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Abstract: The astounding number of genetic variants revealed in the 15 years of genome-wide associ-
ation studies of asthma has not kept pace with the goals of translational genomics. Moving asthma
diagnosis from a nonspecific umbrella term to specific phenotypes/endotypes and related traits may
provide insights into features that may be prevented or alleviated by therapeutical intervention. This
review provides an overview of the different asthma endotypes and phenotypes and the genomic
findings from asthma studies using patient stratification strategies and asthma-related traits. Asthma
genomic research for treatable traits has uncovered novel and previously reported asthma loci, pri-
marily through studies in Europeans. Novel genomic findings for asthma phenotypes and related
traits may arise from multi-trait and specific phenotyping strategies in diverse populations.
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1. Introduction

Asthma is a major noncommunicable, respiratory disease that affects an estimated
350 million people worldwide and is the most prevalent chronic disease in children globally [1].
It is a heterogeneous and complex disease, characterized by chronic airway inflammation
and a history of respiratory symptoms such as wheeze, shortness of breath, chest tightness,
and cough that vary over time and in intensity, together with variable expiratory airflow
limitation [2]. Different environmental, genetic, and behavioral factors interact to modify
asthma’s susceptibility and course, which contributes to the disease complexity [2]. Regret-
tably, despite asthma mortality having decreased in the last decades, still a substantial pro-
portion of asthmatics remain difficult to treat, leading to significant economic consequences,
including productivity losses and increased cost of public health expenditure [3–5].

Early genetic studies of asthma had limited success in associating genetic variation
with asthma susceptibility using linkage analyses in large families with more than one
person with asthma, as well as using candidate gene association analyses. Novel genetic
signals arose with the advent of genome-wide association studies (GWAS), which are
hypothesis-free scans that interrogate genetic variation across the genome for association
with a phenotype of interest. Despite GWAS having revealed a large catalog of genetic loci
for asthma, the genetic variation uncovered only accounts for a small fraction of asthma
heritability, with higher contribution to childhood-onset asthma (33%) than to adult-onset
asthma (9.8%), as found in British individuals [6]. Genomic research has investigated
several asthma phenotypes or asthma-related traits in an attempt to unravel the compli-
cated etiologic pathways of asthma and features that could be prevented or alleviated by
therapeutic interventions such as pulmonary rehabilitation or pharmacological treatment.
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Here, we provide an overview of the different asthma endotypes and phenotypes along
with their clinical characteristics, clinically relevant markers, and molecular mechanisms.
We also provide an update on GWAS findings across asthma phenotypes and related traits
to identify strategic research opportunities for treatable traits moving forward asthma
precision medicine.

2. Asthma Endotypes and Phenotypes

The asthma definition has largely evolved from the early clinical descriptions by
Dr. Henry Hyde Salter in the 19th Century [7] to the current understanding of this
heterogeneous disease as an umbrella term comprising numerous and different asthma
subtypes [8]. A prevailing approach to categorize asthma has been to group patients on
observable attributes arising from a complex interplay between hereditary, environmental,
and behavioral influences. In fact, the first approach to asthma phenotyping was docu-
mented in the late 1940s when Rackemann distinguished between extrinsic—atopic—and
intrinsic—unrelated to atopy—asthma [9], and skin tests were often helpful in confirming
diagnosis and determining a specific treatment [10]. Since 1999, the clinical and physio-
pathological characterization of severe asthmatics—according to the number of eosinophils
in the airway—has subsequently inspired a myriad of studies aiming to discriminate be-
tween eosinophilic (EA) and non-eosinophilic asthma (NEA). In 2006, Hinks and colleagues
assessed the proportion of eosinophils and neutrophils in induced sputum, depicting four
asthma phenotypes—EA, NEA, paucigranulocytic asthma (PGA), and mixed-granulocytic
asthma (MGA) [11]. Furthermore, gene expression analysis confirmed in 2009, two distinct
asthma subgroups—Th2-high and Th2-low—defined by the degree of underlying Th2
inflammation and regardless of patients’ demographic characteristics, lung function, or
bronchodilator response [12]. Thus, the definition of the Th2-high asthma phenotype was
initially based on atopic predisposition in combination with any of the following surrogate
biomarkers for Th2 immune activation: serum immunoglobulin E (IgE) ≥ 100 IU/mL,
blood eosinophil count ≥ 300/µL, and exhaled nitric oxide fraction (FENO) ≥ 30 ppb [13].
However, since the production of Th2-related cytokines such as interleukins 4, 5, and 13
(IL-4, IL-5, and IL-13) has been confirmed in further cell populations as type 2 innate
lymphoid cells (ILC-2s), mast cells, basophils, and/or eosinophils, the term Th2 has been
currently updated to the T2 immune phenotype in asthma [14]. Notably, some of these
cytokines may also affect cell counts in asthmatics (i.e., IL5-promoted eosinophilia) [14].
Conventional asthma phenotyping classifies patients according to observable clinical fea-
tures, including exacerbating factors, age of onset, concomitant comorbidities, and/or
response to therapy [15]. As these clinical categories could not discriminate among groups
or elucidate the underlying pathobiology, multivariate statistical cluster analysis performed
on large asthma cohorts such as SARP [16], U-BIOPRED [17], or ADEPT [18] have greatly
contributed to the unbiased description of specific asthma phenotypes [19]. Despite differ-
ences in clusters being found, two major groups, namely type 2 (T2)-high and non-T2-high,
have been currently defined [20]. These evolving endotypes—associating plausible molec-
ular and cellular mechanisms or therapeutic response to phenotypes—have, nowadays,
pioneered asthma into the age of precision medicine [21,22].

2.1. T2-High Asthma

In T2-high asthma, the interaction of the airway epithelium with the external expo-
some activates the release of specific mediators—epithelial-derived alarmins—as thymic
stromal lymphopoietin (TSLP), IL-25, and IL-33, leading to the production of IL-4, IL-5,
and IL-13 [23]. Subsequent tT2 immuno-responses include IgE-mediated hypersensi-
tivity to aeroallergens, chemoattraction of mast cells, eosinophils, and basophils, and
remodeling of the airway epithelium [14]. T2-high asthma has been clinically classi-
fied into three phenotypes, including early-onset allergic asthma, late-onset eosinophilic
asthma, and nonsteroidal anti-inflammatory drugs (NSAIDs)-exacerbated respiratory dis-
ease (NERD) [20,24].
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2.1.1. Early-Onset Atopic Asthma

The early-onset atopic asthma phenotype—most frequently identified in former hier-
archical clustering analysis—is predominant in children, responsive to inhaled steroids,
and commonly associated with increased T2 cytokines, serum-specific IgE to inhalants,
and allergic comorbidities, i.e., allergic rhinitis, atopic dermatitis, and/or food allergy, with
a relevant participation in the “atopic march” [8,25]. Multiple environmental factors, in-
cluding allergens, viral infections, pollutants, and/or cigarette smoke, have been described
as potential triggers to activate inflammatory responses, leading to clinical symptoms
concerning this asthma phenotype [26–28]. Despite asthma symptoms—with variations
in severity—that are elicited during childhood and may be resolved in adolescence, this
phenotype can persist through life [19,29].

2.1.2. Late-Onset Eosinophilic Asthma

Late-onset eosinophilic asthma phenotype usually starts in adulthood, and its un-
derlying pathobiology is also driven by a preponderant T2 inflammation response with
apparently no evidence of atopy but the leading role of ILC-2 in the production of IL-5
and IL-13 [30]. Although this phenotype may show different clinical presentations, in-
cluding comorbid chronic rhinosinusitis with and without nasal polyps, a significant
proportion of patients are older and have a more severe disease, lower pulmonary func-
tion, increased blood and sputum eosinophils, and are partially responders to inhaled or
systemic steroids [31,32].

2.1.3. Nonsteroidal Anti-Inflammatory Drugs-Exacerbated Respiratory Disease (NERD)

NERD is considered as a subset of the late-onset eosinophilic asthma phenotype—
frequently associated with chronic rhinosinusitis with nasal polyps (CRSwNP)—presenting
with rapid respiratory exacerbations immediately triggered after the intake of aspirin or
other NSAID drugs that inhibit the cyclooxygenase-1 isoenzyme (COX-1). Despite the
complete underlying pathogenic mechanism remaining unclear, NERD is characterized
by a dysregulation in the arachidonic acid metabolism and a marked overproduction
of cysteinyl leukotrienes (cysLTs), a potent lipid inflammatory mediator derived from
arachidonic acid [33,34]. Mast cells, eosinophils and platelet-adherent leukocytes, which
are present in the respiratory tissue of subjects with NERD have functional 5-lipoxygenase
(5-LOX) and leukotriene (LT) C4 synthase enzymes [35]. Arachidonic acid is oxidized by
5-LOX to form short-lived LT mediators, such as LTC4, LTD4, and the stable metabolite
LTE4 that has been formerly described as a biomarker in patients with NERD [36–38].
Interestingly, innate type 2 mediators from epithelial cells can be also activated after
stimulation with cysLTs and further amplified by mast-cell-derived prostaglandin D2 gene
(PGD2), leading to the persistent eosinophilic airway inflammation, bronchoconstriction,
and mucus secretion related to refractory nasal polyposis and asthma [39,40].

2.2. T2-Low Asthma

Clinically, T2-low asthma—accounting for 33 to 50% of the asthmatics—has been
grouped according to obesity, smoking exposure, and age. T2-low asthma is characterized
by the activation of non-T2 inflammatory pathways, including helper T-lymphocytes type 1
(Th1) and/or Th17 cells, IL-6, IL-8, IL-17, and IL-22, and epithelial-derived cytokines [41,42].
Despite no validated biomarkers having been confirmed yet, sputum cytology has defined
different subsets for T2-low asthma: neutrophilic (sputum neutrophils > 40–60%) and pau-
cigranulocytic (normal sputum levels of neutrophils and eosinophils) asthma [43]. Patients
with T2-low asthma usually develop symptoms at adulthood, and they are frequently asso-
ciated with obesity, cigarette smoke exposure, lower bronchodilator reversibility, chronic
infection with atypical bacteria, and a limited response to inhaled and systemic steroids
in combination with a metabolic dysfunction [44–46]. Comorbidities such as hyperten-
sion and diabetes are frequent in this subset of patients with lower lung function and
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increased blood IL-6 levels, which has been considered a putative biomarker for metabolic
dysfunction [22,47].

PGA has been identified as a milder respiratory phenotype in terms of severity, number
of clinically relevant exacerbations, and improved lung function compared to EA and
neutrophilic asthma (NA) [48]. Patients with PGA show lower levels of biomarkers of both
eosinophilic—blood and sputum eosinophils, serum periostin, eosinophilic cationic protein
(ECP), and FENO—and neutrophilic inflammation—serum matrix metalloproteinase-9
(MM-9), and IL-8 [48,49]. Despite the immunopathological underlying mechanisms not
having been elucidated yet, PGA is characterized by increased airway smooth muscle
dysfunction—hyperplasia and hypertrophy—leading to chronic airflow obstruction and
release of inflammatory mediators due to specific neurogenic pathways [50,51]. As no
biological treatment is available for T2-low asthma, alternative therapy targeting airway
smooth muscle dysfunction including mitogen-activated protein kinase inhibitors, tyrosine-
kinase inhibitors, phosphatidylinositol 3 kinase inhibitors, or phosphodiesterase inhibitors
is currently under investigation [52–54].

2.2.1. Obesity-Associated Asthma

Obesity-associated asthma is a complex asthma phenotype more frequently described
in nonatopic middle-aged females, presenting with severe respiratory symptoms and
a relatively preserved pulmonary function [55,56]. Interestingly, the inflammatory re-
sponse in obesity is associated with a switch from Th2 cells to Th1, Th17, and cytotoxic T
lymphocytes [57]. In addition, the levels of specific cytokines have been positively related
to body-mass index (BMI) [58]. Further innate inflammatory pathways involving ILC-3s
expressing IL-17 and IL-22 have been also described in obesity-associated asthma [59]. The
proinflammatory cytokine IL-6, produced in adipocytes and adipose tissue macrophages,
has been associated with obese T2-low asthma but not with obese atopic asthma [59,60].
Moreover, a reduction in arginine and nitric oxide (NO) bioavailability has been related to
the increased oxidative stress occurring both in obesity and obese adults with the late-onset
asthma phenotype [61].

2.2.2. Smoking-Associated Asthma Phenotype

The estimated prevalence of smokers within asthmatics—about 20%—is similar to
that found in the general population [62,63]. Cigarette smoking in asthmatics has been
previously related to poor control of symptoms, increased mortality, declined pulmonary
function, lower response to steroids, and increased healthcare costs [64–66]. The recogni-
tion of a smoking-associated asthma phenotype has relevant implications to an improved
management of patients afflicted with this specific asthma subtype. In this regard, smoking-
associated asthma is considered a T2-low neutrophilic phenotype speculating that persistent
exposure to cigarette smoke may induce a predominance of activated macrophages produc-
ing proinflammatory molecules, reactive oxygen species, matrix metalloproteinases, and
specific chemokines such as IL-8, contributing to the prolonged survival of neutrophils in
the lung tissue [67]. In addition, cigarette smoke increases total IgE levels and the risk of
sensitization to aeroallergens, thus enhancing a combined Th1/Th2 inflammatory response
developing a more severe asthma phenotype and a putative link between asthma and
chronic obstructive pulmonary disease (COPD) in subjects with a relevant smoking history,
airflow obstruction, and overlapping features of asthma, termed asthma–COPD overlap
syndrome (ACO) [53,68,69].

2.2.3. Elderly-Associated Asthma Phenotype

The age cutoff value in this underdiagnosed and sub-optimally treated very-late-
onset asthma phenotype is >65 years [70]. Age-related changes in the lung structure such
as airway narrowing, reduced elastic recoil, or alveolar dilation may lead to an overall
decreased pulmonary function [71,72]. Although the pathobiology of this phenotype has
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not been totally elucidated the preponderant airway neutrophilic inflammation has been
related to both Th1 and Th17 responses [73,74].

2.3. Overlapping in Asthma Phenotypes

An elevated rate of overlapping—above 70%—has been described in mild-to-severe
asthmatics, including combinations among different inflammatory asthma phenotypes,
such as T2-high, T2-low, and mixed T2/non-T2 [75] (Table 1). In this regard, occupational
asthma (OA), a subtype of work-related asthma, currently shows as a challenging respi-
ratory model to clinical phenotyping. As both high-molecular-weight (HMW) proteins
and low-molecular-weight (LMW) chemicals can elicit OA, different clinical, physiologi-
cal, and inflammatory profiles have been described, with HMW agents showing a higher
baseline blood eosinophilia and a greater post-challenge elevation in associated FENO
levels [76,77]. In fact, asthma has been proposed as a nonlinear complex dynamic system
with both clinical and therapeutic implications, suggesting an evolution in the underlying
inflammatory status from an initial T2-high profile moving towards an alternative T2-low
or mixed T2/non-T2 asthma phenotype [78–80].

Table 1. Overview of asthma endotypes and phenotypes.

Endotype Phenotype Clinical Features Molecular Mechanism References

Early-onset atopic
asthma

Trigger-induced phenotypes.
Steroid-sensitive. Preserved lung function Allergy to aeroallergens [8,13,14,19,25–29]

Late-onset
eosinophilic asthma

CRSwNP frequently associated.
Steroid-refractory

Staphilococcus aureus
enterotoxin [11,12,30–32]

T2-high
asthma

NERD Samter´s Syndrome. Adult onset.
Trigger-induced phenotypes

Arachidonic acid
dysregulation [33–40]

Non-atopic asthma Neutrophilic or paucigranulocytic.
Th1/Th17 inflammation [22,41–54]Adult onset

Smoking-associated
asthma Adult onset. Lower lung function Oxidative stress [62–67]

Obesity-associated
asthma

Metabolic syndrome. Females.
Preserved lung function

Th1/Th17 inflammation.
Oxidative stress. IL-6 [55–61]

T2-low
asthma

Elderly-related
asthma Very late onset. Declined lung function Th1/Th17 inflammation [70–74]

3. Genomic Studies

Among genomic studies, GWAS have uncovered a plethora of associations for several
diseases and complex human traits and diseases, mainly comprising common genetic
variants (usually with a minor allele frequency (MAF) ≥ 1%) of low-to-moderate effect
sizes (~0.8 < odds ratio (OR) < ~1.3 for most asthma-related variants) [6,81]. GWAS findings
regarding asthma phenotypes and related traits were characterized by querying the latest
version of the NHGRI-EBI GWAS Catalog [82] as detailed in Appendix A. As of 7 April 2023,
the NHGRI-EBI GWAS Catalog encompasses 31 publications related to asthma phenotypes
spanning 52 unique study accession numbers—trait-specific analyses conducted within
each publication—across 24 unique outcomes and 973 unique associations. In addition,
a total of 51 publications of asthma-related traits comprised 76 unique study accession
numbers, 61 unique outcomes, and 464 unique associations. Overall, the outburst of GWAS
with a growing number of participants has risen the number of identified genetic signals,
except in 2021, when the analysis of more than 2.8 million individuals revealed less than
80 associations across outcomes (Figure 1a,b). The maximum number of GWAS participants
included in the discovery stage for an asthma phenotype was 601,193 (for childhood-onset
asthma (COA) in Europeans and Japanese [83]), while it amounts up to 730,758 for asthma-
related trait findings (specifically, for age of onset in ethnically diverse individuals [84]).
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Figure 1. Characteristics and findings from GWAS of asthma phenotypes and related traits over time,
2009–2022, as curated by the NHGRI-EBI GWAS Catalog. (a) Maximum number of participants in the
discovery GWAS stage; (b) number of associations and GWAS. Abbreviations: AA: allergic asthma;
ACO: asthma–chronic obstructive pulmonary disease overlap syndrome; AEs: asthma exacerbations;
AOA: adult-onset asthma; COA: childhood-onset asthma; CSR: asthma control, severity, or remission;
DIA: diisocyanate-induced asthma; GxE: gene–environment interaction; IgE: immunoglobulin E;
NAA: nonatopic asthma.

Asthma phenotypes have been widely investigated in Europeans compared with
other ancestry groups and asthma-related traits (Figure 2), largely due to the contribution
of the population-based United Kingdom Biobank (UKB). Furthermore, asthma-related
traits remain widely unexplored across diverse populations, partially because these data
might have not been extensively collected in population-based studies. Notably, African
populations are poorly represented in both GWAS of asthma phenotypes and related
traits. Nevertheless, African-admixed populations, mainly African Americans, have been
included in genetic studies of asthma phenotypes and related traits for which African
Americans exhibit differential profiles in comparison with other ancestry groups (e.g.,
asthma exacerbations, treatment response, or lung function). Across all outcomes, lung
function, IgE-related phenotypes, asthma control, severity or remission, age of asthma onset,
and nonatopic asthma are the least investigated across ancestry groups. Conversely, asthma
exacerbations and treatment response have been investigated across most of the ancestry
groups, despite the modest sample sizes compared to GWAS of asthma phenotypes in
Europeans. Similarly, gene–environment interactions still lag behind compared to GWAS of
asthma phenotypes, possibly due to the even large sample size required to detect interaction
signals after multiple comparison testing (Figure 2).
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Figure 2. Outcome distribution per “broad” ancestry category and number of participants in
GWAS of asthma phenotypes and related traits over time, 2009–2022, as curated by the NHGRI-
EBI GWAS Catalog. Abbreviations: AA: allergic asthma; ACO: asthma–chronic obstructive pul-
monary disease overlap syndrome; AA/AC: African American or Afro-Caribbean; AEs: asthma
exacerbations; AFR: African; AOA: adult-onset asthma; ASN: Asian; COA: childhood-onset asthma;
CSR: asthma control, severity, or remission; DIA: diisocyanate-induced asthma; EUR: European;
GxE: gene–environment interaction; IgE: immunoglobulin E; LAT: Hispanic/Latin American;
NAA: nonatopic asthma; NR: not reported; O/M: Other/Mixed.

3.1. Genomic Studies of Asthma Phenotypes

Most GWAS variants from asthma phenotype studies annotate to distal noncoding
regions far from the transcription start site (TSS) of the closest gene (less than 500 kb).
Functionally, most variants had consequences over introns, noncoding transcripts, or
transcripts affected by nonsense-mediated mRNA decay (Figure 3a,b).

COA and allergic asthma (AA) showed the highest gene overlap with asthma and
cluster closely in terms of biological processes and pathways, while toluene diisocyanate-
induced asthma (DIA) and ACO show the largest divergence (Figure 4a,b). The most
shared terms in the enrichment analyses were related to inflammatory and adaptative
immune responses (Figure 4b). A protein–protein interaction network of the most densely
connected network components for asthma phenotypes prioritized three subnetworks
(Figure 4c). The first subnetwork comprised four DIA, one COA, and one adult-onset
asthma (AOA)-related genes implicated in calcium transport (CACNG3, CACNA2D1, and
RYR1) or transcriptional/translational control (DARS1, H2AC25, and HEXIM1). The second
subnetwork comprised five genes implicated in B-/T-cell receptor and PI3K/AKT signaling
pathways (ERBB3, ITK, INSR, PIK3CD, and VAV3). The third subnetwork harbored three
genes implicated in O-linked glycosylation of mucins (GALNT18, MUC6, and MUC21).
None of these sub-networks contained NA-related genes.
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the identity of each gene list, whereas the inner arc represents a gene list, where each gene member
of that list is assigned a spot on the arc. The dark orange color represents the genes shared by
multiple gene lists, and light orange color represents genes specific to that gene list. The number
of genes overlapping between each gene list and the 413 genes from the asthma gene list and the
total number of genes within each gene list are shown along with each phenotype term. (b) Gene-set
enrichment analysis of asthma and asthma phenotype-related genes. (c) Prioritized subnetworks for
distinct genes for asthma phenotypes. Abbreviations: AA: allergic asthma; ACO: asthma–chronic
obstructive pulmonary disease overlap syndrome; AOA: adult-onset asthma; COA: childhood-onset
asthma; DIA: diisocyanate-induced asthma; EF: extrafollicular; FO: follicular; NAA: nonatopic
asthma; TF: transcription factor.

3.2. Genomic Studies of Asthma-Related Traits

In recent years, great efforts have been made to characterize the genetic determinants
of asthma treatment response and exacerbations, particularly in genetically admixed and
historically minoritized populations disproportionately affected by asthma. Since genomic
findings for asthma treatment response, asthma exacerbations, or gene–environment in-
teractions have been recently reviewed elsewhere [85–88], this review will focus on age of
asthma onset, moderate-to-severe asthma, asthma remission, T2-low asthma, as well as
lung function, total IgE levels, and eosinophil-specific proteins in asthma.

Overall, 10 GWAS of asthma-related traits have been published (Table 2), primarily
in European populations, except for GWAS of total serum and mite-specific IgE levels
in East Asian individuals. Three GWAS [89–91] have investigated the association with
age of asthma onset as a linear measurement. A GWAS meta-analysis of 5462 individuals
with asthma and 8424 individuals without asthma [89] associated four stablished asthma
loci with the age of asthma onset (2q12, 6p21, 9p24, and 17q12–q21) and found a novel
association at locus 16q12. Moreover, in a GWAS including 37,846 patients with asthma [90],
19 loci were genome-wide associated with age of asthma onset, along with the genomic
regions 2q12 and 9p24, previously detected [89]. Furthermore, a recent study [91] in
25,240 individuals with asthma uncovered novel significant genome-wide signals near
genes implicated in the regulation of transcription (TEF), cell growth (MUCL3), and the
prognosis of non-small-cell lung carcinoma (SFTA2) [92].

In terms of asthma severity, the largest genome-wide association study of moderate-
to-severe asthma published to date identified three novel signals that regulate mucin pro-
duction (rs10905284, rs11603634, and rs560026225) and validated 24 prior signals for mild
asthma [93]. From the three novel signals, the SNP rs11603634 was specific to moderate-to-
severe asthma. Moreover, a whole-genome sequencing association study of asthma severity
in Europeans evidenced eight genome-wide significant loci previously reported as associ-
ated with asthma (IL1RL2, TSLP, HLA-DQA1, BACH2, C11orf30, RAD51B, and GSDMB) and
lung function (THSD4) [94]. The inverse genetic correlation between moderate-to-severe
asthma risk and lung function (rg < −0.16) provides genetic support for a role of lung
function in moderate-to-severe asthma risk. In this sense, only two GWAS of pulmonary
function among individuals with asthma have been performed [95,96], focused mainly on
Europeans. One study focused only on longitudinal FEV1 in children with asthma that
received placebo and with data collected every 2–4 months in a 4-year period. Their work
revealed seven suggestively associated SNPs that replicated in individuals that underwent
nedocromil treatment (Table 1) [95]. Another study found replication for 7 out of 28 lung
function loci (HHIP, FAM13A, THSD4, GSTCD, NOTCH4-AGER, RARB, and ZNF323) pre-
viously identified in the general population (p-value < 0.05) supporting a shared basis
between phenotypes [96].

Although there are treatments to control asthma symptoms, as of today, there is no
cure for asthma. Nonetheless, some individuals with asthma experience remission of
their symptoms, which is more common in children than in adults [97]. The first and
only GWAS of asthma remission to date [97] reported 25 SNPs suggestively associated
in 790 Dutch adults (p-value < 2.5 × 10−4). Four of those associations were replicated
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in European adults (n = 1132). The top-hit, rs6581895, was found to be an expression
quantitative trait locus (eQTL) of FRS2 and CCT2 in lung tissue. FRS2 encodes a protein
that belongs to the FRS2 family of adaptor/scaffold proteins and inhibits EGF signaling,
which leads to an inhibition of EGF-induced cell proliferation and cell transformation.
CCT2 encodes a molecular chaperone which is part of the TCP1 ring complex (TRiC) and
participates in the maintenance of cell proliferation. Genetic variants in these genes have
been associated with albuminuria [98], which was recently associated with a greater decline
in lung function [99]. Nevertheless, considering asthma as a risk factor for renal dysfunction
remains controversial [100].

Nowadays, the inflammatory microenvironment in the lower airway remains un-
clear. Since the identification of biomarkers associated with T2 inflammation, one of the
approaches used is to differentiate patients with T2-high from those who have T2-low
asthma [20]. The only GWAS of T2-low adult asthma (n = 1350) revealed a genome-wide
significant association (rs117639512, OR for A allele = 0.33, p-value = 2.75 × 10−8) in
the intergenic region between kallikrein-related peptidase 4 (KLK4) and kallikrein-related
peptidase 5 (KLK5) genes [101].

Although several GWAS have investigated genetic factors of IgE levels, only one
GWAS of IgE levels in individuals with asthma has been conducted [102]. The analysis of
877 East Asians highlighted suggestive associations in CRIM1, ZNF71, TLN1, and SYNPO2
that had not been previously associated with IgE in non-asthmatic individuals. However,
these regions remain to be validated in independent studies to assess their potential interest
as clinical markers. Notably, gene expression variation of SYNPO2 has been previously asso-
ciated with airway hyperresponsiveness in patients with asthma [103]. Similarly, although
no GWAS of eosinophil counts has been conducted in asthma patients, two eosinophil-
specific proteins released during allergic response have been studied in asthmatic families:
ECP and eosinophil-derived neurotoxin (EDN) [104]. This study identified seven distinct
signals located in five loci (1p31, 2p13, 7p21, 9q22, and 14q11) associated with ECP and EDN
levels and/or the combination of both phenotypes in adults of asthma-ascertained families.

Table 2. Summary of independent genetic signals from GWAS of asthma-related traits.

Phenotypes SNP Chr.
Region a Genomic Context Effect

Allele
Coefficient

Type
Coefficient

Value p-Value References

Asthma
age onset

rs10208293 2q12 IL1RL1 G HR 1.14 3.1 × 10−8

[89]

rs9272346 6p21 HLA-DQA1 A HR 1.13 1.6 × 10−8

rs928413 9p24 IL33 G HR 1.19 6.5 × 10−16

rs1861760 16q12 CYLD A HR 1.28 4.2 × 10−8

rs9901146 17q12-q21 ZPBP2/GSDMB G HR 1.18 1.9 × 10−16

rs61816761 1q21.3 FLG A beta −4.57 8.15 × 10−27

[90]

rs7518129 1q25.1 TNFSF4 G beta −0.85 4.89 × 10−9

rs3771175 2q12.1 IL1RL1 T beta −1.73 7.66 × 10−17

rs10187276 2q36.3 SNRPGP8/CCL20 T beta −0.87 1.98 × 10−8

rs78147778 2q37.3 D2HGDH T beta −0.91 1.64 × 10−8

rs2889896 3q28 LPP C beta −0.98 8.07 × 10−13

rs5743618 4p14 TLR1 C beta −1.58 4.53 × 10−22

rs4705962 5q31.1 KIF3A T beta −0.99 5.57 × 10−10

rs12207974 6p21.33 HLA-E/RANP1 C beta −1.07 8.86 × 10−11

rs1093 6p21.33 HLA-B G beta −0.99 8.41 × 10−10
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Table 2. Cont.

Phenotypes SNP Chr.
Region a Genomic Context Effect

Allele
Coefficient

Type
Coefficient

Value p-Value References

Asthma
age onset

rs9274659 6p21.32 HLA-DQB1/
MTCO3P1 A beta −1.25 6.71 × 10−18

[90]

rs7848215 9p24.1 IL33 T beta −1.03 7.51 × 10−12

rs117137535 9q34.3 ARRDC1 A beta −2.46 3.42 × 10−8

rs61894547 11q13.5 EMSY T beta −2.23 4.42 × 10−15

rs12365699 11q23.3 CXCR5/DDX6 G beta −1.40 4.42 × 10−14

rs4795399 17q12 GSDMB T beta −2.29 6.76 × 10−65

rs11658582 17q21.2 CCR7/SMARCE1 G beta −0.91 1.37 × 10−10

rs4574025 18q21.33 TNFRSF11A T beta −0.87 1.61 × 10−10

rs12964116 18q21.33 SERPINB7 G beta −1.92 4.87 × 10−8

rs5758324 22q13.2 TEF G HR 1.06 2.39 × 10−8

[91]
rs2844649 6p21.33 SFTA2/MUCL3 A HR 1.08 4.45 × 10−8

Asthma
severity

rs560026225 4q27 KIAA1109 GATT OR 1.12 3.06 × 10−9

[93]

rs10905284 10p14 GATA3 A OR 0.90 1.76 × 10−10

rs11603634 11p15.5 MUC5AC G OR 1.09 2.32 × 10−8

rs7523907 1q24.2 CD247 T OR 1.10 4.82 × 10−9

rs12479210 2q12.1 IL1RL1 T OR 1.19 1.57 × 10−29

rs34290285 2q37.3 D2HGDH A OR 0.84 2.24 × 10−23

rs1837253 5q22.1 TSLP C OR 1.19 1.95 × 10−22

rs1438673 5q22.1 WDR36 T OR 0.89 3.29 × 10−13

rs3749833 5q31.1 C5orf56 C OR 1.14 5.60 × 10−14

rs1986009 5q31.1 RAD50 A OR 1.17 2.43 × 10−15

rs9273410 6p21.32 HLA-DQB1 A OR 1.21 5.62 × 10−32

rs144829310 9p24.1 IL33 T OR 1.21 2.29 × 10−20

rs7936312 11q13.5 C11orf30 T OR 1.17 6.18 × 10−24

rs703816 12q13.3 STAT6 C OR 1.12 3.69 × 10−13

rs10519068 15q22.2 RORA A OR 0.85 1.84 × 10−12

rs72743461 15q22.33 SMAD3 A OR 1.14 4.52 × 10−14

rs7203459 16p13.13 CLEC16A C OR 0.86 4.37 × 10−18

rs2941522 17q12 IKZF3 T OR 1.11 2.32 × 10−12

rs139210940 2q12.1 IL1RL2 AT OR 1.34 8.08 × 10−9

[94]

rs10455025 5q22.1 TSLP C OR 1.30 4.36 × 10−13

rs17205170 6p21.32 HLA-DQA1 G OR 1.45 7.92 × 10−16

rs2875584 6q15 BACH2 C OR 1.24 1.57 × 10−8

rs7130588 11q13.5 C11orf30 G OR 1.24 2.46 × 10−9

rs2104047 14q24.1 RAD51B T OR 1.25 1.28 × 10−8

rs11631778 15q23 THSD4 G OR 1.23 3.54 × 10−8

rs7216558 17q12 GSDMB T OR 1.26 1.91 × 10−11
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Table 2. Cont.

Phenotypes SNP Chr.
Region a Genomic Context Effect

Allele
Coefficient

Type
Coefficient

Value p-Value References

Pulmonary function

FEV1

rs559389 11q13.4 - C beta −0.03 5.28 × 10−5

[95]

rs9366309 6p22.3 - T beta −0.03 3.32 × 10−5

rs6763931 3q23 ZBTB38 A beta 0.03 5.90 × 10−5

rs2304725 3p25.3 SLC6A11 C beta 0.03 3.87 × 10−5

rs17161791 7p21.3 - C beta 0.002 3.01 × 10−5

rs10795348 10p13 C10orf97 T beta 20.16 5.07 × 10−5

[96]

rs10951730 7p13 HECW1 A beta 20.24 9.58 × 10−5

rs1291183 18p11.32 YES1 T beta 20.18 3.54 × 10−5

rs1321267 6q23.2 MOXD1 A beta 20.14 5.46 × 10−5

rs1843593 4q13.2 GNRHR T beta 20.20 5.30 × 10−5

rs2040403 22q12.3 SYN3 A beta 0.29 1.96 × 10−5

rs2063485 3q13.11 ZPLD1 T beta 0.23 7.18 × 10−5

rs285461 1q23.3 LRRC52 T beta 0.22 9.56 × 10−5

rs3010301 6q24.1 CITED2 T beta 0.17 2.65 × 10−5

rs3756089 4q35.1 IRF2 T beta 0.26 8.79 × 10−5

rs3805383 4q12 NMU A beta 20.17 2.35 × 10−5

rs388159 19p13.11 IL12RB1 T beta 0.19 3.47 × 10−5

rs4234121 2q37.3 KIF1A A beta 20.15 3.25 × 10−5

rs4651208 1q25.3 C1orf21 T beta 20.15 6.34 × 10−5

rs4735916 8p23.3 ERICH1 A beta 20.24 7.02 × 10−5

rs5755023 22q12.3 LARGE A beta 20.21 1.75 × 10−5

rs58667 22q13.31 UPK3A A beta 0.18 3.95 × 10−7

rs6788848 3q13.11 ZPLD1 T beta 20.18 4.99 × 10−5

rs7434819 4q32.1 C4orf18 A beta 20.14 7.34 × 10−5

rs7670758 4q31.21 HHIP A beta 20.14 9.50 × 10−5

rs7836170 8q13.2 SULF1 T beta 20.16 2.15 × 10−5

rs925847 2q32.2 STAT4 T beta 0.16 8.17 × 10−5

rs9364299 6q27 SMOC2 A beta 0.14 9.96 × 10−5

rs9903394 17q24.3 SOX9 A beta 0.16 8.47 × 10−5

FVC

rs6482071 10p12.31 BCL11A T beta 20.16 6.15 × 10−5

rs2497714 10q25.3 ALS2CR4 T beta 20.17 8.49 × 10−5

rs2181563 10q25.3 TNIK A beta 0.20 3.50 × 10−5

rs10466868 12q24.33 YTHDC1 T beta 0.35 1.39 × 10−5

rs6500728 16p13.3 KIAA0922 T beta 20.17 2.02 × 10−5

rs169660 16p12.2 SULF1 T beta 20.17 9.77 × 10−5

rs1291183 18p11.32 ABLIM1 A beta 0.33 4.66 × 10−5

rs11085898 19p13.12 PLXDC2 T beta 0.31 6.50 × 10−5

rs2110565 2p16.1 KIAA1600 A beta 20.17 6.72 × 10−5
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Table 2. Cont.

Phenotypes SNP Chr.
Region a Genomic Context Effect

Allele
Coefficient

Type
Coefficient

Value p-Value References

FVC

rs1208082 2q33.1 LOC338797 T beta 20.25 6.39 × 10−5

[96]

rs221013 20p12.2 HS3ST2 T beta 20.17 4.20 × 10−5

rs8115491 20q12 A2BP1 T beta 20.17 7.15 × 10−5

rs6096573 20q13.2 YES1 T beta 20.18 5.47 × 10−5

rs9974012 20q13.31 NDUFB7 A beta 0.16 4.97 × 10−5

rs7281703 21q21.1 PAK7 T beta 0.17 3.09 × 10−5

rs8140240 22q12.3 ATP9A T beta 0.16 5.92 × 10−5

rs4133045 3q26.2 PTPRT T beta 0.20 7.02 × 10−5

rs17592868 4q13.2 BMP7 T beta 0.16 8.72 × 10−5

rs13119846 4q31.3 C21orf37 T beta 0.33 6.98 × 10−5

rs7836170 8q13.2 EIF3S7 A beta 20.31 9.95 × 10−5

FEV1/FVC

rs11032873 11p13 APIP T beta 0.18 3.08 × 10−5

rs11675728 2q36.3 DNER T beta 20.15 7.22 × 10−5

rs12659620 5p15.31 ADCY2 T beta 0.15 5.56 × 10−5

rs1406593 7p15.2 SNX10 T beta 20.15 7.64 × 10−5

rs1416920 6p22.1 ZNF323 T beta 0.16 9.46 × 10−5

rs17450685 10q22.3 C10orf11 T beta 0.15 8.73 × 10−5

rs17554448 2q31.1 ZNF650 A beta 0.19 8.56 × 10−5

rs17646998 8q13.2 SULF1 T beta 20.15 3.61 × 10−5

rs2063485 3q13.11 ZPLD1 T beta 0.25 1.34 × 10−5

rs2230739 16p13.3 ADCY9 A beta 0.16 6.25 × 10−5

rs2705044 8p22 MTMR7 A beta 0.21 7.46 × 10−5

rs3130696 6p21.33 HLA-C A beta 20.17 7.34 × 10−5

rs3748540 1q43 GREM2 A beta 0.15 7.88 × 10−5

rs3809335 13q12.13 MTMR6 T beta 0.28 5.40 × 10−5

rs4234121 2q37.3 KIF1A A beta 20.15 5.32 × 10−5

rs5767064 22q13.32 LOC388915 A beta 0.16 2.79 × 10−5

rs7663065 4p15.1 FLJ45721 A beta 20.15 5.43 × 10−5

rs8030494 15q24.1 TBC1D21 A beta 0.15 7.83 × 10−5

rs823673 1p34.2 NFYC A beta 0.19 3.94 × 10−5

rs9287995 2q31.1 HNRPA3 T beta 0.15 6.02 × 10−5

rs9362054 6q14.3 C6orf84 T beta 0.14 8.68 × 10−5

rs9574386 13q31.1 C13orf10 A beta 20.27 7.72 × 10−5
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Table 2. Cont.

Phenotypes SNP Chr.
Region a Genomic Context Effect

Allele
Coefficient

Type
Coefficient

Value p-Value References

Asthma remission

[97]

Clinical
remission rs7240102 18q21.2 LOC100130003/C18orf26 G OR 1.99 7.9 × 10−5

Complete
remission rs6581895 12q15 YEATS4/FRS2 G OR 3.83 1.3 × 10−5

rs12405429 1q42.2 FAM89A/TRIM67 G OR 3.10 1.0 × 10−4

rs1420101 2q12.1 IL18R1/IL1RL1 A OR 0.44 3.4 × 10−4

T2-low
asthma rs117639512 19q13.41 KLK5 A OR 0.33 2.75 × 10−8 [101]

Total IgE
rs10404342 19q13.43 ZNF71 C NA NA 7.60 × 10−6

[102]
rs4879926 9p13.3 TLN1 C NA NA 7.74 × 10−60

Eosinophil-specific proteins

[104]

EDN rs72677651 1p31.3 JAK1/AK4 T beta 0.54 2.0 × 10−8

rs76335186 7p21.3 NDUFA4 G beta −0.55 4.9 × 10−8

rs67049014 14q11.2 RNASE2/METTL17 A beta −0.32 3 × 10−12

ECP rs56675562 9q22.1 CDK20/SPATA31C2 G beta −0.56 5.1 × 10−9

ECP-EDN rs116571378 2p13.3 ARHGAP25 T beta NA 4.2 × 10−10

rs67049014 14q11.2 RNASE2/METTL17 A beta NA 1 × 10−13

a Positions based on GRCh37/hg19 build. Abbreviations: FEV1: forced expiratory volume in 1 second; FVC: forced
vital capacity; HR: hazard ratio; IgE: immunoglobulin E; NA: not available; OR: odds ratio.

4. Discussion

Our analysis of the NHGRI-EBI GWAS Catalog highlighted a Eurocentric bias in
studies of asthma phenotypes and related traits, as similarly observed for GWAS across
human diseases/traits [105] and polygenic scores [106]. Further efforts should be made
in ethnically diverse populations, particularly in historically minoritized populations dis-
proportionately affected by asthma susceptibility, mortality, and comorbidities, such as
African Americans and Hispanics/Latinos in the United States of America. In this regard,
recent studies have characterized the genetic variation implicated in asthma exacerba-
tions and treatment response in admixed populations either by GWAS [85,86], multi-omic
approaches [107], or leveraging local ancestry via admixture mapping [108–110]. However,
functional studies are needed to confirm these findings and prioritize genetic markers for
assessment of their predictive capability to guide treatment response or prognosis.

Some of the genes revealed in GWAS of asthma phenotypes and related traits have
been also uncovered in non-stratified GWAS of asthma. Therefore, it is likely that many
of the previously reported asthma signals actually reflect specific asthma phenotypes
present in a large proportion of GWAS participants. Although several studies have
focused on asthma phenotypes, there is a limited number of studies considering only
asthma patients, especially for clinically relevant phenotypes such as lung function or
IgE levels, which could also include healthy individuals. For instance, novel IgE-related
genes (CRIM1, ZNF71, TLN1, and SYNPO2) were uncovered by the only GWAS of IgE in
asthma patients. Among these, SYNPO2 gene overexpression was previously associated
with reduced airway hyperresponsiveness in individuals with asthma after oral corticoid
therapy [103]. Another study focused on eosinophil-specific proteins released during
allergic response [104] revealed genetic signals in genes involved in pathophysiologic
mechanisms common between eosinophil activity and asthma, such as inflammation,
oxidative stress, and extracellular matrix remodeling. The research on asthma remis-
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sion merits special attention, despite the fact that just one study has been conducted so
far [97]. In their work, the A-allele of rs1420101 located in IL1RL1 was associated with
a lower probability of complete asthma remission in adults. This finding is consistent
with a previous study that reported the association of this SNP with higher eosinophil
levels in childhood asthma and with a higher risk for asthma [111]. All these together
support the necessity of considering asthma-related phenotypes as a strategy to poten-
tiate novel loci discovery and possible new therapeutical targets for precision medicine.
Although the characterization of genetic influences on asthma phenotypes still lags be-
hind compared to other omic layers (e.g., proteomics [112], transcriptomics [93,113,114],
or epigenetics [115,116]), three studies have discerned asthma-related polygenic pheno-
types [117–119]. The analysis of comorbidity data from electronic health records as a
surrogate of unknown gene–environment contexts distinguished 22 asthma subgroups
with distinct comorbidity patterns using approximately six million residents of the United
States of America, from which 11 subgroups were validated in the UKB [117]. The GWAS
of asthma across the validated subgroups and the whole dataset revealed 14 shared and
6 distinct associations, of which loci for the musculoskeletal and gastrointestinal asthma
subgroups remained significant after stringent correction for multiple testing [117]. An
analysis of longitudinal data from the UKB revealed multiple age-dependent comorbidity
subgroups across complex diseases. In particular, the asthma subgroup characterized by
dermatological comorbidities exhibited significant heterogeneity in polygenic risk scores
compared to the other asthma subgroups [118]. Another study found suggestive genetic
associations for asthma-related phenotypes determined by latent class analysis of clinical
and demographic data from 3001 European adults [119].

Other approaches for identification of polygenic subtypes for human complex diseases
and traits [120] could be implemented in asthma. Although the effect size gradient is
likely to be small for most asthma-related loci [117], clustering of variant effect sizes
supported by functional annotation or pleiotropy may also reveal additional insights into
the genetic basis of respiratory diseases. Multi-trait genetic analyses of autoimmune and/or
allergic diseases have uncovered pleotropic variants in European [121,122] and Japanese
individuals [123]. Conversely, the modest differences in minor allele frequencies of most
common variants across subgroups may hinder genomic-driven subtype identification
in complex diseases [120]. A recent analysis in the UKB overcame this limitation by
investigating previous respiratory-health-related loci and incorporating multi-trait data
into genetic effect clustering by considering airway diseases, lung function, and other
clinical and demographic traits [124]. The evident Eurocentric bias in genomic research
of respiratory diseases is likely to lessen with the development of large-scale initiatives
integrating both genomic, environmental, and respiratory health data from ethnically
diverse populations, such as the Environmental influences on Child Health Outcomes
(ECHO) study [125] and the All of Us Research Program [126]. Moore et al. [16] used a
clustering approach in the SARP cohort to classify severe asthma cases attending to clinical
and demographic data and were able to discriminate several sub-phenotypes within this
cohort of patients.

Multi-omics have also been applied to define asthma phenotypes and gain a better com-
prehension of the disease. For instance, Forno et al. prioritized IL5RA as a candidate gene
associated with asthma using vertical integration of several analytical layers [127]. Another
potential strategy to integrate several omic layers could be the use of colocalization [128].
In this case, each layer is analyzed separately and then overlapped to evaluate if there
are specific genomic regions that associate with a trait of interest through more than one
omic layer, implying and reinforcing the association of that region with the phenotype
studied. In that regard, it is important that the tissues to be explored are relevant for the trait
under study since the transcriptomic and epigenetic profiles may differ between tissues.
Nonetheless, these strategies have been scarcely applied to define asthma subgroups or to
assess any asthma phenotype individually.
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Importantly, one omic layer rarely included in asthma multi-omic analyses despite
the amount of linking evidence with asthma development, progression, and asthma ex-
acerbations is the microbiome, defined as the set of microorganisms of a specific niche,
which gathers both the human microbiome and the environmental microbiome. In fact,
several studies have assessed the implication of the bacterial and fungal communities of
the airways and related tissues as the saliva or the oral cavity, highlighting how dysbiosis
in those environments associates with risk or protection of developing asthma or asthma
exacerbations [129].

An alternative to these integrative methods could be the exploration of the role that
genetic variants highlighted in omic studies as associated with a specific trait have in
the context of transcriptomic and epigenetic regulation or other contexts such as the RNA
maturation or the tridimensional organization of the genetic material in the nucleus (histone
modification and DNA packing). These methods have been collectively called quantitative
trait locus (QTL) analyses and have been recently incorporated in omic studies to allocate
those associations in the cellular context and gain a better understanding with regard to
the biological meaning of those associations [130]. An important note for future studies
concerns the annotation methodology used to assign genes to genetic variants in order to
understand omic results from a functional perspective and as part of a bigger picture. Since
this annotation method assigns genes to genetic variants attending to proximity to the TSS,
a plausible alternative for future studies could be using annotation methods that rely on
functional information instead of only relying on physical distance.
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Appendix A

Appendix A.1. Literature and Database Mining

The NHGRI-EBI GWAS Catalog (version 2023-04-07) was downloaded from the GWAS
catalog webpage and processed in R 4.2.3. The GWAS Catalog literature mining, inclu-
sion criteria, and curation process is described elsewhere [82,131]. The methodology for
categorization of individuals into ancestry groups is detailed elsewhere [132]. Ancestry
groups were categorized into seven groups: “African” (AFR), “African American or Afro-
Caribbean” (AA/AC), “Asian” (ASN), “European” (EUR), “Hispanic/Latin American”
(LAT), “Other/Mixed” (O/M), “Not Reported (NR)”. Outcomes containing the words
“asthma” or “Asthma” in the disease/category term were categorized into six groups
according to the type of assessed genetic effect: (a) main effects for asthma, (b) main ef-
fects for asthma and other diseases/traits (pleiotropy), (c) effects of gene–environment
or gene–gene interactions, (d) main effects for asthma subtypes, or (e) main effects for
asthma-related phenotypes. Diseases/traits related to asthma were grouped according to
the following seven categories: asthma, asthma–chronic obstructive pulmonary disease
overlap syndrome (ACO), nonatopic asthma (NAA), allergic asthma (AA), adult-onset
asthma (AOA), childhood-onset asthma (COA), and toluene diisocyanate-induced asthma
(DIA). Asthma-related diseases/traits were grouped according to the following six cate-
gories: asthma remission, control, and severity, age of asthma onset, immunoglobulin E
levels, eosinophil-specific protein levels, bronchial hyperresponsiveness, and lung function.
Asthma exacerbations, treatment response, and gene–environment interactions on asthma
were considered for scientometric analysis but were not reviewed as they have been re-
cently described in depth [85–87]. The full list of phenotypes considered for scientometric
purposes is detailed in Table A1.

Table A1. Categorization of diseases/traits for asthma phenotypes and related traits available in the
NHGRI-EBI GWAS Catalog (version 2023-04-07).

Asthma-Related Traits Asthma Phenotype

AES AA

Asthma exacerbations Atopic asthma
Asthma with exacerbation (PheCode 495.2) Asthma and hay fever
Childhood asthma exacerbations in long-acting beta2-agonist treatment Asthma and eczema
Childhood asthma with severe exacerbations ICD10 J45.0: Predominantly allergic asthma

Severe exacerbations in childhood asthma ICD10 J45.0: Predominantly allergic asthma (Gene-based
burden)

Exacerbations requiring hospitalization in asthma ACO

Asthma exacerbations in inhaled corticosteroid treatment Asthma–COPD overlap syndrome

Asthma with severe exacerbations Asthma–chronic obstructive pulmonary disease overlap
syndrome in asthma

Age of onset Asthma–COPD overlap syndrome (Gene-based burden)

Asthma (time to childhood onset) in early life tobacco smoke exposure) Asthma–chronic obstructive pulmonary disease overlap
syndrome

Asthma (time to onset) AOA

Asthma (age of onset) Adult-onset asthma in non-smokers
Age of onset of childhood-onset asthma Adult-onset asthma in ever-smokers
Age of onset of adult-onset asthma Adult asthma (Gene-based burden)
Asthma (time to event) Asthma (adult onset)

CSR Adult asthma

Asthma (moderate or severe) COA

Clinical remission in asthma Pediatric asthma
Complete remission in asthma Self-reported childhood asthma in adult smokers
Asthma control Asthma (childhood onset)
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Table A1. Cont.

Asthma-Related Traits Asthma Phenotype

GxE Childhood asthma

Asthma (sex interaction) Asthma onset (childhood vs. adult)

Adult onset asthma (smoking interaction) DIA

Childhood asthma x sex interaction Asthma (toluene diisocyanate-induced)
Asthma (SNP x SNP interaction) Diisocyanate-induced asthma

Asthma control x inhaled corticosteroid treatment interaction (1df) NAA

Asthma control x inhaled corticosteroid treatment interaction (2df) Nonatopic asthma
Asthma x Hispanic interaction (2df)
Bronchodilator response x age interaction in asthma
Bone mineral accretion in asthma (oral corticosteroid dose interaction)
Response to zileuton treatment in asthma (FEV1 change interaction)
Asthma (time to childhood onset) x early life tobacco smoke interaction
Adult onset asthma (smoking interaction)
Asthma (sex interaction)
Asthma (SNP x SNP interaction)
Asthma or atopy (farm exposure interaction)
Asthma x air pollution interaction (2df)
Asthma x Hispanic interaction (2df)
Childhood asthma x sex interaction
Childhood onset asthma (traffic air pollution exposure interaction)
Lung function (FEV1) in asthma (dust mite allergen exposure
interaction)
Lung function (FEV1/FVC) in asthma (dust mite allergen exposure
interaction)
Adverse response to inhaled corticosteroid treatment x age interaction
in asthma
Bronchodilator response in asthma (inhaled corticosteroid treatment
interaction)
Post-bronchodilator FEV1 x air pollution (CO) interaction in childhood
asthma)
Asthma x air pollution interaction (2df)
Post-bronchodilator FEV1 x air pollution (NO2) interaction in
childhood asthma,
Childhood onset asthma (traffic air pollution exposure interaction)

IgE-related

IgE levels in asthmatics
IgE levels in asthmatics (D.f. specific)
IgE levels in asthmatics (D.p. specific)

Lung function

Pulmonary function in asthmatics,
Lung function (FEV1) in asthma
Lung function (FVC) in asthma
Lung function (FEV1/FVC) in asthma

Treatment response

Post-bronchodilator lung function in asthma (FEV1)
Post-bronchodilator lung function in asthma (FVC)
Post-bronchodilator lung function in asthma (FEV1/FVC)
Asthma treatment response
Asthma (bronchodilator response)
Asthma (corticosteroid response)
Response to inhaled corticosteroid treatment in asthma (change in
FEV1)
Response to inhaled glucocorticoid treatment in asthma (change in
FEV1)
Bronchodilator response in asthma
Response to montelukast in asthma (change in FEV1)
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Table A1. Cont.

Asthma-Related Traits Asthma Phenotype

Response to mepolizumab in severe asthma
Response to placebo treatment in childhood asthma (FVC change)
Oral corticosteroid burst in asthma
Recent medication for asthma (UKB data field 22167)
Recent medication for asthma (UKB data field 22167) (Gene-based
burden)
Subjective response to placebo treatment in childhood asthma (change
in cough/wheeze)

Abbreviations: 2df: 2 degree of freedom test; AA: allergic asthma; ACO: asthma–chronic obstructive pul-
monary disease overlap syndrome; AEs: asthma exacerbations; AOA: adult-onset asthma; CO: carbon monoxide;
COA: childhood-onset asthma; COPD: chronic obstructive pulmonary disease; CSR: asthma control, sever-
ity, or remission; Dp: Dermatophagoides pteronyssinus; Df: Dermatophagoides farinae; DIA: diisocyanate-induced
asthma; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; GxE: gene–environment interaction;
IgE: immunoglobulin E; NAA: nonatopic asthma; NO2: nitrogen dioxide; SNP: single-nucleotide polymorphism;
UKB: United Kingdom Biobank.

To identify GWAS studies that have yet to be included in the NHGRI-EBI GWAS
Catalog, Pubmed was queried using the following command via PubmedR R package [133]
in order to retrieve studies from inception up to 19 April 2023: “((((((Genome-Wide As-
sociation Study[MeSH Terms]) AND (asthma[MeSH Terms])) AND (asthma[Title])) NOT
(exacerbations[Title])) NOT (editorial[Publication Type])) NOT (Review[Publication Type]))
NOT (Systematic Review[Publication Type])”. Screening of articles was conducted indepen-
dently by two reviewers (A.E.-O. and E.H.-L.). Any disputes in data were resolved in a joint
meeting between the two reviewers (A.E.-O. and E.H.-L.). Conference or poster abstracts,
literature reviews, editorials, or opinion articles, studies not conducted on humans, studies
not in English, and studies not designed as genome-wide association were excluded. One
article with genome-wide significant signals for COA was identified and incorporated
into the database. In addition, we further conducted a systematic search using Pubmed
to identify genomic studies for asthma remission, asthma control, asthma severity, age of
asthma onset, immunoglobulin E levels, eosinophils count, eosinophil-specific protein lev-
els, bronchial hyperresponsiveness, and lung function. No genomic studies of eosinophils
count in asthma have been conducted.

Appendix A.2. Variant Annotation

Genetic variants were annotated to genes via GREAT [134] using the “basal plus
extension” procedure, which considers proximal genes as those with a transcription start
site (TSS) within 5.0 and 1.0 kilobases (kb) upstream and downstream of the genomic
location, respectively, and distal genes as those with a TSS located up to 1000 kb from
the genomic location. Variant effect type according to the Sequence Ontology term was
investigated using g:SNPsense within the g:Profiler framework [135]. Multi-effect variants
were considered in the analysis.

Appendix A.3. Enrichment and Protein–Protein Interaction Network Analyses

Gene-set enrichment analyses were conducted for genes detected only by the spe-
cific parent categories or shared across categories using default parameters at Metascape
(v3.5.2023-05-01) [136]. The following terms were evaluated using gene-set enrichment
analysis on Gene ontology terms (GO) for Cellular Components, Molecular Functions, and
Biological Processes, as well as additional pathway data, including the Kyoto Encyclopedia
of Genes and Genomes (KEGG) Pathway, Reactome Gene Sets, Canonical Pathways, and
WikiPathways datasets. Within the Metascape framework, a protein–protein interaction
network was built considering distinct gene sets for asthma phenotypes and physical inter-
actions in STRING [137] and BioGrid [138]. The Molecular Complex Detection (MCODE)
algorithm [139] was used to identify densely connected network components.



Genes 2023, 14, 1824 20 of 25

References
1. Ferkol, T.; Schraufnagel, D. The Global Burden of Respiratory Disease. Ann. Am. Thorac. Soc. 2014, 11, 404–406. [CrossRef]

[PubMed]
2. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2023. Available online: https://ginasthm

a.org/ (accessed on 27 August 2023).
3. Price, D.; Fletcher, M.; Molen, T. van der Asthma Control and Management in 8000 European Patients: The REcognise Asthma

and Link to Symptoms and Experience (REALISE) Survey. NPJ Prim. Care Respir. Med. 2014, 24, 14009. [CrossRef] [PubMed]
4. Levy, M.L. The National Review of Asthma Deaths: What Did We Learn and What Needs to Change? Breathe Sheff 2015, 11, 14–24.

[CrossRef] [PubMed]
5. Sadatsafavi, M.; Rousseau, R.; Chen, W.; Zhang, W.; Lynd, L.; FitzGerald, J.M. The Preventable Burden of Productivity Loss Due

to Suboptimal Asthma Control: A Population-Based Study. Chest 2014, 145, 787–793. [CrossRef] [PubMed]
6. Vicente, C.T.; Revez, J.A.; Ferreira, M.A.R. Lessons from Ten Years of Genome-Wide Association Studies of Asthma. Clin. Transl.

Immunol. 2017, 6, e165. [CrossRef] [PubMed]
7. Sakula, A. Henry Hyde Salter (1823-71): A Biographical Sketch. Thorax 1985, 40, 887–888. [CrossRef]
8. Wenzel, S.E. Asthma Phenotypes: The Evolution from Clinical to Molecular Approaches. Nat. Med. 2012, 18, 716–725. [CrossRef]
9. Rackemann, F.M. A Working Classification of Asthma. Am. J. Med. 1947, 3, 601–606. [CrossRef]
10. McFadden, E.R. A Century of Asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 215–221. [CrossRef]
11. Hinks, T.S.C.; Levine, S.J.; Brusselle, G.G. Treatment Options in Type-2 Low Asthma. Eur. Respir. J. 2021, 57, 2000528. [CrossRef]
12. Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Koth, L.L.; Arron, J.R.; Fahy, J.V. T-Helper Type

2-Driven Inflammation Defines Major Subphenotypes of Asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 388–395. [CrossRef]
[PubMed]

13. Busse, W.W.; Holgate, S.T.; Wenzel, S.W.; Klekotka, P.; Chon, Y.; Feng, J.; Ingenito, E.P.; Nirula, A. Biomarker Profiles in Asthma
with High vs Low Airway Reversibility and Poor Disease Control. Chest 2015, 148, 1489–1496. [CrossRef] [PubMed]

14. Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The Cytokines of Asthma. Immunity 2019, 50, 975–991. [CrossRef] [PubMed]
15. Svenningsen, S.; Nair, P. Asthma Endotypes and an Overview of Targeted Therapy for Asthma. Front. Med. Lausanne 2017, 4, 158.

[CrossRef] [PubMed]
16. Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; Jr, R.D.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.;

et al. Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. Am. J. Respir. Crit.
Care Med. 2010, 181, 315–323. [CrossRef]

17. Shaw, D.E.; Sousa, A.R.; Fowler, S.J.; Fleming, L.J.; Roberts, G.; Corfield, J.; Pandis, I.; Bansal, A.T.; Bel, E.H.; Auffray, C.; et al.
Clinical and Inflammatory Characteristics of the European U-BIOPRED Adult Severe Asthma Cohort. Eur. Respir. J. 2015, 46,
1308–1321. [CrossRef]

18. Loza, M.J.; Djukanovic, R.; Chung, K.F.; Horowitz, D.; Ma, K.; Branigan, P.; Barnathan, E.S.; Susulic, V.S.; Silkoff, P.E.; Sterk, P.J.;
et al. Validated and Longitudinally Stable Asthma Phenotypes Based on Cluster Analysis of the ADEPT Study. Respir. Res. 2016,
17, 165. [CrossRef]

19. Haldar, P.; Pavord, I.D.; Shaw, D.E.; Berry, M.A.; Thomas, M.; Brightling, C.E.; Wardlaw, A.J.; Green, R.H. Cluster Analysis and
Clinical Asthma Phenotypes. Am. J. Respir. Crit. Care Med. 2008, 178, 218–224. [CrossRef]

20. Kuruvilla, M.E.; Lee, F.E.-H.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev.
Allergy Immunol. 2019, 56, 219–233. [CrossRef]

21. Anderson, G.P. Endotyping Asthma: New Insights into Key Pathogenic Mechanisms in a Complex, Heterogeneous Disease.
Lancet 2008, 372, 1107–1119. [CrossRef]

22. Ray, A.; Camiolo, M.; Fitzpatrick, A.; Gauthier, M.; Wenzel, S.E. Are We Meeting the Promise of Endotypes and Precision Medicine
in Asthma? Physiol. Rev. 2020, 100, 983–1017. [CrossRef]

23. Locksley, R.M. Asthma and Allergic Inflammation. Cell 2010, 140, 777–783. [CrossRef]
24. Chung, K.F. Asthma Phenotyping: A Necessity for Improved Therapeutic Precision and New Targeted Therapies. J. Intern. Med.

2016, 279, 192–204. [CrossRef]
25. Akar-Ghibril, N.; Casale, T.; Custovic, A.; Phipatanakul, W. Allergic Endotypes and Phenotypes of Asthma. J. Allergy Clin.

Immunol. Prac. 2020, 8, 429–440. [CrossRef]
26. Jartti, T.; Gern, J.E. Role of Viral Infections in the Development and Exacerbation of Asthma in Children. J. Allergy Clin. Immunol.

2017, 140, 895–906. [CrossRef]
27. Foronjy, R.; D’Armiento, J. The Effect of Cigarette Smoke-Derived Oxidants on the Inflammatory Response of the Lung. Clin.

Appl. Immunol. Rev. 2006, 6, 53–72. [CrossRef]
28. Martinez, F.D. Childhood Asthma Inception and Progression: Role of Microbial Exposures, Susceptibility to Viruses and Early

Allergic Sensitization. Immunol. Allergy Clin. N. Am. 2019, 39, 141–150. [CrossRef]
29. Ayers, A.B.; Henry, K.; Russell, S.B.; Steiner, R.E. The Microvasculature of the Spleen. Clin. Radiol. 1976, 27, 259–264. [CrossRef]
30. Fahy, J.V. Type 2 Inflammation in Asthma--Present in Most, Absent in Many. Nat. Rev. Immunol. 2015, 15, 57–65. [CrossRef]
31. Peters, M.C.; Kerr, S.; Dunican, E.M.; Woodruff, P.G.; Fajt, M.L.; Levy, B.D.; Israel, E.; Phillips, B.R.; Mauger, D.T.; Comhair, S.A.;

et al. Refractory Airway Type 2 Inflammation in a Large Subgroup of Asthmatic Patients Treated with Inhaled Corticosteroids.
J. Allergy Clin. Immunol. 2019, 143, 104–113.e14. [CrossRef]

https://doi.org/10.1513/AnnalsATS.201311-405PS
https://www.ncbi.nlm.nih.gov/pubmed/24673696
https://ginasthma.org/
https://ginasthma.org/
https://doi.org/10.1038/npjpcrm.2014.9
https://www.ncbi.nlm.nih.gov/pubmed/24921985
https://doi.org/10.1183/20734735.008914
https://www.ncbi.nlm.nih.gov/pubmed/26306100
https://doi.org/10.1378/chest.13-1619
https://www.ncbi.nlm.nih.gov/pubmed/24337140
https://doi.org/10.1038/cti.2017.54
https://www.ncbi.nlm.nih.gov/pubmed/29333270
https://doi.org/10.1136/thx.40.12.887
https://doi.org/10.1038/nm.2678
https://doi.org/10.1016/0002-9343(47)90204-0
https://doi.org/10.1164/rccm.200402-185OE
https://doi.org/10.1183/13993003.00528-2020
https://doi.org/10.1164/rccm.200903-0392OC
https://www.ncbi.nlm.nih.gov/pubmed/19483109
https://doi.org/10.1378/chest.14-2457
https://www.ncbi.nlm.nih.gov/pubmed/26226215
https://doi.org/10.1016/j.immuni.2019.03.018
https://www.ncbi.nlm.nih.gov/pubmed/30995510
https://doi.org/10.3389/fmed.2017.00158
https://www.ncbi.nlm.nih.gov/pubmed/29018800
https://doi.org/10.1164/rccm.200906-0896OC
https://doi.org/10.1183/13993003.00779-2015
https://doi.org/10.1186/s12931-016-0482-9
https://doi.org/10.1164/rccm.200711-1754OC
https://doi.org/10.1007/s12016-018-8712-1
https://doi.org/10.1016/S0140-6736(08)61452-X
https://doi.org/10.1152/physrev.00023.2019
https://doi.org/10.1016/j.cell.2010.03.004
https://doi.org/10.1111/joim.12382
https://doi.org/10.1016/j.jaip.2019.11.008
https://doi.org/10.1016/j.jaci.2017.08.003
https://doi.org/10.1016/j.cair.2006.04.002
https://doi.org/10.1016/j.iac.2018.12.001
https://doi.org/10.1016/S0009-9260(76)80161-4
https://doi.org/10.1038/nri3786
https://doi.org/10.1016/j.jaci.2017.12.1009


Genes 2023, 14, 1824 21 of 25

32. Amelink, M.; de Groot, J.C.; de Nijs, S.B.; Lutter, R.; Zwinderman, A.H.; Sterk, P.J.; Brinke, A.T.; Bel, E.H. Severe Adult-Onset
Asthma: A Distinct Phenotype. J. Allergy Clin. Immunol. 2013, 132, 336–341. [CrossRef]

33. White, A.A.; Doherty, T.A. Role of Group 2 Innate Lymphocytes in Aspirin-Exacerbated Respiratory Disease Pathogenesis. Am. J.
Rhinol. Allergy 2018, 32, 7–11. [CrossRef]

34. Laidlaw, T.M.; Mullol, J.; Woessner, K.M.; Amin, N.; Mannent, L.P. Chronic Rhinosinusitis with Nasal Polyps and Asthma.
J. Allergy Clin. Immunol. Prac. 2021, 9, 1133–1141. [CrossRef] [PubMed]

35. Swierczynska, M.; Nizankowska-Mogilnicka, E.; Zarychta, J.; Gielicz, A.; Szczeklik, A. Nasal versus bronchial and nasal response
to oral aspirin challenge: Clinical and biochemical differences between patients with aspirin-induced asthma/rhinitis. J. Allergy
Clin. Immunol. 2003, 112, 995–1001. [CrossRef] [PubMed]

36. Daffern, P.J.; Muilenburg, D.; Hugli, T.E.; Stevenson, D.D. Association of urinary leukotriene E4 excretion during aspirin
challenges with severity of respiratory responses. J. Allergy Clin. Immunol. 1999, 104, 559–564. [CrossRef]

37. Micheletto, C.; Tognella, S.; Visconti, M.; Trevisan, F.; Dal Negro, R.W. Changes in urinary LTE4 and nasal functions following
nasal provocation test with ASA in ASA-tolerant and -intolerant asthmatics. Respir. Med. 2006, 100, 2144–2150. [CrossRef]

38. Laidlaw, T.M.; Boyce, J.A. Pathogenesis of aspirin-exacerbated respiratory disease and reactions. Immunol. Allergy Clin. N. Am.
2013, 33, 195–210. [CrossRef]

39. Cavagnero, K.J.; Doherty, T.A. Lipid-Mediated Innate Lymphoid Cell Recruitment and Activation in Aspirin-Exacerbated
Respiratory Disease. Ann. Allergy Asthma Immunol. 2021, 126, 135–142. [CrossRef]

40. Eastman, J.J.; Cavagnero, K.J.; Deconde, A.S.; Kim, A.S.; Karta, M.R.; Broide, D.H.; Zuraw, B.L.; White, A.A.; Christiansen, S.C.;
Doherty, T.A. Group 2 Innate Lymphoid Cells Are Recruited to the Nasal Mucosa in Patients with Aspirin-Exacerbated Respiratory
Disease. J. Allergy Clin. Immunol. 2017, 140, 101–108.e3. [CrossRef]

41. Fitzpatrick, A.M.; Chipps, B.E.; Fernando, P.G.H. Woodruff T2-“Low” Asthma: Overview and Management Strategies. J. Allergy
Clin. Immunol. Prac. 2020, 8, 452–463. [CrossRef]

42. Hudey, S.N.; Ledford, D.K.; Cardet, J.C. Mechanisms of Non-Type 2 Asthma. Curr. Opin. Immunol. 2020, 66, 123–128. [CrossRef]
[PubMed]

43. Simpson, J.L.; Scott, R.; Boyle, M.J.; Gibson, P.G. Inflammatory Subtypes in Asthma: Assessment and Identification Using Induced
Sputum. Respirology 2006, 11, 54–61. [CrossRef] [PubMed]

44. Carr, T.F. Treatment Approaches for the Patient with T2 Low Asthma. Ann. Allergy Asthma Immunol. 2021, 127, 530–535. [CrossRef]
[PubMed]

45. Hastie, A.T.; Moore, W.C.; Meyers, D.A.; Vestal, P.L.; Li, H.; Peters, S.P.; Bleecker, E.R.; Lung, N.H.; Program, B.I.S.A.R. Analyses of
Asthma Severity Phenotypes and Inflammatory Proteins in Subjects Stratified by Sputum Granulocytes. J. Allergy Clin. Immunol.
2010, 125, 1028–1036.e13. [CrossRef] [PubMed]

46. Rossios, C.; Pavlidis, S.; Hoda, U.; Kuo, C.-H.; Wiegman, C.; Russell, K.; Sun, K.; Loza, M.J.; Baribaud, F.; Durham, A.L.; et al.
Sputum Transcriptomics Reveal Upregulation of IL-1 Receptor Family Members in Patients with Severe Asthma. J. Allergy Clin.
Immunol. 2018, 141, 560–570. [CrossRef]

47. Peters, M.C.; McGrath, K.W.; Hawkins, G.A.; Hastie, A.T.; Levy, B.D.; Israel, E.; Phillips, B.R.; Mauger, D.T.; Comhair, S.A.;
Erzurum, S.C.; et al. Plasma Interleukin-6 Concentrations, Metabolic Dysfunction, and Asthma Severity: A Cross-Sectional
Analysis of Two Cohorts. Lancet Respir. Med. 2016, 4, 574–584. [CrossRef]

48. Ntontsi, P.; Loukides, S.; Bakakos, P.; Kostikas, K.; Papatheodorou, G.; Papathanassiou, E.; Hillas, G.; Koulouris, N.; Papiris, S.;
Papaioannou, A.I. Clinical, Functional and Inflammatory Characteristics in Patients with Paucigranulocytic Stable Asthma:
Comparison with Different Sputum Phenotypes. Allergy 2017, 72, 1761–1767. [CrossRef]

49. Tliba, O.; Jr, R.A.P. Paucigranulocytic Asthma: Uncoupling of Airway Obstruction from Inflammation. J. Allergy Clin. Immunol.
2019, 143, 1287–1294. [CrossRef]

50. Ogawa, H.; Azuma, M.; Umeno, A.; Shimizu, M.; Murotomi, K.; Yoshida, Y.; Nishioka, Y.; Tsuneyama, K. Singlet Oxygen -Derived
Nerve Growth Factor Exacerbates Airway Hyperresponsiveness in a Mouse Model of Asthma with Mixed Inflammation. Allergol.
Int. 2022, 71, 395–404. [CrossRef]

51. Braun, A.; Quarcoo, D.; Schulte-Herbrüggen, O.; Lommatzsch, M.; Hoyle, G.; Renz, H. Nerve Growth Factor Induces Airway
Hyperresponsiveness in Mice. Int. Arch. Allergy Immunol. 2001, 124, 205–207. [CrossRef]

52. Kyriakopoulos, C.; Gogali, A.; Bartziokas, K.; Kostikas, K. Identification and Treatment of T2-Low Asthma in the Era of Biologics.
ERJ Open Res. 2021, 7, 309–2020. [CrossRef] [PubMed]

53. Nair, P.; O’Byrne, P.M. Measuring Eosinophils to Make Treatment Decisions in Asthma. Chest 2016, 150, 485–487. [CrossRef]
[PubMed]

54. Thomson, N.C. Novel Approaches to the Management of Noneosinophilic Asthma. Ther. Adv. Respir. Dis. 2016, 10, 211–234.
[CrossRef]

55. Mohan, A.; Grace, J.; Wang, B.R.; Lugogo, N. The Effects of Obesity in Asthma. Curr. Allergy Asthma Rep. 2019, 19, 49. [CrossRef]
[PubMed]

56. Dixon, A.E.; Que, L.G. Obesity and Asthma. Semin. Respir. Crit. Care Med. 2022, 43, 662–674. [CrossRef]
57. Ignacio, R.M.C.; Kim, C.-S.; Kim, S.-K. Immunological Profiling of Obesity. J. Lifestyle Med. 2014, 4, 1–7. [CrossRef]
58. Himmerich, H.; Fulda, S.; Linseisen, J.; Seiler, H.; Wolfram, G.; Stephanie, K.H.; Gedrich; Pollmächer, T. TNF-α, Soluble TNF

Receptor and Interleukin-6 Plasma Levels in the General Population. Eur. Cytokine Netw. 2006, 17, 196–201. [PubMed]

https://doi.org/10.1016/j.jaci.2013.04.052
https://doi.org/10.2500/ajra.2018.32.4498
https://doi.org/10.1016/j.jaip.2020.09.063
https://www.ncbi.nlm.nih.gov/pubmed/33065369
https://doi.org/10.1016/S0091-6749(03)02015-3
https://www.ncbi.nlm.nih.gov/pubmed/14610494
https://doi.org/10.1016/S0091-6749(99)70324-6
https://doi.org/10.1016/j.rmed.2006.03.017
https://doi.org/10.1016/j.iac.2012.11.006
https://doi.org/10.1016/j.anai.2020.09.011
https://doi.org/10.1016/j.jaci.2016.11.023
https://doi.org/10.1016/j.jaip.2019.11.006
https://doi.org/10.1016/j.coi.2020.10.002
https://www.ncbi.nlm.nih.gov/pubmed/33160187
https://doi.org/10.1111/j.1440-1843.2006.00784.x
https://www.ncbi.nlm.nih.gov/pubmed/16423202
https://doi.org/10.1016/j.anai.2021.05.027
https://www.ncbi.nlm.nih.gov/pubmed/34688426
https://doi.org/10.1016/j.jaci.2010.02.008
https://www.ncbi.nlm.nih.gov/pubmed/20398920
https://doi.org/10.1016/j.jaci.2017.02.045
https://doi.org/10.1016/S2213-2600(16)30048-0
https://doi.org/10.1111/all.13184
https://doi.org/10.1016/j.jaci.2018.06.008
https://doi.org/10.1016/j.alit.2022.02.005
https://doi.org/10.1159/000053711
https://doi.org/10.1183/23120541.00309-2020
https://www.ncbi.nlm.nih.gov/pubmed/34109244
https://doi.org/10.1016/j.chest.2016.07.009
https://www.ncbi.nlm.nih.gov/pubmed/27613975
https://doi.org/10.1177/1753465816632638
https://doi.org/10.1007/s11882-019-0877-z
https://www.ncbi.nlm.nih.gov/pubmed/31506820
https://doi.org/10.1055/s-0042-1742384
https://doi.org/10.15280/jlm.2014.4.1.1
https://www.ncbi.nlm.nih.gov/pubmed/17194640


Genes 2023, 14, 1824 22 of 25

59. Björkander, S.; Klevebro, S.; Hernandez-Pacheco, N.; Kere, M.; Ekström, S.; Mikus, M.S.; van Hage, M.; James, A.; Kull, I.;
Bergström, A.; et al. Obese Asthma Phenotypes Display Distinct Plasma Biomarker Profiles. Clin. Transl. Allergy 2023, 13, e12238.
[CrossRef]

60. Li, X.; Hastie, A.T.; Peters, M.C.; Hawkins, G.A.; Phipatanakul, W.; Li, H.; Moore, W.C.; Busse, W.W.; Castro, M.; Erzurum, S.C.;
et al. Investigation of the Relationship between IL-6 and Type 2 Biomarkers in Patients with Severe Asthma. J. Allergy Clin.
Immunol. 2020, 145, 430–433. [CrossRef]

61. Holguin, F.; Comhair, S.A.A.; Hazen, S.L.; Powers, R.W.; Khatri, S.S.; Bleecker, E.R.; Busse, W.W.; Calhoun, W.J.; Castro, M.;
Fitzpatrick, A.M.; et al. An Association between L-Arginine/Asymmetric Dimethyl Arginine Balance, Obesity, and the Age of
Asthma Onset Phenotype. Am. J. Respir. Crit. Care Med. 2013, 187, 153–159. [CrossRef]

62. Barcala, F.J.G.; de la Fuente-Cid, R.; Alvarez-Gil, R.; Tafalla, M.; Nuevo, J.; Caamaño-Isorna, F. Factores Asociados Con El Control
Del Asma En Pacientes de Atención Primaria En España: El Estudio CHAS. Arch. Bronconeumol. 2010, 46, 358–363. [CrossRef]
[PubMed]

63. Esteban-Gorgojo, I.; Antolín-Amérigo, D.; Domínguez-Ortega, J.; Quirce, S. Non-Eosinophilic Asthma: Current Perspectives.
J. Asthma Allergy 2018, 11, 267–281. [CrossRef] [PubMed]

64. Boulet, L.-P.; Lemière, C.; Archambault, F.; Carrier, G.; Claire, F.D.M. Deschesnes Smoking and Asthma: Clinical and Radiologic
Features, Lung Function, and Airway Inflammation. Chest 2006, 129, 661–668. [CrossRef] [PubMed]

65. Kiljander, T.; Poussa, T.; Helin, T.; Jaakkola, A.; Venho, K.; Lehtimäki, L. Symptom Control among Asthmatics with a Clinically
Significant Smoking History: A Cross-Sectional Study in Finland. BMC Pulm. Med. 2020, 20, 88. [CrossRef]

66. Tiotiu, A.; Ioan, I.; Wirth, N.; Romero-Fernandez, R.; González-Barcala, F.-J. The Impact of Tobacco Smoking on Adult Asthma
Outcomes. Int. J. Environ. Res. Public Health 2021, 18, 992. [CrossRef]

67. Polosa, R.; Thomson, N.C. Smoking and Asthma: Dangerous Liaisons. Eur. Respir. J. 2013, 41, 716–726. [CrossRef]
68. Cazzola, M.; Polosa, R. Anti-TNF-α and Th1 Cytokine-Directed Therapies for the Treatment of Asthma. Curr. Opin. Allergy Clin.

Immunol. 2006, 6, 43–50. [CrossRef]
69. Bujarski, S.; Parulekar, A.D.; Amir, N.A.S. Hanania the Asthma COPD Overlap Syndrome (ACOS). Curr. Allergy Asthma Rep.

2015, 15, 509. [CrossRef]
70. Gibson, P.G.; McDonald, V.M.; Marks, G.B. Asthma in Older Adults. Lancet 2010, 376, 803–813. [CrossRef]
71. Ducharme, M.-E.; Prince, P.; Hassan, N.; Nair, P.; Boulet, L.-P. Expiratory Flows and Airway Inflammation in Elderly Asthmatic

Patients. Respir. Med. 2011, 105, 1284–1289. [CrossRef]
72. Dunn, R.M.; Busse, P.J.; Wechsler, M.E. Asthma in the Elderly and Late-Onset Adult Asthma. Allergy 2018, 73, 284–294. [CrossRef]

[PubMed]
73. Schmitt, V.; Rink, L.; Uciechowski, P. The Th17/Treg Balance Is Disturbed during Aging. Exp. Gerontol. 2013, 48, 1379–1386.

[CrossRef] [PubMed]
74. Diaz-Guzman, E.; Mannino, D.M. Airway Obstructive Diseases in Older Adults: From Detection to Treatment. J. Allergy Clin.

Immunol 2010, 126, 702–709. [CrossRef] [PubMed]
75. Han, Y.Y.; Zhang, X.; Wang, J.; Wang, G.; Oliver, B.G.; Zhang, H.P.; Kang, D.Y.; Wang, L.; Qiu, Z.X.; Li, W.M.; et al. Multidimen-

sional Assessment of Asthma Identifies Clinically Relevant Phenotype Overlap: A Cross-Sectional Study. J. Allergy Clin. Immunol.
Prac. 2021, 9, 349–362.e18. [CrossRef] [PubMed]

76. Quirce, S.; Sastre, J. Occupational asthma: Clinical phenotypes, biomarkers, and management. Curr. Opin. Pulm. Med. 2019, 25,
59–63. [CrossRef]

77. Vandenplas, O.; Godet, J.; Hurdubaea, L.; Rifflart, C.; Suojalehto, H.; Wiszniewska, M.; Munoz, X.; Sastre, J.; Klusackova, P.; Moore,
V.; et al. Are high- and low-molecular-weight sensitizing agents associated with different clinical phenotypes of occupational
asthma? Allergy 2019, 74, 261–272. [CrossRef]

78. Ricciardolo, F.L.M.; Guida, G.; Bertolini, F.; Stefano, A.D.; Carriero, V. Phenotype Overlap in the Natural History of Asthma. Eur.
Respir. Rev. 2023, 32, 220201. [CrossRef]

79. Frey, U.; Suki, B. Complexity of Chronic Asthma and Chronic Obstructive Pulmonary Disease: Implications for Risk Assessment,
and Disease Progression and Control. Lancet 2008, 372, 1088–1099. [CrossRef]

80. González-Pérez, R.; Poza-Guedes, P.; Mederos-Luis, E.; Sánchez-Machín, I. Real-Life Performance of Mepolizumab in T2-High
Severe Refractory Asthma with the Overlapping Eosinophilic-Allergic Phenotype. Biomedicines 2022, 10, 2635. [CrossRef]

81. Kim, K.W.; Ober, C. Lessons Learned from GWAS of Asthma. Allergy Asthma Immunol. Res. 2019, 11, 170–187. [CrossRef]
82. Sollis, E.; Mosaku, A.; Abid, A.; Buniello, A.; Cerezo, M.; Gil, L.; Groza, T.; Güneş, O.; Hall, P.; Hayhurst, J.; et al. The NHGRI-EBI
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