
Rumen IvanovHeinrich-Heine-Universität Düsseldorf | HHU
Rumen Ivanov
Dr.
About
42
Publications
6,144
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,459
Citations
Citations since 2017
Publications
Publications (42)
The identity of membranes and dynamic processes acting at membrane sites provide important cues to regulate transport and signal transduction and communicate information across membranes. There are still numerous open questions as to how membrane identity changes and the dynamic processes acting at the surface of membranes are regulated in diverse...
Several nuclear proteins undergo condensation. The question remains often whether this property is coupled to a functional aspect of the protein in the nucleus. The basic helix-loop-helix (bHLH) FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) integrates internal and external signals to control the amount of iron that is acquired in acco...
Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided. IRT1 activity is controlled by an intracellula...
Due to its redox properties, iron is both essential and toxic. Therefore, soil iron availability variations pose a significant problem for plants. Recent evidence suggests that calcium and reactive oxygen species coordinate signaling events related to soil iron acquisition. Calcium was found to affect directly IRT1-mediated iron import through the...
The contribution of amino acids (AAs) to soil nitrogen (N) fluxes is higher than previously thought. The fact that AA uptake is pivotal for N nutrition in boreal ecosystems highlights plant AA transporters as key components of the N cycle. At the same time, very little is known about AA transport and respective transporters in trees. Tree genomes m...
Key message:
SEC14L-PITPs guide membrane recognition and signaling. An increasingly complex modular structure of SEC14L-PITPs evolved in land plants compared to green algae. SEC14/CRAL-TRIO and GOLD domains govern membrane binding specificity. SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs) provide cues for membrane identity by ex...
Reactive oxygen species play a central role in the regulation of plant responses to environmental stress. Under prolonged iron (Fe) deficiency, increased levels of hydrogen peroxide (H2O2) initiate signaling events, resulting in the attenuation of Fe acquisition through the inhibition of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)....
Eukaryotic organisms share many common features in terms of endomembrane trafficking. This fact has helped plant scientists to propose testable hypotheses on how plant intracellular membrane trafficking is achieved and regulated based on knowledge from yeast and mammals. However, when a new compartment has been identified in a plant cell that has a...
The removal of transmembrane proteins from the plasma membrane via endocytosis has emerged as powerful tool in the regulation of receptor signaling and molecule transport. In the last decade, IRON‐REGULATED TRANSPORTER1 (IRT1) has been established as one of the key model proteins for studying endomembrane trafficking. The use of IRT1 and additional...
Background and aims
Mungbean (Vigna radiata) is an important nutrient-rich crop with an increasing significance as food in Asia and other parts of the world. The conditions under which mungbean grows on the field might vary significantly and therefore understanding the behavior of plants on different soil types is crucial for obtaining optimal nutr...
Regulation of iron (Fe) acquisition and homeostasis is critical for plant survival. In Arabidopsis, Fe deficiency-induced bHLH039 forms a complex with the master regulator FIT and activates it to upregulate Fe acquisition genes. FIT is partitioned between cytoplasm and nucleus, whereby active FIT accumulates more in the nucleus than inactive FIT. A...
•The key bHLH transcription factor in Fe uptake, FER‐LIKE IRON DEFICIENCY‐INDUCED TRANSCRIPTION FACTOR (FIT), is controlled by multiple signaling pathways, important to adjust Fe acquisition to growth and environmental constraints. FIT protein exists in active and inactive protein pools, and phosphorylation of serine Ser272 in the C‐terminus, a reg...
Plants respond actively to changes in their environment. Variations in nutrient availability elicit substantial transcriptional reprogramming, and we aimed to systematically describe these adjustments and identify the regulators responsible. Using gene coexpression analysis based on 13 different nutrient availability anomalies, we defined and analy...
Iron is a key transition element in the biosphere and is crucial for living organisms, although its cellular excess can be deleterious. Maintaining the balance of optimal iron availability in the model plant Arabidopsis (Arabidopsis thaliana) requires the precise operation of iron import through the principal iron transporter IRON-REGULATED TRANSPO...
Nutrient acquisition is entangled with growth and stress in sessile organisms. The bHLH transcription factor FIT is a key regulator of Arabidopsis iron (Fe) acquisition and post-translationally activated upon low Fe. We identified CBL-INTERACTING PROTEIN KINASE CIPK11 as a FIT interactor. Cytosolic Ca2+ concentration and CIPK11 expression are induc...
Endomembrane protein trafficking has emerged as important means of regulating stress responses in plants. The Arabidopsis SNX1 protein is involved in recycling the iron transporter IRT1, thus promoting its presence at the plasma membrane. SNX1 and its interacting partners undergo stress-related regulation at both transcriptional and posttranslation...
Protein sorting in the endomembrane system is responsible for the coordination of cellular functions. Plant intracellular trafficking has its own unique features, which include specific regulatory aspects of endosomal sorting and recycling of cargo proteins, mediated by the retromer complex. Recent work has led to significant progress in understand...
Background and aimsDicotyledonous plants, such as Arabidopsis, acquire soil iron using a reduction-based mechanism, named Strategy I, where the final step involves Fe2+ import by the ZIP-family transporter AtIRT1. The universal presence of IRT1-like genes, suggests that Strategy I represents a basic process in the green lineage. However, for some g...
The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress a...
Endosomal recycling of plasma membrane proteins contributes significantly to the regulation of cellular transport and signaling processes. Members of the Arabidopsis (Arabidopsis thaliana) SORTING NEXIN (SNX) protein family were shown to mediate the endosomal retrieval of transporter proteins in response to external challenges. Our aim is to unders...
Signaling mediated by reactive oxygen species (ROS) has emerged as a key component of plants' responses to environmental stress. The ROS-regulated transcription factor ZAT12 was revealed as a negative regulator of iron (Fe) deficiency responses through its direct interaction with the bHLH protein FIT. In the epidermis of the early root differentiat...
Plants grown under iron (Fe)-deficient conditions induce a set of genes, which enhance the efficiency of Fe uptake by the roots. In Arabidopsis, the central regulator of this response is the basic helix-loop-helix transcription factor FIT. FIT activity is regulated by protein-protein interactions, which also serve to integrate external signals that...
Plants are the principal source of dietary iron (Fe) for most of Earth's population and Fe deficiency can lead to major health problems. Developing strategies to improve plant Fe content is a challenge because Fe is essential and toxic and therefore regulating Fe uptake is crucial for plant survival. Acquiring soil Fe relies on complex regulatory e...
The IRON-REGULATED TRANSPORTER1 (IRT1) is the principal importer of soil iron in Arabidopsis thaliana. It has a complex intracellular trafficking behavior, including continuous cycling between plasma membrane and endosomes. SORTING NEXIN1 is required for the recycling of endosome-localized IRT1. In its absence, IRT1 is mistargeted for degradation,...
Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components invol...
Background / Purpose:
FIT is a central regulator of iron response. ZAT12 was identified as a link between iron deficiency responses and other types of abiotic stress.
Main conclusion:
ZAT12 acts as a negative regulator of FIT.
Separation of functions within the cytoplasm of the eukaryotic cell has resulted in the development of a highly dynamic network of membranous compartments. Among them, the endosomes represent a crossing point for the major cellular trafficking pathways. Indeed, they are responsible for the communication between the cellular compartments, as well as...
Self-incompatibility (SI) is an archetypal cell-to-cell communication system in which self-pollen is rejected to prevent inbreeding. In crucifers (or Brassicaceae family), the pollen SI determinant is a small peptide, the S-LOCUS CYSTEINE-RICH PROTEIN (SCR, also known as SP11). During self-pollination, SCR binds to the extracellular domain of its c...
Copper ions play a fundamental role in plant metabolism where its uptake and distribution within the organism is highly regulated, allowing the cells to sustain an adequate concentration. Shortage or excess of Cu can cause severe damage to the organisms endangering their survival. We recently reported a non-invasive method to follow the intracellul...
During the late stages of seed development, the embryo patterning program is completed and maturation is initiated. One of the main events during the maturation phase is the acquisition of dormancy, characterized by the failure of a normally developed seed to germinate precociously. Dormancy is controlled by a complex regulatory mechanism that invo...
A principal objective in life sciences is the visualization of biochemical processes. Fluorescence-based techniques are widely used to demonstrate transport of relevant substances across cellular membranes. In this paper we report a novel noninvasive, real-time fluorescence lifetime imaging microscopy method for visualizing uptake and release of di...
Iron is an essential element for life on Earth and its shortage, or excess, in the living organism may lead to severe health disorders. Plants serve as the primary source of dietary iron and improving crop iron content is an important step towards a better public health. Our review focuses on the control of iron acquisition in dicotyledonous plants...
The understanding of cellular processes and functions and the elucidation of their physiological mechanisms is an important aim in the life sciences. One important aspect is the uptake and the release of essential substances as well as their interactions with the cellular environment. As green fluorescent protein (GFP) can be genetically encoded in...
More than half of the flowering plants have a sophisticated mechanism for self-pollen rejection, named self-incompatibility (SI). In Brassicaceae, recognition specificity is achieved by the interaction of the stigmatic S-RECEPTOR KINASE (SRK) and its ligand S-LOCUS CYSTEINE-RICH PROTEIN (SCR). Recent years have seen significant advances in understa...
Self-incompatibility (SI) has emerged as an evolutionary strategy to enhance the genetic variability of plant species. In Brassica, it is controlled by a single multiallelic locus, the S-locus, encoding a receptor kinase (SRK) expressed in the stigma papilla cells and its ligand, a small protein (SCR) located in the pollen coat. Pollen rejection is...
Intracellular trafficking of plant receptor kinases (PRKs) is a key step in regulation of cellular signaling. Our current knowledge in this field is based on systems that address signaling pathways affecting the whole cell. There are, however, signaling phenomena that add a further layer of complexity. In the Brassica self-incompatibility response,...
EFFECTORS OF TRANSCRIPTION2 (ET) are plant-specific regulatory proteins characterized by the presence of two to five C-terminal DNA- and Zn-binding repeats, and a highly conserved cysteine pattern. We describe the structural characterization of the three member Arabidopsis thaliana ET gene family and reveal some allelic sequence polymorphisms. A mu...
The plant hormone gibberellin (GA) is known to modulate various aspects of plant cell differentiation and development. The current model of GA-mediated regulation is based on a de-repressible system and includes specific protein modification and degradation. HRT, a zinc finger protein from barley has been shown to have GA-dependent transcriptional...
Single Cell Gel Electrophoresis (SCGE) or Comet assay is a very sensitive method for assessing damages in DNA on a single cell level. It has found many applications in fields where genotoxic activity could be an issue. In environmental monitoring, health care, food industry Comet assay is used with increasing popularity. For verifying the results o...
We have determined and compared nucleotide excision repair capability of several rat tissues by a method based on restoration of the transformation activity of UV-irradiated pBlueScript by incubation in repair-competent protein extracts. After 3 h of incubation, plasmid DNA was isolated and used to transform competent Escherichia coli cells. Damage...