework, the induction motor dataset is 

adopted as an example in this study, and Fig. 11 illustrates the 

vibration signal and diagnostic results under continuous 

varying rotating speed condition (0 60 0Hz). Unlike SVM, 

the high diagnostic accuracy of transfer algorithms can be 

achieved all the time, even though the speed changes rapidly.  

V. CONCLUSIONS 

In this study, we have provided an overview on utilizing 

transfer learning as a powerful tool for the purpose of fault 

diagnosis in rotary machines. Most of RMFD studies related to 

TL in recent years have been reviewed based on the following 

four categories: transfer between multiple working conditions, 

transfer between multiple locations, transfer between multiple 

machines, and transfer between multiple fault types. They 

possess certain research values under certain circumstances. 

Although the interest of this research is growing, from the 

theoretical background of knowledge transfer to applicability 

of TL in RMFD, from the effectiveness of TL to the flexibility 

of TL, it should be noted that there still exist many challenges 

when using knowledge transfer for rotary machine fault 

diagnosis. For example, there is almost no discussion about the 

link between effective transfer spaces and real vibration signals. 

Also there are a few studies on the RMFD application of 

relevance-based knowledge transfer. However, with the 

transfer learning technology becoming more and more mature 

and new theoretical contributions being made, it is believed that 

transfer learning will be one of the most appealing techniques, 

like classical machine learning, that make contributions to the 

filed of RMFD. 
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