About
55
Publications
7,745
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
494
Citations
Introduction
Publications
Publications (55)
Background
Musculoskeletal alterations causing reduced range of motion of the ankle joint are common in children with cerebral palsy (CP). Objective measurements of passive joint resistance and three-dimensional skeletal muscle volume and muscle architecture can lead to a comprehensive understanding of which factors influence joint range of motion....
Introduction
Wearable exoskeletons are emerging technologies for providing movement assistance and rehabilitation for people with motor disorders. In this study, we focus on the specific gait pathology dropfoot, which is common after a stroke. Dropfoot makes it difficult to achieve foot clearance during swing and heel contact at early stance and of...
This is a protocol for comprehensive analysis of gait and affecting factors in individuals with incomplete paraplegia due to spinal cord injury (SCI). A SCI is a devastating event affecting both sensory and motor functions. Due to better care, the SCI population is changing, with a greater proportion retaining impaired ambulatory function. Optimizi...
Secondary morphological and mechanical property changes in the muscle-tendon unit at the ankle joint are often observed in post-stroke individuals. These changes may alter the force generation capacity and affect daily activities such as locomotion. This work aimed to estimate subject-specific muscle-tendon parameters in individuals after stroke by...
Reliable and accurate EMG-driven prediction of joint torques are instrumental in the control of wearable robotic systems. This study investigates how different EMG input features affect the machine learning algorithm-based prediction of ankle joint torque in isometric and dynamic conditions. High-density electromyography (HD-EMG) of five lower leg...
Integrating mobile eye-tracking and motion capture emerges as a promising approach in studying visual-motor coordination, due to its capability of expressing gaze data within the same laboratory-centered coordinate system as body movement data. In this paper, we proposed an integrated eye-tracking and motion capture system, which can record and ana...
Accurate and timely movement intention detection can facilitate exoskeleton control during transitions between different locomotion modes. Detecting movement intentions in real environments remains a challenge due to unavoidable environmental uncertainties. False movement intention detection may also induce risks of falling and general danger for e...
Accurately predicting joint torque using wearable sensors is crucial for designing assist-as-needed exoskeleton controllers to assist muscle-generated torque and ensure successful task performance. In this paper, we estimated ankle dorsiflexion/plantarflexion, knee flexion/extension, hip flexion/extension, and hip abduction/adduction torques from e...
Introduction
Research interest in exoskeleton assistance strategies that incorporate the user's torque capacity is growing rapidly. However, the predicted torque capacity from users often includes uncertainty from various sources, which can have a significant impact on the safety of the exoskeleton-user interface.
Methods
To address this challenge...
Aging is a non-modifiable risk factor for stroke and the global burden of stroke is continuing to increase due to the aging society. Muscle dysfunction, common sequela of stroke, has long been of research interests. Therefore, how to accurately assess muscle function is particularly important. Electrical impedance myography (EIM) has proven to be f...
Muscle architecture parameters, such as the fascicle length, pennation angle, and volume, are important muscle morphology characteristics. Accurate in vivo quantification of these parameters allows to detect changes due to pathologies, interventions, and rehabilitation trainings, which ultimately impact on muscles' force-producing capacity. In this...
Tracking the myotendinous junction (MTJ) motion in consecutive ultrasound images is essential to assess muscle and tendon interaction and understand the mechanics’ muscle-tendon unit and its pathological conditions during motion. However, the inherent speckle noises and ambiguous boundaries deter the reliable identification of MTJ, thus restricting...
In this work, we predicted ankle joint torque by combining a neuromusculoskeletal (NMS) solver-informed artificial neural network (hybrid-ANN) model with transfer learning based on joint angle and muscle electromyography signals. The hybrid-ANN is an ANN augmented with two kinds of features: (1) experimental measurements-muscle signals and joint an...
Estimation of joint torque during movement provides important information in several settings, such as effect of athletes' training or of a medical intervention, or analysis of the remaining muscle strength in a wearer of an assistive device. The ability to estimate joint torque during daily activities using wearable sensors is increasingly relevan...
Background
At the beginning of a sprint, the acceleration of the body center of mass (COM) is driven mostly forward and vertically in order to move from an initial crouched position to a more forward-leaning position. Individual muscle contributions to COM accelerations have not been previously studied in a sprint with induced acceleration analysis...
Lower extremity powered exoskeletons help people with movement disorders to perform daily activities and are used increasingly in gait retraining and rehabilitation. Studies of powered exoskeletons often focus on technological aspects such as actuators, control methods, energy and effects on gait. Limited research has been conducted on how differen...
Detecting human movement intentions is fundamental to neural control of robotic exoskeletons, as it is essential for achieving seamless transitions between different locomotion modes. In this study, we enhanced a muscle synergy-inspired method of locomotion mode identification by fusing the electromyography data with two types of data from wearable...
Exoskeletons are increasingly used in rehabilitation and daily life in patients with motor disorders after neurological injuries. In this paper, a realistic human knee exoskeleton model based on a physical system was generated, a human-machine system was created in a musculoskeletal modeling software, and human-machine interactions based on differe...
The in vivo characterization of the passive mechanical properties of the human triceps surae musculotendinous unit is important for gaining a deeper understanding of the interactive responses of the tendon and muscle tissues to loading during passive stretching. This study sought to quantify a comprehensive set of passive muscle-tendon properties s...
In recent decades, there has been an increasing interest in the use of robotic powered exoskeletons to assist patients with movement disorders in rehabilitation and daily life. Providing assistive torque that compensates for the user's remaining muscle contributions is a growing and challenging field within exoskeleton control. In this article, ank...
Background
Flatfoot has a very high incidence of obese children. Functional parameters such as plantar pressures and center of pressure (COP) are sensitive to foot type. However, previous foot biomechanical studies of obese children rarely excluded the flatfoot as a prerequisite of the participants involved.
Research question
This study aimed to d...
Tracking the myotendinous junction (MTJ) in consecutive ultrasound images is crucial for assessing the mechanics and pathological conditions of the muscle-tendon unit. However, poor image quality and boundary ambiguity conspire towards a lack of reliable and efficient identification of MTJ, restricting its application in motion analysis. In recent...
Skeletal muscle architecture significantly influences the performance capacity of a muscle. A DTI-based method has been recently considered as a new reference standard to validate measurement of muscle structure in vivo. This study sought to quantify muscle architecture parameters such as fascicle length (FL), pennation angle (PA) and muscle thickn...
This study aims to quantify passive muscle stiffness of spastic wrist flexors in stroke survivors using shear wave elastography (SWE) and to correlate with neural and non-neural contributors estimated from a biomechanical model to hyper-resistance measured during passive wrist extension. Fifteen hemiplegic individuals after stroke with Modified Ash...
Background
Children and adolescents with Juvenile Idiopathic Arthritis (JIA) exhibit deviations in ankle dynamic joint stiffness (DJS, or moment-angle relationship) compared to healthy peers, but the relationship between ankle DJS and self-reported walking impairments has not been studied. This secondary analysis aimed to investigate the relationsh...
Quantifying neural and non-neural contributions to the joint resistance in spasticity is essential for a better evaluation of different intervention strategies such as botulinum toxin A (BoTN-A). However, direct measurement of muscle mechanical properties and spasticity-related parameters in humans is extremely challenging. The aim of this study wa...
Displacement of the myotendinous junction (MTJ) obtained by ultrasound imaging is crucial to quantify the interactive length changes of muscles and tendons for understanding the mechanics and pathological conditions of the muscle-tendon unit during motion. However, the lack of a reliable automatic measurement method restricts its application in hum...
The Supplementary Materials include one sample video showing the MTJ tracking results obtained by our proposed method.
Quantifying neural and non-neural contributions to increased joint resistance in spasticity is essential for a better understanding of its pathophysiological mechanisms and evaluating different intervention strategies. However, direct measurement of spasticity-related manifestations, e.g., motoneuron and biophysical properties in humans, is extreme...
Ankle fractures are one of the most common lower limb traumas. Several studies reported short- and long-term post-operative results, mainly determined by radiographic and subjective functional evaluations. Three-dimensional gait analysis with a multi-segment foot model was used in the current study to quantify the inter-segment foot motions in 18 p...
Gastrocnemius and soleus are often considered as ankle plantarflexors. Their dynamic functions in normal and pathological gait have been well-studied. However, in a neutral position, the tendon passes medial to the subtalar joint axis and therefore produces an inversion moment in addition to the plantar-flexor moment [1]. It was believed that gastr...