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Abstract It is well known that most classical test
functions to solve nonlinear partial differential equa-
tions can be constructed via single hidden layer neu-
ral network model by using Bilinear Neural Net-
work Method (BNNM). In this paper, the neural net-
work model of test function for the (3+1)-dimensional
Jimbo–Miwa equation is extended to the “4-2-3”
model. By giving some specific activation functions,
new test function is constructed to obtain analytical
solutions of the (3+1)-dimensional Jimbo–Miwa equa-
tion. Roguewave solutions and the bright and dark soli-
tons are obtained by giving some specific parameters.
Via curve plots, three-dimensional plots, contour plots
and density plots, dynamical characteristics of these
waves are exhibited.

Keywords Bilinear neural network method · Rogue
wave · Bright and dark solitons · (3+1)-dimensional
Jimbo–Miwa equation

R-F. Zhang (B) · M-C. Li (B)
School of Software Technology, Dalian University of
Technology, Dalian 116620, China
e-mail: zhangrf@mail.dlut.edu.cn

M-C. Li
e-mail: mingchul@dlut.edu.cn

H-M. Yin
Department of Mechanical Engineering, University of
Hong Kong, Pok Fu Lam, Hong Kong, China
e-mail: hmy63110@126.com

1 Introduction

As is known to all, the dynamic characteristics and
space structure of nonlinear phenomena can be studied
by means of nonlinear evolution equations (NLEEs)
[1–9]. Researchers have studied the limit form solu-
tion with some new method [10–12]. Due to the strong
nonlinear characteristics of neural network model,
researchers have payed attentions to the application
of neural network model to solve NLEEs. The Bilin-
ear Neural Network Method (BNNM) [13] is a newest
method for getting the analytical symbolic solution
of NLEEs via neural network model and correspond-
ing tensor formulas. Most classical test functions for
solving nonlinear partial differential equations, such
as rogue wave solutions [14–17], interactions [18–21],
soliton solution [22–25], lump solutions [26], lump-
type solutions [27–30], breather solutions [31], M-
lump solutions [32], solitary waves [33] and periodic
wave solutions [34], can be constructed via single hid-
den layer neural network model by using BNNM.
Because the deep neural network model has strong
nonlinear characteristics, the test function constructed
by the deep hidden layer neural network model can
fit the original function of the NLEEs, rather than the
test function constructed by the classical single hidden
layer network model. So far, there is no research on the
use of “4-2-3” neural network model concerning the
(3+1)-dimensional Jimbo–Miwa equation.
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In this paper, we break through the classical con-
struction method of using single hidden layer neural
network model to construct test function and study
the following (3+1)-dimensional Jimbo–Miwa equa-
tion [35]:

uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3uxz = 0. (1)

This equation is the second equation in the well-known
KP-hierarchy of integrable systems, which is used
to describe certain interesting (3+1)-dimensional non-
linear waves in fluid mechanics and physics. Based
on Hirota bilinear method, interaction solutions for
a reduced extended (3+1)-dimensional Jimbo–Miwa
equation have been constructed by Wang et al. [36].
Interaction phenomena and the periodic lump waves of
Eq. (1) have been studied by Zhang et al. [37]. Solitary-
wave and new exact solutions for an extended (3+1)-
dimensional Jimbo–Miwa-like equation have been
constructed by Qi et al. [38]. High-order lumps, high-
order breathers and hybrid solutions for an extended
(3+1)-dimensional Jimbo–Miwa equation have been
derived by Guo et al. [39]. Kuo et al. [40] have stud-
ied the resonant multi-soliton solutions to new (3+1)-
dimensional Jimbo–Miwa equations by applying the
linear superposition principle. Liu et al. [41] have stud-
ied the dynamics for different classes of interactive
lump solutions for the 3D-Jimbo–Miwa model with
some nonzero determinant conditions.

This paper is organized as follows. Section 2 will
present the detailed steps of BNNM and the corre-
sponding tensor formula will be proposed to obtain
the analytical solutions of nonlinear PDEs. In Sect. 3,
rogue wave solutions and the bright and dark solitons
of Eq. (1) will be obtained via “4-2-3” neural network
model. The dynamical characteristics of these waves
are exhibited via curve plots, three-dimensional plots,
contour plots and density plots. Section 4will conclude
this paper.

2 BNNM and its corresponding tensor formula

2.1 Bilinear form

Hirota bilinear form of the (3+1)-dimensional Jimbo–
Miwa Eq. (1),

BJM(ψ) := (D3
p,x Dp,y + 2Dp,t Dp,y

− 3Dp,x Dp,y)ψ · ψ

= 2(ψxxxyψ − ψyψxxx − 3ψxψxxy + 3ψxxψxy

+ 2ψytψ − 2ψyψt − 3ψxzψ + 3ψxψz) = 0,

(2)

can be obtain under dependent variable transformation:

u(x, y, z, t) = 2[lnψ(x, y, z, t)]x , (3)

where the generalized bilinear operators D are defined
by [42]

Dn1
p,x1 · · · DnM

p,xM a · b(x1, · · · , xM )

=
M∏

i=1

(
∂

∂xi
+ α

∂

∂x
′
i

)ni

a(x1, · · · , xM )b(x
′
1, . . . , x

′
M ) |x ′=x1,...,x

′=xM
,

(4)

n1, . . . , nM are arbitrary non-negative integers, and for
an integer m, the mth power of α is computed as fol-
lows,

(αp)
m = (−1)r(m),m ≡ r(m) mod p, 0 ≤ r(m) < p,

(5)

and D is the Hirota bilinear operator in (2) with p = 2.

2.2 Neural network model and corresponding tensor
formula

To search for the analytical solutions of the bilinear Eq.
(2), the tensor formula of nonlinear neural network is
constructed as following [13]:

ψ = wln,ψφln(ξln), (6)

where wa,b is the weight coefficient of neuron a to
b, φ is a generalized activation function, which can be
defined arbitrarily, but in the last layer, function φ must
satisfy φln(ξ) ≥ 0. ln = {mn−1 + 1,mn−1 + 2, . . . , n}
represents the nth layer space of the neural network
model. ξli is given as follows:

ξli = wli−1,liφli−1(ξli−1) + bli , i = 1, 2, . . . , n, (7)

where l0 = {x, y, . . . , t}, l1 = {1, 2, . . . ,m1}, li =
{mi−1 + 1,mi−1 + 2, . . . ,mi }, (i = 2, 3, . . . , n − 1),
b means a threshold, which can be simply understood
here as an constant. This neural network tensor model
can be intuitively understood through Fig. 1.

In order to obtain the analytical solutions of nonlin-
ear PDEs, we take its main steps as follows:

Step 1: Through the bilinear transformation (3), the
original Eq. (1) is transformed into the bilinear
Eq. (2).

Step 2: Substituting Eq. (6) into the bilinear Eq. (2), a
complicated equation can be obtained.
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Fig. 1 Neural network model of Eq. (6): l0 = {x, y, . . . , t},
l1 = {ξ1, ξ2, . . . , ξm1 }, li={ξmi−1+1, ξmi−1+2, . . . , ξmi }, (i =
2, 3, . . . , n − 1). ln={ξmn−1+1, ξmn−1+2, . . . , ξn}

Step 3: Making the coefficient of each term in this
complicated equation equal to zero, we can
obtain the overdetermined nonlinear algebraic
equations.

Step 4: Solving these set of algebraic equations by
symbolic computation with the help of Maple
(orMathematica), the coefficient solutions can
be obtained.

Step 5: Substituting these coefficient solutions and
nonlinear neural network tensor formula Eq.
(6) into bilinear transformation Eq. (3), the
analytical solutions of nonlinear PDEs can be
derived.

Step 6: By choosing appropriate values and functions
of these parameters in the analytical solu-
tions of nonlinear PDEs, the dynamical char-
acteristics of these solutions can be exhibited
via three-dimensional plots, contour plots and
density plots with the help of Maple (or Math-
ematica).

3 Rogue wave solutions and the bright and dark
solitons

To search for the analytical solutions of Eq. (1), we
can chose a “4-2-3” neural network model, which
means that there are 4 neurons in the input layer l0,
2 neurons in hidden layer l1 and 3 neurons in hid-
den layer l2. This “4-2-3” model can be intuitively
understood through Fig. 2. By choosing l0={x, y, z, t},
l1={1, 2}, l2={3, 4, 5}, φ1(ξ1) = cos(ξ1), φ2(ξ2) =
sin(ξ2), φ3(ξ3) = exp(ξ3), φ4(ξ4) = exp(ξ4), φ5(ξ5) =
ξ5

2, we procure:

Fig. 2 “4-2-3” neural network model of Eq. (8) by choos-
ing φ1(ξ1) = cos(ξ1), φ2(ξ2) = sin(ξ2), φ3(ξ3) =
exp(ξ3), φ4(ξ4) = exp(−ξ4), φ5(ξ5) = ξ5

2

ψ = w3,ψφ3 (ξ3) + w4,ψφ4 (ξ4) + w5,ψφ5 (ξ5) ,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ3 = w1,3φ1 (ξ1) + w2,3φ2 (ξ2) + b3,
ξ4 = w1,4φ1 (ξ1) + w2,4φ2 (ξ2) + b4,
ξ5 = w1,5φ1 (ξ1) + w2,5φ2 (ξ2) + b5,
ξ1 = wt,1t + wx,1x + wy,1y + wz,1z + b1,
ξ2 = wt,2t + wx,2x + wy,2y + wz,2z + b2,

(8)

wherewi, j (i = x, y, z, t, 1, 2, 3, 4, 5, j = 1, 2, 3, 4, 5,
ψ and i �= j) and bk (k = 1, 2, 3, 4, 5) are real param-
eters to be determined later.

Substituting Eq. (8) into Eq. (2), we obtain a com-
plicated equation. Making the coefficient of each term
in this equation equal to zero, we obtained 214 alge-
braic equations. Solving these algebraic equations by
the symbolic computation with the help of Maple, we
get 6 sets of solutions as follows:

case1 :{w1,3 = −w1,4, w1,5 = 0, w2,5 = 0,

wt,2 = 0, wx,2 = 0, wy,1 = 0, wz,1 = 0, b5 = 0.}
(9)

case2 :{w1,3 = −w1,4, w1,5 = 0, w2,5 = 0, wt,1 = 0,

wx,1 = 0, wy,2 = 0, wz,2 = 0, b5 = 0.} (10)

case3 :{w1,5 = 0, w2,3 = −w2,4, w2,5 = 0, wt,1 = 0,
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(a) x-curves (b) x-curves (c) y-curves

(d) y-curves

Fig. 3 (Color online) The curve plots, three-dimensional plots, contour plots and density plot of the rogue wave solutions for Eq. (15)
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wx,1 = 0, wy,2 = 0, wz,2 = 0, b5 = 0.} (11)

case4 :{w1,5 = 0, w2,3 = −w2,4, w2,5 = 0, wt,2 = 0,

wx,2 = 0, wy,1 = 0, wz,1 = 0, b5 = 0.} (12)

case5 :{w1,3 = 0, w1,4

= 0, w2,5 = 0, wt,1 = wx,1(4wx,1
2wy,2 + 3wz,2)

2wy,2
,

wt,2 = 0, wx,2 = 0, wy,1 = 0, wz,1 = 0, b5 = 0.}
(13)

case6 :{w1,5 =0, w2,3 =0, w2,4 =0, wt,1 =0, wz,2 =0,

wt,2 = wx,2
(
4wx,2

2wy,1 + 3wz,1
)

2wy,1
, wx,1

= 0, wy,2 = 0, b5 = 0.} (14)

Substituting (13) into Eq. (8), we can get the analyt-
ical solution for Eq. (1) through the bilinear transfor-
mation Eq. (3) when wi,ψ > 0 (i=3,4,5),

u = −4
w5,ψw1,5

2 cos (ξ1) wx,1 sin (ξ1)

ψ
,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ = w3,ψeξ3 + w4,ψe−w2,4 sin(ξ2)−b4

+w5,ψw1,5
2 (cos (ξ1))

2 ,

ξ1 = twx,1
(
4wx,1

2wy,2+3wz,2
)

2wy,2
+ xwx,1 + b1,

ξ2 = ywy,2 + zwz,2 + b2,
ξ3 = w2,3 sin

(
ywy,2 + zwz,2 + b2

) + b3.

(15)

In order to analyze the dynamics properties and
discuss the evolution characteristic briefly, we could
choose appropriate values and functions of these
parameters in Eq. (15) as z = x, t = 0, w3,ψ =
1, w4,ψ = 1, w5,ψ = −1, w1,5 = 2, wx,1 =
2, wy,2 = 2, wz,2 = −2, w2,3 = 2, w2,4 = 2, b3 =
2, b4 = 2, b1 = 2, b2 = 2. The evolution and dynami-
cal characteristics of the rogue wave solutions derived
via the appropriate values list above are exhibited in
Fig. 3. Figure 3a and b shows the x-curve plots on
the domain (−10, 10) and (−3, 3), respectively, from
which we can find the exponential characteristics of
Eq. (15). Figure 3c and d shows the y-curve plots on
the domain (−30, 30) and (−3, 3), respectively, from
which we can see the periodic characteristics of Eq.
(15). Via three-dimensional plots, contour plots and
density plots, we can find the rogue waves of Eq. (15),
and dynamical characteristics of thesewaves are exhib-
ited (Fig. 3).

In addition, we can construct new test functions by
givingdifferent activation functions, such as l0={x, y, z, t},

Fig. 4 “4-2-3” neural network model of Eq. (8) by choos-
ing φ1(ξ1) = cos(ξ1), φ2(ξ2) = sin(ξ2), φ3(ξ3) =
exp(ξ3), φ4(ξ4) = ξ5

2, φ5(ξ5) = ξ5
2

l1={1, 2}, l2={3, 4, 5}, φ1(ξ1) = cos(ξ1), φ2(ξ2) =
sin(ξ2), φ3(ξ3) = exp(ξ3), φ4(ξ4) = ξ24 , φ5(ξ5) = ξ5

2,
we procure:

ψ = w3,ψe
ξ3 + w4,ψξ4

2 + w5,ψξ5
2,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ3 = w1,3 cos (ξ1) + w2,3 sin (ξ2) + b3,
ξ4 = w1,4 cos (ξ1) + w2,4 sin (ξ2) + b4,
ξ5 = w1,5 cos (ξ1) + w2,5 sin (ξ2) + b5,
ξ1 = wt,1t + wx,1x + wy,1y + wz,1z + b1,
ξ2 = wt,2t + wx,2x + wy,2y + wz,2z + b2,

(16)

wherewi, j (i = x, y, z, t, 1, 2, 3, 4, 5, j = 1, 2, 3, 4, 5,
ψ and i �= j) and bk (k = 1, 2, 3, 4, 5) are real param-
eters to be determined later. This test function can be
intuitively understood through corresponding neural
network model (Fig. 4).

Substituting Eq. (16) into Eq. (2), we obtain a com-
plicated equation. Making the coefficient of each term
in this equation equal to zero, we obtain 116 alge-
braic equations. Solving these algebraic equations by
the symbolic computation with the help of Maple, we
get 55 sets of solutions. One of the solutions is as fol-
lows,

⎧
⎪⎨

⎪⎩

w1,3 = 0, w5,ψ = −w2,4w1,4w4,ψ
w1,5w2,5

,

wt,2 = 0, wx,2 = 0, wy,1 = 0,

wy,2 = 3wx,1wz,2

−4wx,1
3+2wt,1

, wz,1 = 0, b4 = b5w2,4
w2,5

.

⎫
⎪⎬

⎪⎭

(17)

Substituting (17) into Eq. (16), we can get the ana-
lytical solution for Eq. (1) through the bilinear trans-
formation Eq. (3) when wi,ψ > 0 (i=3,4,5),
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(a) x-curves (b) x-curves (c) y-curves

(d) y-curves

Fig. 5 (Color online) The curve plots, three-dimensional plots, contour plots and density plot of the bright and dark solitons for Eq. (18)
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u = 4
sin (ξ1) w1,4w4,ψwx,1

(
w2,4ξ5 − w2,5ξ4

)

ψw2,5
,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ = w3,ψeξ3 + w4,ψξ4
2 − w2,4w1,4w4,ψ ξ5

2

w1,5w2,5
,

ξ1 = twt,1 + xwx,1 + b1,

ξ2 = 3ywx,1wz,2

−4wx,1
3+2wt,1

+ zwz,2 + b2,

ξ3 = w2,3 sin
(

3ywx,1wz,2

−4wx,1
3+2wt,1

+ zwz,2 + b2
)

+ b3,

ξ4 = w1,4 cos(ξ1)

+w2,4 sin
(

3ywx,1wz,2

−4wx,1
3+2wt,1

+ zwz,2 + b2
)

+ b5w2,4
w2,5

,

ξ5 = w1,5 cos(ξ1)

+w2,5 sin
(

3ywx,1wz,2

−4wx,1
3+2wt,1

+ zwz,2 + b2
)

+ b5.

(18)

In order to analyze the dynamics properties and
discuss the evolution characteristic briefly, we could
choose appropriate values and functions of these
parameters in Eq. (18) as z = y, t = 1, w1,4 =
2, w1,5 = −2, w2,3 = 2, w2,4 = 2, w2,5 = 2, wx,1 =
2, wz,1 = 2, wt,1 = 2, wz,2 = 2, w3,ψ = 2, w4,ψ =
2, b1 = 1, b2 = 1, b3 = 1, b5 = 1. The evolution and
dynamic characteristics of the bright and dark solitons
derived via the appropriate values list above are exhib-
ited in Fig. 5. Figure 5a and b shows the x-curve plots
on the domain (−3, 3) and (−10, 10), respectively,
from which we can find the periodic characteristics of
Eq. (15). Figure 5c and d shows the y-curve plots on
the domain (−3, 3) and (−10, 10), respectively, from
which we can see the exponential properties and peri-
odic characteristics of Eq. (18). Via three-dimensional
plots, contour plots and density plots, we can find the
bright and dark solitons of Eq. (18), dynamical charac-
teristics of these waves are exhibited.

In order to illustrate the reliability of the results (15)
and (18), we substitute the results (15) and (18) into the
left side of Eq. (1).With the help of automatic symbolic
derivation software Maple, the simplification results
show that the left side of Eq. (1) is equal to 0. It illus-
trates that analytical solutions (15) and (18) are reliable
and accuratewith zero error. It also shows the advantage
of this method comparing the classical neural network
method, which can only obtain approximate solutions.
However,many numericalmethods are generally appli-
cable and effective, such as the structure-preserving
method focusing on the local characteristics as well as
the conservation laws of the systems [43–50].

4 Conclusions

The traditional neural networkmethod for solving non-
linear partial differential equations is to discretize the
function and then fit the original function with these
discrete points to get the approximate solution. Differ-
ent from this, we get the analytical solution for Eq. (1)
by using Bilinear Neural Network Method (BNNM).
The neural network model of test function for the
(3+1)-dimensional Jimbo–Miwa equation is extended
to the “4-2-3” model. By giving some specific acti-
vation functions, such as {φ1(ξ1) = cos(ξ1), φ2(ξ2) =
sin(ξ2), φ3(ξ3) = exp(ξ3), φ4(ξ4) = exp(ξ4), φ5(ξ5) =
ξ5

2} or {φ1(ξ1) = cos(ξ1), φ2(ξ2) = sin(ξ2), φ3(ξ3) =
exp(ξ3), φ4(ξ4) = ξ5

2, φ5(ξ5) = ξ5
2}, new test func-

tion is constructed to obtain analytical solutions of
Eq. (1). Giving some specific parameters, new rogue
wave solutions and the bright and dark solitons are
obtained.Via curve plots, three-dimensional plots, con-
tour plots and density plots, dynamical characteris-
tics of these waves are exhibited. That will be used
to describe nonlinear phenomena in the fields of gas,
plasma, optics, acoustics, heat transfer, fluid dynamics,
classical mechanics and so on.

The neural network model can fit the nonlinear par-
tial differential equations well because of its nonlin-
ear properties. In the future, we can further optimize
the neural network model to make it have more com-
plex nonlinear characteristics, such as using “4-2-4”
or “4-2-5” model to increase the breadth of the neu-
ral network, or using “4-2-3-2” or “4-2-3-2-2” model
to increase the depth of the neural network model. In
addition, we can directly use arbitrary functions φ(ξi )

to calculate to obtain arbitrary function solutions for
the (3+1)-dimensional Jimbo–Miwa equation. How-
ever, with the increase in the complexity of the neu-
ral network model, the amount of calculation becomes
quite large, and the calculation time becomes particu-
larly long. In the future, we can solve this bottleneck
problem by parallel computing and quantum comput-
ing.
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