# Discovery of novel $N$－（5－（arylcarbonyl）thiazol－2－yl）amides and $\boldsymbol{N}$－（5－（arylcarbonyl）thiophen－2－yl）amides as potent ROR $\gamma \mathbf{t}$ inhibitors 

Yonghui Wang ${ }^{\mathrm{a}, *}$ ，Wei Cai ${ }^{\mathrm{a}}$ ，Guifeng Zhang ${ }^{\mathrm{a}}$ ，Ting Yang ${ }^{\mathrm{a}}$ ，Qian Liu ${ }^{\text {a }}$ ，Yaobang Cheng ${ }^{\mathrm{a}}$ ，Ling Zhou ${ }^{\mathrm{a}}$ ， Yingli Ma ${ }^{\text {a }}$ ，Ziqiang Cheng ${ }^{\text {a }}$ ，Sijie Lu ${ }^{\text {a }}$ ，Yong－Gang Zhao ${ }^{\text {a }}$ ，Wei Zhang ${ }^{\text {a }}$ ，Zhijun Xiang ${ }^{\text {a }}$ ，Shuai Wang ${ }^{\text {a }}$ ， Liuqing Yang ${ }^{a}$ ，Qianqian Wu ${ }^{\text {a }}$ ，Lisa A．Orband－Miller ${ }^{\text {b }}$ ，Yan Xu ${ }^{\text {a }}$ ，Jing Zhang ${ }^{\text {a }}$ ，Ruina Gao ${ }^{\text {a }}$ ， Melanie Huxdorf ${ }^{\text {a }}$ ，Jia－Ning Xiang ${ }^{\text {a }}$ ，Zhong Zhong ${ }^{\text {a }}$ ，John D．Elliott ${ }^{\text {a }}$ ，Stewart Leung ${ }^{\text {a }}$ ，Xichen Lin ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Research and Development，GlaxoSmithKline，No． 3 Building， 898 Halei Road，Pudong，Shanghai 201203，China<br>${ }^{\mathrm{b}}$ Research and Development，GlaxoSmithKline， 5 Moore Drive，Research Triangle Park，NC 27709，USA

## A R T I C L E I N F O

## Article history：

Received 23 October 2013
Revised 6 December 2013
Accepted 9 December 2013
Available online 21 December 2013

## Keywords：

ROR $\gamma \mathrm{t}$ inhibitor
Th17 cell differentiation
Multiple sclerosis
Rheumatoid arthritis


#### Abstract

Novel series of N －（5－（arylcarbonyl）thiazol－2－yl）amides and N －（5－（arylcarbonyl）thiophen－2－yl）amides were discovered as potent retinoic acid receptor－related orphan receptor－gamma－t（ROR $\gamma \mathrm{t}$ ）inhibitors． SAR studies of the ROR $\gamma$ t HTS hit $\mathbf{6 a}$ led to identification of thiazole ketone amide $\mathbf{8 h}$ and thiophene ketone amide $\mathbf{9 g}$ with high binding affinity and inhibitory activity of Th17 cell differentiation．Compound $\mathbf{8 h}$ showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis（EAE）and collagen induced arthritis（CIA）models via oral administration．


© 2013 Elsevier Ltd．All rights reserved．

## 1．Introduction

CD4 ${ }^{+}$Thelper（Th）cells are essential effectors of the immune response and play an important role in inflammation．Th17 cells， a lineage of $\mathrm{CD} 4^{+}$effector T cells characterized by the production of IL－17A and IL－17F，are pathogenic in human autoimmune inflammatory diseases，including multiple sclerosis（MS）and rheu－ matoid arthritis（RA）．${ }^{1-5}$ The presence of IL－17 can be detected in both MS lesions ${ }^{6,7}$ and RA synovial fluid．${ }^{8,9}$ Correspondingly， Th17 cells are observed in the infiltrations of mouse experimental autoimmune encephalomyelitis（EAE）CNS and collagen induced arthritis（CIA）inflamed joints．Therapeutic manipulation of Th17 cell activity may have significant implications in the treatment of both autoimmune diseases．

Differentiation and function of Th17 cells are controlled by the transcription factor retinoic acid receptor－related orphan receptor－ gamma－t（ROR $\gamma \mathrm{t}$ ）．${ }^{10,11}$ It has been shown that the genetic defi－ ciency of ROR $\gamma$ t in mice severely impaired Th17 cell differentiation and conferred resistance to EAE．${ }^{12}$ ROR $\gamma$ t is a member of the nucle－ ar receptor（NR）superfamily．NRs function by binding to specific cis－acting elements on DNA via their DNA－binding domain（DBD）．

[^0]For ROR $\gamma \mathrm{t}$ ，the cis－acting element is known as RORE which has been identified in conserved non－coding sequence 2 （CNS2）locat－ ing upstream of IL17a in IL17a－IL17f locus．The importance of ROREs for the IL－17a／IL－17f specific genes transcription has been demonstrated．${ }^{13}$ Activity of NRs can be modulated by the binding of ligand to their ligand binding domain（LBD）resulting in the recruitment of transcriptional co－activators（e．g．，steroid receptor co－activator 1 or SRC1）or co－repressors（e．g．，nuclear receptor co－repressor or NCOR）．${ }^{10}$ As far as ROR $\gamma$ t is concerned，endogenous hydroxycholesterols were reported to be high－affinity natural li－ gands for ROR $\gamma$ t．${ }^{14}$ The ROR $\gamma$ t LBD contains a binding pocket that is suitable for small molecule screening．The development of ROR $\gamma \mathrm{t}$ modulators has potential utility in controlling the activity of Th17 cells．

A few small molecule inhibitors against ROR $\gamma$ t have been re－ ported in literature due to the potential of ROR $\gamma \mathrm{t}$ as a therapeutic target for the Th17－related autoimmune diseases（Fig．1）．${ }^{15-17}$ di－ goxin（1），${ }^{18}$ SR1001（2）${ }^{19}$ and ursolic acid（3）${ }^{20}$ were reported to in－ hibit ROR $\gamma$ t and ameliorate EAE in mice via ip administration． Other small molecular ROR $\gamma \mathrm{t}$ inhibitors such as SR1555，${ }^{21}$ SR2211（4）${ }^{22}$ and ML209（5）${ }^{23}$ were recently disclosed and showed to suppress Th17 cell differentiation in vitro．However，no small molecule ROR $\gamma$ t inhibitors suitable for oral dosing have been reported．In this paper，we report the discovery of novel thiazole／


1, Digoxin


3, Ursolic acid


5, ML209


2, SR1001



6a, HTS hit

Figure 1. Structures of literature ROR $\gamma$ t inhibitors (1-5) and ROR $\gamma$ t HTS hit ( $\mathbf{6 a}$ ).
thiophene ketone amides as potent ROR $\gamma$ t inhibitors, of which thiazole ketone amide $\mathbf{8 h}$ demonstrated in vivo efficacy in both EAE and CIA models via oral administration.

## 2. Results and discussion

HTS of the GSK in-house compound collection using a ROR $\gamma$ Fluorescence Resonance Energy Transfer (FRET) assay ${ }^{24}$ resulted in the identification of thiazole amide 6a as a ROR $\gamma$ inhibitor hit with a $\mathrm{pIC}_{50}$ of 6.0 (Fig. 1). The binding of $\mathbf{6 a}$ to the ROR $\gamma \mathrm{t}$ LBD was confirmed with a thermal shift of $7.1^{\circ} \mathrm{C}$ in a thermal shift assay ${ }^{24}$ and a $\mathrm{p} K_{\mathrm{i}}$ of 6.4 in a radioligand binding assay. ${ }^{25}$ In the subsequent evaluation in a cell-based assay, ${ }^{24}$ compound 6a was found to inhibit Th17 cell differentiation with $49 \%$ of maximum inhibition at $10 \mu \mathrm{M}$. On the basis of its in vitro activities, 6a was used as a chemical starting point for further optimization.

### 2.1. SAR

We first explored SAR of the right-hand side (RHS, R2) of the thiazole amide (Table 1). Compounds with RHS alkyl moieties (6b-6d) were found to be inactive while those with RHS aryls ( $\mathbf{6 e}-\mathbf{6 g}$ ) started to pick up some ROR $\gamma$ t activity. With a sulfonyl group in the para-position of the RHS phenyl ring, the ROR $\gamma \mathrm{t}$ potency improved. Among the sulfones ( $\mathbf{6 a}, \mathbf{6 h}-\mathbf{6 k}$ ) and sulfonamides ( 61 and 6 m ), the ones with straight-chain alkyls showed higher ROR $\gamma$ t potency than those with branched alkyls (comparing 6a with $\mathbf{6 j}$, and $\mathbf{6 1}$ with $\mathbf{6 m}$ ). Fixing the RHS with ethyl sulfonyl, we then explored SAR of the left-hand side (LHS, R1) of the thiazole amide. Similarly, a certain size of LHS moieties such as cyclohexyl $(\mathbf{6 p})$, phenyl $(\mathbf{6 q})$ or substituted phenyls $(\mathbf{6 r}-\mathbf{6 w})$ was needed to maintain ROR $\gamma$ t activity. The halogen substitution position on the LHS phenyl ring slightly altered ROR $\gamma \mathrm{t}$ activity with ortho > me-ta-para in general. Among the di-substituted phenyls, 2,3-di-Cl$\mathrm{Ph}(6 \mathbf{u}), 2,4-\mathrm{di}-\mathrm{Cl}-\mathrm{Ph}(\mathbf{6 v})$ and $2,5-\mathrm{di}-\mathrm{Cl}-\mathrm{Ph}(\mathbf{6 a})$ showed better ROR $\gamma$ t potency than $2,6-$ di-Cl-Ph ( $\mathbf{6 w}$ ), indicating that a certain
conformation of the LHS aryl against the central thiazole ring is needed for the best interactions of the receptor and the compound.

In the light of potential conformational effect of LHS moieties on the ROR $\gamma$ t activity, we turned our attention to SAR study of 5 -substitution on the thiazole ring (Table 2). With increase size of the substituents (7a-7e), ROR $\gamma$ t potency improved in the order of $\mathrm{H}-\mathrm{Me}<\mathrm{Et}<i-\mathrm{Pr}<\mathrm{CH}_{2} \mathrm{Ph}<\mathrm{OPh}$. Tolerance of a heteroatom in the substituent (e.g., O in $\mathbf{7 e}$ vs $\mathrm{CH}_{2}$ in $\mathbf{7 d}$ ) encouraged us to install a carbonyl containing moiety in the 5-position of the thiazole ring. Alkyl ketones $(\mathbf{7 g}-\mathbf{7 i})$ were tolerated and the ROR $\gamma t$ potency improved with the increase size of 5-substituents ( $\mathrm{Me}<\mathrm{Et} \ll \mathrm{Cy}-\mathrm{Ph}$ ). It was noted that there was $2.4 \log$ unit potency increase from non-substituted thiazole amide $\mathbf{6 q}\left(\mathrm{pIC}_{50}=5.1\right)$ to 5-(phenylcarbonyl)thiazole amide $\mathbf{8 a}\left(\mathrm{pIC}_{50}=7.5\right)$. Such dramatic potency increase indicates that the conformation of 4-phenyl and 5-phenylcarbonyl on the thiazole ring, mainly enabled by steric hindrance, and their interactions with ROR $\gamma$ t LBD play an important role on the ROR $\gamma$ t activity.

With above SAR information, we designed and synthesized the compounds with substituents on 4-phenyl (R1) and/or 5-carbonylphenyl (R2) of the thiazole amide 8a, which led to identification of potent ROR $\gamma$ t inhibitors (Table 3). Introduction of chloro group at different position of the 4-phenyl ring $(\mathbf{8 b}-\mathbf{8 d})$ resulted in identification of $m-\mathrm{Cl}$-phenyl compound ( $\mathbf{8 c}$ ) with an increase of ROR $\gamma$ t potency. For different substituents in the meta-position of the 4-phenyl ring ( $\mathbf{8 c}, \mathbf{8 e}-\mathbf{8 g}$ ), ROR $\gamma$ t potency increased $\left(\mathrm{CO}_{2} \mathrm{H}<\mathrm{CH}_{2-}\right.$ $\mathrm{NMe}_{2}<\mathrm{CN}<\mathrm{Cl}$ ) with decreased polarity of the substituents, indicating a hydrophobic interaction existed between the LHS aryl moiety and the hydrophobic pocket of the receptor. Fixing 4-(3-Cl-phenyl) on the thiazole ring and introduction of a chloro or fluoro group at different position of the 5-carbonyl-phenyl ring identified potent thiazole ketone inhibitors ( $\mathbf{8 h}-\mathbf{8 l}$ ).

Replacement of the thiazole ring with a thiophene ring generally increased ROR $\gamma$ t activity ( $\mathbf{9 a - 9 h}$ ) (Table 3). Thiophene ketone amides have higher $c \log P$ and therefore are relatively more hydrophobic than thiazole ketone amides. The binding pocket occupied by the thiazole ring of the ligand is hydrophobic, which may

## Table 1

SAR of RHS and LHS of the thiazole amide

$\mathbf{6 m}$

Table 1 (continued)
Compd $6 \mathbf{6 n}$
${ }^{\text {a }}$ Data are the average of at least two determinations; \% max inhibition measured against activation by the surrogate agonist.

Table 2
SAR of 5-substitution in the thiazole ring


| Compd | R | ROR $\gamma$ FRET $\mathrm{pIC}_{50}{ }^{\text {a }}$ (\% max inhibition) |
| :---: | :---: | :---: |
| 6q | H | 5.1 (74) |
| 7a | Me | 5.0 (99) |
| 7b | Et | 5.3 (120) |
| 7c |  | 5.7 (118) |
| 7d |  | 6.2 (92) |
| 7e |  | 6.4 (104) |
| 7f |  | 5.0 (74) |
| 7g |  | 5.2 (97) |
| 7h |  | 5.6 (86) |
| 7 i |  | 7.6 (87) |
| 8a |  | 7.5 (107) |

${ }^{\text {a }}$ Data are the average of at least two determinations; \% max inhibition measured against activation by the surrogate agonist.
explain why thiophene ketone amides are somewhat more potent than thiazole ketone amides.

### 2.2. In vitro and in vivo biological evaluations

The binding of the thiazole/thiophene ketone amides to the ROR $\gamma \mathrm{t}$ LBD was confirmed and their binding affinities were determined by the thermal shift assay as well as the radioligand binding assay. Compounds $\mathbf{8 h}, \mathbf{9 g}$ and $\mathbf{9 d}$ demonstrated thermal shifts of 11.3, 14.8 and $15.3^{\circ} \mathrm{C}$, respectively. In the radioligand binding assay, compounds $\mathbf{8 h}, \mathbf{9 g}$ and $\mathbf{9 d}$ competed against $\left[{ }^{3} \mathrm{H}\right] 25$-hydroxycholesterol with $\mathrm{p} K_{\mathrm{i}} \mathrm{S}$ of $7.4,7.5$ and 7.6 , respectively.

Our next step was to explore our compounds' effects in Th17 cell differentiation system in vitro. Purified CD4+ T cells from
mouse were differentiated in Th17 culture conditions in the absence or presence of compounds. Production of IL-17 in the cultures was determined by ELISA. Thiazole ketone amides were found to inhibit the production of IL-17 in mouse generally with $\mathrm{pIC}_{50}$ s from 5 to 7, about one log unit lower than that obtained by the FRET assay (Table 3). For example, compound $\mathbf{8 h}$ showed a FRET $\mathrm{pIC}_{50}$ of 7.8 and a $\mathrm{Th} 17 \mathrm{pIC}_{50}$ of 6.7. Thiophene ketone amides, on the other hand, showed much higher Th17 potency ( $\mathrm{pIC}_{50} \mathrm{~s}$ from 7 to 8 ) than the corresponding thiazole ketone amides (comparing $\mathbf{8 c}$ with $\mathbf{9 b}, \mathbf{8 h}$ with $\mathbf{9 d}$ ). For example, compound $\mathbf{9 g}$ demonstrated excellent inhibitory activity on Th17 cell differentiation assay with a $\mathrm{pIC}_{50}$ of 7.9 as well as in ROR $\gamma$ FRET assay with a $\mathrm{pIC}_{50}$ of 7.8. The reason that thiazole ketone amides showed lower Th17 potency than ROR $\gamma$ FRET potency is unclear and cannot be explained by membrane permeability as both thiazole ketone amides and thiophene ketone amides have reasonably good membrane permeability.

With improved potency, several key compounds were then evaluated for their rodent PK profile (Table 4). Thiazole ketone amide $\mathbf{8 h}$ demonstrated a good PK exposure with oral bioavailability around $48 \%$. Compared to thiazole ketone amides, thiophene ketone amides (e.g., 9d and $\mathbf{9 g}$ ), although having higher ROR $\gamma$ FRET and Th17 potency, showed poor oral exposure with oral bioavailabilities of $3.7 \%$ and $4.5 \%$, respectively. Thus, while thiazole ketone amide $\mathbf{8 h}$ was suitable for in vivo pharmacological studies via po administration, thiophene ketone amides $\mathbf{9 d}$ and $\mathbf{9 g}$ could only be evaluated in vivo through ip administration.

With the reasonable oral exposure, we then evaluated $\mathbf{8 h}$ in EAE mice and CIA mice where Th17 cells play a critical role (Fig. 2). Compound $\mathbf{8 h}$ was orally administered twice daily at dose of $100 \mathrm{mg} / \mathrm{kg}$ to EAE mice from the day of immunization (Fig. 2A). The treatment resulted in a delay of disease onset and a reduction in clinical severity of EAE in early phase (<20 days). We also examined whether compound $\mathbf{8 h}$ could be effective in treating CIA which also features Th17 pathology. In the CIA model performed on DBA/1 mice where animals were immunized by collagen on day 0 and day 21 , compound $\mathbf{8 h}$ was orally administered twice daily at dose of $100 \mathrm{mg} / \mathrm{kg}$ to the mice one day before the second collagen immunization (Fig. 2B). The treatment resulted in a delay of disease onset and a reduction in clinical severity of CIA.

## 3. Chemistry

A convergent synthesis of the general structures N -(5-(arylcar-bonyl)thiazol-2-yl)amides 8 was developed (Scheme 1). ${ }^{26}$ Substituted $\alpha$-bromo ketone $\mathbf{1 1}$ was obtained commercially or synthesized through methyl ketone 10. Protected carbamothioyl

Table 3
SAR of thiazole/thiophene ketone amides


| Compd | R1 | R2 | X | ROR $\gamma$ FRET $\mathrm{pIC}_{50}{ }^{\text {a }}$ (\% max inhibition) ${ }^{\text {b }}$ | Th17 pIC ${ }_{50}{ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8a | H | H | N | 7.5 (107) | 6.5 |
| 8b | $2-\mathrm{Cl}$ | H | N | 7.4 (90) | 6.4 |
| 8 c | $3-\mathrm{Cl}$ | H | N | 7.9 (100) | 6.9 |
| 8d | $4-\mathrm{Cl}$ | H | N | 7.4 (102) | 6.1 |
| 8 e | $3-\mathrm{CN}$ | H | N | 7.5 (101) | 6.8 |
| 8 f | $3-\mathrm{CH}_{2} \mathrm{NMe}_{2}$ | H | N | 6.1 (105) | <5.1 |
| 8g | $3-\mathrm{CO}_{2} \mathrm{H}$ | H | N | 5.1 (80) | <5 |
| 8h | $3-\mathrm{Cl}$ | $2-\mathrm{Cl}$ | N | 7.8 (97) | 6.7 |
| 81 | $3-\mathrm{Cl}$ | $3-\mathrm{Cl}$ | N | 8.0 (85) | 6.6 |
| 8j | $3-\mathrm{Cl}$ | 4-Cl | N | 7.9 (76) | 6.2 |
| 8k | $3-\mathrm{Cl}$ | 2-F | N | 7.7 (102) | 6.5 |
| 81 | $3-\mathrm{Cl}$ | 3-F | N | 7.6 (102) | 6.7 |
| 9a | H | H | CH | 8.0 (103) | 7.3 |
| 9b | $3-\mathrm{Cl}$ | H | CH | 7.9 (99) | 8.0 |
| 9c | $3-\mathrm{CN}$ | H | CH | 7.8 (101) | 7.6 |
| 9d | $3-\mathrm{Cl}$ | $2-\mathrm{Cl}$ | CH | 8.0 (105) | 7.6 |
| 9e | $3-\mathrm{Cl}$ | $3-\mathrm{Cl}$ | CH | 8.1 (89) | 7.6 |
| 9 f | $3-\mathrm{Cl}$ | 2-F | CH | 8.2 (106) | 8.0 |
| 9g | $3-\mathrm{Cl}$ | 3-F | CH | 7.9 (104) | 7.8 |
| 9h | $3-\mathrm{CF}_{3}$ | 3-F | CH | 8.0 (104) | 7.9 |

${ }^{\text {a }}$ Data are the average of at least two determinations.
${ }^{\mathrm{b}} \%$ max inhibition measured against activation by the surrogate agonist.

Table 4
Mouse $\mathrm{PK}^{\mathrm{a}}$ of the ROR $\gamma \mathrm{t}$ inhibitors

| Compd | iv |  |  |  | po |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t_{1 / 2}(\mathrm{~h})$ | $C_{\text {lb }}(\mathrm{mL} / \mathrm{min} / \mathrm{kg})$ | $V_{\text {ss }}(\mathrm{L} / \mathrm{kg})$ | DNAUC $_{0 \geqslant \infty}(\mathrm{ng} \mathrm{h} / \mathrm{mL}) /(\mathrm{mg} / \mathrm{kg})$ | $C_{\text {max }}(\mathrm{ng} / \mathrm{mL})$ | $\mathrm{DNAUC}_{0 \geqslant \infty}(\mathrm{ng} \mathrm{h} / \mathrm{mL}) /(\mathrm{mg} / \mathrm{kg})$ | $F$ (\%) |
| 8h ${ }^{\text {b }}$ | 1.0 | 17.8 | 1.24 | 937 | 1547 | 448 | 48 |
| $9 \mathrm{~d}^{\text {c }}$ | 0.79 | 61.4 | 1.85 | 279 | 23.3 | 10 | 3.7 |
| 9g ${ }^{\text {c }}$ | 0.65 | 24.0 | 1.10 | 764 | 25.8 | 34 | 4.5 |

[^1]

Figure 2. (A) Treatment efficacy of compound $\mathbf{8 h}$ in mouse EAE ( $100 \mathrm{mg} / \mathrm{kg}$, b.i.d, po). (B) Efficacy of compound $\mathbf{8 h}$ in mouse CIA ( $100 \mathrm{mg} / \mathrm{kg}$, b.i.d., po). Both of EAE and CIA studies have been conducted twice for compound $\mathbf{8 h}$. The results of the duplicated studies were similar and data of one representative study was showed here.
amide 13 was obtained by condensation of acyl chloride 12, thiocyanate and bis((4-(methyloxy)phenyl)methyl)amine. Condensation of 11 and 13, followed by deprotection, afforded the amines 15, which was then further condensed with acid $\mathbf{1 6}^{26}$ to produce the desired analogs 8 .

A general synthetic procedure for N -(5-(arylcarbonyl)thiophen-2-yl)amides 9 was outlined in Scheme 2. ${ }^{27}$ Substituted phenyl methyl ketone 10 was reacted with ethyl 2-cyanoacetate and sulfur in the presence of morpholine to form thiophene ester 17. Deesterification of $\mathbf{1 7}$ provided thiophene amine 18, which was


Scheme 1. Reagents and conditions: (a) $\mathrm{Br}_{2}, \mathrm{Et}_{2} \mathrm{O}$; (b) bis((4-(methyloxy)phenyl)methyl)amine, $\mathrm{NH}_{4} \mathrm{SCN}$, acetone; (c) DMF, $85^{\circ} \mathrm{C}$; (d) $\mathrm{TFA}, 80^{\circ} \mathrm{C}$; (e) $\mathrm{HOBt}, \mathrm{EDC}, \mathrm{DCM}$.


Scheme 2. Reagents and conditions: (a) ethyl 2-cyanoacetate, sulfur, morpholine, EtOH, reflux; (b) NaOH, ethanol, reflux; (c) EDC, HOBt, DCM; (d) tin(IV) chloride, DCE, reflux.
then coupled with acid 16 to afford thiophene amides 19. The acylation of $\mathbf{1 9}$ with acid chloride $\mathbf{1 2}$ catalyzed by $\mathrm{SnCl}_{4}$ produced the desired compounds 9 .

## 4. Conclusions

In summary, we have discovered novel series of N -(5-(arylcar-bonyl)thiazol-2-yl)amides and N -(5-(arylcarbonyl)thiophen-2yl )amides as potent ROR $\gamma \mathrm{t}$ inhibitors. SAR studies of the ROR $\gamma \mathrm{t}$ HTS hit 6a led to identification of thiazole ketone amide $\mathbf{8 h}$ and thiophene ketone amide $\mathbf{9 g}$ with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound $\mathbf{8 h}$ showed in vivo efficacy in both mouse EAE and CIA models via oral administration. These novel ROR $\gamma$ t leads can be used as excellent tool compounds for target validation and related biological studies. Further optimization of the series to improve PK and other developability profile is on-going.

## 5. Experimental

### 5.1. Chemistry

### 5.1.1. General

Compounds not described below were purchased from commercial vendors or previously reported or reported in Supporting information section. Compound purity was determined using LC-MS analysis. Purification of the compounds was carried out by conventional methods such as chromatography and/or recrys-
tallization using suitable solvents. Chromatographic methods include column chromatography, flash chromatography, and MDAP (mass directed autopurification system). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 NMR spectrometer operating at 400 MHz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $101 \mathrm{MHz} . \mathrm{CDCl}_{3}$ is deuteriochloroform, and DMSO- $d_{6}$ is hexadeuteriodimethylsulfoxide. Chemical shifts are given in parts per million ( $\delta$ ) downfield from the internal standard tetramethylsilane (TMS) or the NMR solvent. Abbreviations for NMR data are as follows: $s=$ singlet, $d=$ doublet, $t=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, app = apparent, $\mathrm{br}=$ broad. J indicates the NMR coupling constant measured in hertz (Hz). High resolution mass spectrometry (HRMS) was operated in positive mode of electrospray ionization (ESI) at an orthogonal acceleration time-off light (oa-TOF) SYNAPT G2 HDMSTM (Waters, Manchester, U.K.). Solutions ( $500 \mathrm{ng} / \mathrm{mL}$ in acetonitrile $/ \mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$ ) were introduced via infusion at a flow rate of $5 \mu \mathrm{~L} /$ min to acquire accurate mass. LC-MS (Agilent 1200SL-6110 for acidic LC-MS and Agilent 1200 SL-6140 for basic LC-MS) analysis was conducted for all assayed compounds in either acidic or basic conditions. (1) Acidic conditions refer to water containing $0.05 \% \mathrm{TFA} /$ acetonitrile as mobile phase on an Agilent SB-C18 column ( $1.8 \mu \mathrm{~m}$, $4.6 \mathrm{~mm} \times 30 \mathrm{~mm}$ ) with mass spectra instrument and photodiode array detector. The following conditions were used: a gradient from $5 \%$ to $95 \%$ in 5 min and held at $95 \%$ for 1 min ; UV detection at 214 and 254 nm ; a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$; full scan; mass range from 100 to 1000 amu (atomic mass unit). (2) Basic conditions refer to water containing 10 mM aqueous $\mathrm{NH}_{4} \mathrm{HCO}_{3} /$
acetonitrile as mobile phase on a Waters XBridge C18 column ( $3.5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 50 \mathrm{~mm}$ ) with mass spectra instrument and photodiode array detector. The following conditions were used: a gradient from $5 \%$ to $95 \%$ in 5 min and held at $95 \%$ for 1 min ; UV detection at 214 and 254 nm ; a flow rate of $2 \mathrm{~mL} / \mathrm{min}$; full scan; mass range from 100 to 1000 amu . All the assayed compounds possess $\geqslant 95 \%$ purity determined using LC-MS analysis. Column chromatography was performed on Isco or Biotage instrument using a prepacked silica gel column, a detector with UV wavelength at 254 nm , and mixed solvents. MDAP equipped with 2489 UV detector, 2767 sample manager, 2545 pump, and 3100 single quadrupole mass spectrometer was performed on Sunfire Prep C18 column ( $5 \mu \mathrm{~m}, 19 \mathrm{~mm} \times 50 \mathrm{~mm}$ ) using water containing $0.05 \%$ TFA/acetonitrile as mobile phase. The following conditions were used: a gradient from $5 \%$ to $95 \%$ in 15 min and held in $95 \%$ for 3 min ; a flow rate of $30 \mathrm{~mL} / \mathrm{min}$.

### 5.1.2. $N$-(5-(2-Chlorobenzoyl)-4-(3-chlorophenyl)thiazol-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (8h)

To a solution of 1-(2-chlorophenyl)ethanone (10b, 3 g , $19.4 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$ was added bromine $(1.0 \mathrm{~mL}, 19.4 \mathrm{mmol})$ dropwise and the resulting mixture was stirred at room temperature for 1.5 h . Solvent was removed in vacuo to afford 2-bromo-1-(2-chlorophenyl)ethanone (11b, $4.6 \mathrm{~g}, 82 \%$ ) as a brown oil which was used directly in the next step without further purification: $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ 232.9, $234.9(\mathrm{M}+\mathrm{H})^{+}$.

A mixture of 1-[4-(methyloxy)phenyl]methanamine ( 2.6 g , 19.0 mmol ) and 4-(methyloxy)benzaldehyde ( $3.10 \mathrm{~g}, 22.7 \mathrm{mmol}$ ) in methanol ( 50 mL ) was heated to reflux for 3 h , then cooled to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(1.08 \mathrm{~g}, 28.4 \mathrm{mmol})$ was added to the reaction portionwise and the resulting mixture was stirred at room temperature overnight. Solvent was removed under reduced pressure and the residue was partitioned between EtOAc and water. The combined organic layers were washed with satd $\mathrm{NaHCO}_{3}$ solution and brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, solvent was removed in vacuo to afford bis((4-(methyloxy)phenyl)methyl)amine $(5.3 \mathrm{~g}, 93 \%)$ as a colorless oil which was used in the next step without further purification: $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 258.0(\mathrm{M}+\mathrm{H})^{+}$.

To a solution of 3-chlorobenzoyl chloride (12c, $2.0 \mathrm{~g}, 11.4 \mathrm{mmol}$ ) in acetone ( 30 mL ) cooled at $0^{\circ} \mathrm{C}$ was added ammonium thiocyanate $(1.7 \mathrm{~g}, 22.9 \mathrm{mmol})$ and the resulting mixture was stirred at this temperature for 1 h . Then bis\{[4-(methyloxy)phenyl]methyl\}amine ( $3.5 \mathrm{~g}, 13.7 \mathrm{mmol}$ ) was added at this temperature and stirred for an additional 30 min . The mixture was concentrated under reduced pressure, and then purified directly by chromatography (EtOAc:petroleum ether $(\mathrm{PE})=0-15 \%)$ to afford $N$-(bis(4-methoxy-benzyl)carbamothioyl)-3-chlorobenzamide (13c, $5.3 \mathrm{~g}, 10.8 \mathrm{mmol}$, 94\%) as a yellow sticky oil: $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 455.0(\mathrm{M}+\mathrm{H})^{+}$.

A solution of 2-bromo-1-(2-chlorophenyl)ethanone (11b, $155 \mathrm{mg}, 0.7 \mathrm{mmol})$ and $N$-(bis(4-methoxybenzyl)carbamothioyl)-3-chlorobenzamide ( $\mathbf{1 3 c}, 250 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) in $\mathrm{N}, \mathrm{N}$-dimethylformamide (DMF) ( 3 mL ) was stirred at $85^{\circ} \mathrm{C}$ under nitrogen for 30 min . After cooling to room temperature, the mixture was partitioned between EtOAc and water. The organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, solvent was removed in vacuo and the residue was stirred in TFA ( 4 mL , 51.9 mmol ) at $80^{\circ} \mathrm{C}$ overnight. Most of TFA was removed under reduced pressure. The residue was neutralized with satd $\mathrm{NaHCO}_{3}$, and then extracted with EtOAc for 3 times. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solution was concentrated and further purified by chromatography (EtOAc:PE $=0-50 \%$ ) to afford [2-amino-4-(3-chlorophenyl)-1, 3-thiazol-5-yl](2-chlorophenyl)methanone (15h) ( $198 \mathrm{mg}, 88 \%$ ) as a yellow solid: $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 348.9,351.0(\mathrm{M}+\mathrm{H})^{+}$.

A mixture of $\mathbf{1 5 h}(116 \mathrm{mg}, 0.332 \mathrm{mmol})$, ( 4 -(ethylsulfonyl)phenyl)acetic acid 16 ( $83 \mathrm{mg}, 0.365 \mathrm{mmol}$ ), EDC ( 89 mg ,
$0.465 \mathrm{mmol})$ and HOBt ( $62.8 \mathrm{mg}, 0.465 \mathrm{mmol}$ ) in dichloromethane (DCM) ( 5 mL ) was stirred at room temperature overnight. Solvent was removed under reduced pressure. The residue was purified by MDAP to afford $\mathbf{8 h}$ ( $56 \mathrm{mg}, 29 \%$ yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \quad$ DMSO $-d_{6}$ ) $\delta \mathrm{ppm} 13.10(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.26-$ 7.31 (m, 2H), 7.21-7.26 (m, 3H), 7.13-7.19 (m, 2H), 3.95 (s, 2H), $3.22(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 186.8,169.9,161.3,155.1,140.4,138.1,137.2$, 135.5, 132.2, 131.8, 130.5 (2C), 129.7, 129.5, 129.5, 129.4, 129.2, $128.7,128.0$ (2C), 127.8, 126.9, 126.8, 49.2, 41.4, 7.2. HRMS C $26 \mathrm{H}_{21}$ $\mathrm{N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2} \quad(\mathrm{M}+\mathrm{H})^{+}$calcd 559.0320, found 559.0317. LCMS: $t_{\mathrm{R}}=3.50 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 558.9,560.9(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.3. N -(5-Benzoyl-4-(2-chlorophenyl)thiazol-2-yl)-2-(4(ethylsulfonyl)phenyl)acetamide (8b)

Compound $\mathbf{8 b}$ ( $31 \mathrm{mg}, 21 \%$ yield) was prepared from [2-amino-4-(2-chlorophenyl)-1,3-thiazol-5-yl](phenyl)methanone ( 70 mg , $0.222 \mathrm{mmol})(\mathbf{1 5 b})$ and $\mathbf{1 6}(53 \mathrm{mg}, 0.233 \mathrm{mmol})$ in the same manner as described for $\mathbf{8 h}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ ppm 13.09 (s, 1H), 7.88 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.63 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.49-7.52 (m, 2H), 7.35-7.42 (m, 2H), 7.20-7.29 (m, 5H), 4.03 (s, $2 \mathrm{H}), 3.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO $-d_{6}$ ) $\delta \mathrm{ppm}$ 188.9, 170.1, 160.5, 152.4, 141.0, 138.0, 137.7, 134.5, 132.7, 132.5, 132.4, 131.0 (2C), 130.8, 129.6, 129.1 (2C), 128.5 (2C), 128.3 (2C), 127.7, 127.3, 49.7, 41.8, 7.6. HRMS $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{H})^{+}$calcd 525.0710, found 525.0715. LCMS: $t_{\mathrm{R}}=3.35 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 524.9$, $526.9(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.4. N -(5-Benzoyl-4-(3-chlorophenyl)thiazol-2-yl)-2-(4(ethylsulfonyl)phenyl)acetamide (8c)

Compound $8 \mathbf{8 c}$ ( $51 \mathrm{mg}, 31 \%$ yield) was prepared from [2-amino-4-(3-chlorophenyl)-1, 3-thiazol-5-yl](phenyl)methanone ( 80 mg , $0.254 \mathrm{mmol})(\mathbf{1 5 c})$ and $\mathbf{1 6}(61 \mathrm{mg}, 0.267 \mathrm{mmol})$ in the same manner as described for $\mathbf{8 h}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 13.10(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2H), 7.58-7.56 (m, 2H), 7.47 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.10$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 189.3$, 170.1, 160.4, 153.3, 141.0, 138.1, 137.7, 136.5, 133.1, 133.0, 130.9 (2C), 130.2, 129.7, 129.5 (2C), 129.0, 128.7 (2C), 128.5, 128.5 (2C), 125.9, 49.7, 41.8, 7.6. HRMS $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{H})^{+}$calcd 525.0710, found 525.0710. LCMS: $t_{\mathrm{R}}=3.51 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} /$ z 524.9, $526.9(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.5. N -(5-Benzoyl-4-(4-chlorophenyl)thiazol-2-yl)-2-(4(ethylsulfonyl)phenyl)acetamide (8d)

Compound $8 \mathbf{d}$ ( $30 \mathrm{mg}, 21 \%$ yield) was prepared from [2-amino-4-(4-chlorophenyl)-1,3-thiazol-5-yl](phenyl)methanone (120 mg, $0.248 \mathrm{mmol})(\mathbf{1 5 d})$ and $\mathbf{1 6}(62 \mathrm{mg}, 0.273 \mathrm{mmol})$ in the same manner as described for $\mathbf{8 h}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ( 600 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 13.10(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm}$ 189.3, 170.1, 160.3, 153.7, 141.0, 138.1, 137.7, 133.9, 133.5, $133.1,131.6$ (2C), 130.9 (2C), 129.6 (2C), 128.7 (2C), 128.5 (2C), 128.4 (2C), 125.4, 49.7, 41.8, 7.6. HRMS m/z (ESI) $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd 525.0710, found 525.0716. LCMS: $t_{\mathrm{R}}=3.50 \mathrm{~min}$, $>95 \%$, MS(ES $\left.{ }^{+}\right) m / z 525.1,527.1(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.6. $N$-(5-Benzoyl-4-(3-cyanophenyl)thiazol-2-yl)-2-(4(ethylsulfonyl)phenyl)acetamide (8e)

Compound $8 \mathbf{8 e}$ ( $42 \mathrm{mg}, 35 \%$ yield) was prepared from 3-[2-amino-5-(phenylcarbonyl)-1,3-thiazol-4-yl]benzonitrile ( 70 mg , $0.229 \mathrm{mmol})$ ( $\mathbf{1 5 e}$ ) and $\mathbf{1 6}(55 \mathrm{mg}, 0.241 \mathrm{mmol})$ in the same
manner as described for $\mathbf{8 h}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta$ ppm $13.13(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.78$ (m, 3H), 7.63 (d, J=8.3 Hz, 2H), 7.54-7.56 (m, 2H), 7.42-7.48 (m, $2 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm}$ 189.1, 168.5, 146.3, 144.0, 141.5, 138.8, 137.6, 137.3, 134.3, $133.2,132.2,131.7,130.9$ (2C), 129.6, 129.3 (2C), 128.4 (2C), 128.3 (2C), 127.7, 118.9, 115.4, 111.5, 49.7, 42.0, 7.7. HRMS C $27 \mathrm{H}_{22-}$ $\mathrm{N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$calcd 516.1052, found 516.1066. LCMS: $t_{\mathrm{R}}=3.20-$ min, $>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 516.1(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.7. N -(5-Benzoyl-4-(3-((dimethylamino)methyl)phenyl) thiazol-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (8f)

Compound $\mathbf{8 f}$ ( $70 \mathrm{mg}, 12 \%$ yield) was prepared from (2-amino-4-(3-((dimethylamino)methyl)phenyl) thiazol-5-yl)(phenyl)methanone ( $260 \mathrm{mg}, 0.724 \mathrm{mmol}$ ) ( $\mathbf{1 5 f}$ ) and $16(460 \mathrm{mg}, 2.015 \mathrm{mmol})$ in the same manner as described for $\mathbf{8 h}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.63 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 4 \mathrm{H})$, 3.61 (s, 2H), 3.35 (s, 2H), 3.13 (q, J= $7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.20 ( $\mathrm{s}, 6 \mathrm{H}), 1.27$ ( $\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ). HRMS $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$calcd 548.1678, found 548.1685. LCMS: $t_{\mathrm{R}}=2.53 \mathrm{~min},>95 \%$, MS(ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 547.9$ $(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.8. 3-(5-Benzoyl-2-(2-(4-(ethylsulfonyl)phenyl)acetamido) thiazol-4-yl)benzoic acid ( 8 g )

Compound $\mathbf{8 g}$ ( $31 \mathrm{mg}, 22 \%$ yield) was prepared from 3-[2-amino-5-(phenylcarbonyl)-1,3-thiazol-4-yl]benzoate ( 80 mg , $0.236 \mathrm{mmol})(\mathbf{1 5 g})$ and $\mathbf{1 6}(57 \mathrm{mg}, 0.248 \mathrm{mmol})$ in the same manner as described for $\mathbf{8 h}$ with hydrolization of the ester to give a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta \mathrm{ppm} 13.13$ (s, 1H), 13.01 (br, 1H), 8.02 (t, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.88 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.79 $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.44$ $(\mathrm{t}, \quad J=7.4 \mathrm{~Hz}, \quad 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), \quad 3.29$ (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd 535.0998 , found 535.1000 . LCMS: $t_{\mathrm{R}}=2.91 \mathrm{~min}$, $>95 \%$, MS(ES $\left.{ }^{+}\right) m / z 535.0(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.9. N -(5-(3-Chlorobenzoyl)-4-(3-chlorophenyl)thiazol-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (8i)

Compound $\mathbf{8 i}$ ( $50 \mathrm{mg}, 31 \%$ yield) was prepared from [2-amino-4-(3-chlorophenyl)-1,3-thiazol-5-yl](3-chlorophenyl)methanone ( $80 \mathrm{mg}, 0.229 \mathrm{mmol}$ ) ( $\mathbf{1 5 i}$ ) and $\mathbf{1 6 ( 5 5 \mathrm { mg } , 0 . 2 4 1 \mathrm { mmol } ) \text { in the same } . ~}$ manner as described for $\mathbf{8 h}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 13.15(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ $7.33(\mathrm{~m}, 4 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 188.0,170.2$, 161.0, 154.3, 141.0, 139.9, 137.7, 136.5, 133.4, 133.1, 132.4, 130.9 (2C), 130.5, 130.2, 129.8, 129.1 (2C), 128.6, 128.5 (2C), 127.9, 126.1, 49.7, 41.8, 7.6. HRMS $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2}(\mathrm{M}+\mathrm{H})^{+}$calcd 559.0320, found 559.0318. LCMS: $t_{\mathrm{R}}=3.66 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} /$ $z 558.9,560.9(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.10. $N$-(5-(4-Chlorobenzoyl)-4-(3-chlorophenyl)thiazol-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide ( 8 j )

Compound $\mathbf{8 j}$ ( $54 \mathrm{mg}, 34 \%$ yield) was prepared from [2-amino-4-(3-chlorophenyl)-1,3-thiazol-5-yl](4-chlorophenyl)methanone ( $80 \mathrm{mg}, 0.229 \mathrm{mmol}$ ) ( $\mathbf{1 5 j}$ ) and $\mathbf{1 6}$ ( $55 \mathrm{mg}, 0.241 \mathrm{mmol}$ ) in the same manner as described for $\mathbf{8 h}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 13.12(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 188.2,170.2,160.6,153.6,141.0,137.8,137.7,136.8$, $136.4,133.1,131.3$ (2C), 130.9 (2C), 130.3, 129.8, 129.1, 128.7
(2C), 128.6, 128.5 (2C), 125.9, 49.7, 41.8, 7.6. HRMS $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ $\mathrm{Cl}_{2}(\mathrm{M}+\mathrm{H})^{+}$calcd 559.0320, found 559.0317. LCMS: $t_{\mathrm{R}}=3.69 \mathrm{~min}$, $>95 \%$, $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 558.9,560.9(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.11. N -(4-(3-Chlorophenyl)-5-(2-fluorobenzoyl)thiazol-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (8k)

Compound $\mathbf{8 k}$ ( $36 \mathrm{mg}, 30 \%$ yield) was prepared from [2-amino-4-(3-chlorophenyl)-1, 3-thiazol-5-yl](2-fluorophenyl)methanone ( $70 \mathrm{mg}, 0.210 \mathrm{mmol}$ ) ( $\mathbf{1 5 k}$ ) and $16(50 \mathrm{mg}, 0.221 \mathrm{mmol})$ in the same manner as described for $\mathbf{8 h}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d $\mathrm{d}_{6}$ ) $\delta \mathrm{ppm} 13.15$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.87 ( $\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.63 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09-7.13 (m, 1H), $6.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 185.4,170.3,161.4,159.2(\mathrm{~d}, J=249.4 \mathrm{~Hz}), 155.0$, 140.9, 137.7, 136.0, 134.0 (d, $J=8.8 \mathrm{~Hz}$ ), 132.8, 131.0 (2C), 130.7 (d, $J=2.2 \mathrm{~Hz}$ ), 130.0, 129.7, 129.2, 128.5 (2C), 128.4, 127.5 (d, $J=7.3 \mathrm{~Hz}), 127.4,124.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 49.7$, 41.8, 7.6. HRMS $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{ClF}(\mathrm{M}+\mathrm{H})^{+}$calcd 543.0615, found 543.0613. LCMS: $t_{\mathrm{R}}=3.46 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 543.0(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.12. N -(4-(3-Chlorophenyl)-5-(3-fluorobenzoyl)thiazol-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (81)

Compound $\mathbf{8 1}$ ( $9 \mathrm{mg}, 8 \%$ yield) was prepared from [2-amino-4-(3-chlorophenyl)-1,3-thiazol-5-yl](3-fluorophenyl)methanone ( $70 \mathrm{mg}, 0.210 \mathrm{mmol}$ ) ( $\mathbf{1 5 1}$ ) and $\mathbf{1 6 ( 5 0 \mathrm { mg } , 0 . 2 2 1 \mathrm { mmol } ) \text { in the same } .}$ manner as described for $\mathbf{8 h}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 13.14(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.40(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.21-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.03$ ( $\mathrm{s}, 2 \mathrm{H}$ ), $3.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-d ${ }_{6}$ ) $\delta \mathrm{ppm} 188.1$ (d, $J=2.2 \mathrm{~Hz}$ ), 170.2, 162.0 (d, $J=247.4 \mathrm{~Hz}$ ), 160.9, 154.1, 141.0, 140.3 (d, $J=6.6 \mathrm{~Hz}$ ), 137.7 , 136.5, 133.0, $130.9(2 \mathrm{C}), 130.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 130.2,129.8$, 129.1, 128.6, 128.5 (2C), 126.0, 125.6 (d, $J=2.9 \mathrm{~Hz}$ ), 119.7 (d, $J=21.3 \mathrm{~Hz}$ ), 116.0 ( $\mathrm{d}, J=22.7 \mathrm{~Hz}$ ), 49.7, 41.8, 7.6. HRMS C $\mathrm{C}_{26} \mathrm{H}_{21}$ $\mathrm{N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{ClF}(\mathrm{M}+\mathrm{H})^{+}$calcd 543.0615, found 543.0615. LCMS: $t_{\mathrm{R}}=3.53 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 543.0(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.13. $N$-(4-(3-Chlorophenyl)-5-(3-fluorobenzoyl)thiophen-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (9g)

A mixture of 1-(3-chlorophenyl)ethanone (10c, 30 g , 194 mmol ), ethyl 2-cyanoacetate ( $66 \mathrm{~g}, 582 \mathrm{mmol}$ ), sulfur ( 8 g , 252 mmol ) and morpholine ( $34 \mathrm{~g}, 388 \mathrm{mmol}$ ) in ethanol ( 340 mL ) was heated to reflux and stirred overnight. Solvent was removed, and the residue was purified by flash chromatography (silica gel, EtOAc: $\mathrm{PE}=5-10 \%$ ) to give ethyl 2-amino-4-(3-chlorophenyl)-thio-phene-3-carboxylate (17c, $15 \mathrm{~g}, 36 \%$ yield) as a yellow solid: $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 281.9(\mathrm{M}+\mathrm{H})^{+}$.

A solution of $\mathrm{KOH}(50.8 \mathrm{~g}, 181 \mathrm{mmol})$ was added to a solution of $\mathbf{1 7 c}(15.0 \mathrm{~g}, 45.3 \mathrm{mmol})$ in ethanol ( 200 mL ). The reaction mixture was heated to reflux for 20 h . After cooling to room temperature, solvent was removed. To the residue was added water ( 150 mL ), and then the solution was acidified to $\mathrm{pH} \sim 7$ with 4 M HCl , at which point solid precipitated from the solution. The solid was collected by filtration, washed with water, and dried in air to give 2-amino-4-(3-chlorophenyl)thiophene-3-carboxylic acid (11g, 36.9 mmol ) as a beige solid. Then the solid was dissolved in ethanol $(150 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(92 \mathrm{~mL}, 184 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for 2 h . Solvent was removed in vacuo, and the residue was triturated with diethyl ether to give 4-(3-chlorophenyl)thiophen-2-amine hydrochloride ( $\mathbf{1 8 c}, 7.3 \mathrm{~g}, 56 \%$ yield) as a beige solid: $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 209.9(\mathrm{M}+\mathrm{H})^{+}$.

To a solution of $\mathbf{1 8 c}(6.0 \mathrm{~g}, 21.94 \mathrm{mmol})$, 2-(4-(ethylsulfonyl)phenyl)acetic acid $16(6.5 \mathrm{~g}, 28.5 \mathrm{mmol})$, EDC ( 6.3 g , 32.9 mmol ) and HOBt ( $4.4 \mathrm{~g}, 28.5 \mathrm{mmol}$ ) in dichloromethane (DCM) ( 90 mL ) was added dropwise diisopropylethylamine
( $7.7 \mathrm{~mL}, 43.9 \mathrm{mmol}$ ) at room temperature. The reaction mixture was heated at reflux under nitrogen overnight. The reaction mixture was partitioned between DCM ( 150 mL ) and water $(80 \mathrm{~mL})$.The organic phase was washed with water ( $50 \mathrm{~mL} \times 2$ ), brine ( 50 mL ), dried over anhydrous sodium sulfate, and concentrated. The residue was purified by column chromatography (silica gel, EtOAc:PE $=25-50 \%$ ) to give N -(4-(3-chlorophenyl)thiophen-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (19c) ( $7.0 \mathrm{~g}, 68 \%$ yield) as a pale brown solid: $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 419.9\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

To a solution of $\mathbf{1 9 c}(200 \mathrm{mg}, 0.476 \mathrm{mmol})$ and 3-fluorobenzoyl chloride ( $151 \mathrm{mg}, 0.953 \mathrm{mmol}$ ) in 1,2-dichloroethane (DCE) ( 16 mL ) was added dropwise $\mathrm{tin}(\mathrm{IV})$ chloride ( 1 M in DCM, $0.953 \mathrm{~mL}, 0.953 \mathrm{mmol}$ ). The reaction mixture was heated to reflux overnight. The reaction mixture was diluted with DCM ( 50 mL ), and then washed with water ( 20 mL ). The aqueous phase was extracted with DCM ( 20 mL ). The combined organic phase was dried over anhydrous sodium sulfate. After filtration and concentration, the residue was purified by column chromatography (silica gel, EtOAc: $\mathrm{PE}=1: 1$ to $\mathrm{EtOAc}: \mathrm{PE}: \mathrm{THF}=5: 5: 2$ ) to give the crude product, which was further purified by MDAP to afford $\mathbf{9 g}$ ( $15 \mathrm{mg}, 6 \%$ yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta \mathrm{ppm} 12.20$ (s, 1H), 7.87 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.18-7.25$ (m, 8H), 6.86 (s, 1H), 3.97 (s, 2H), 3.32 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.11 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 187.9$ (d, $J=2.2 \mathrm{~Hz}$ ), 168.5, $161.8(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 146.6,145.1,141.4,141.1$ (d, $J=6.6 \mathrm{~Hz}$ ), 138.0, 137.6, 133.1, 130.9 (2C), 130.5 (d, $J=8.1 \mathrm{~Hz}$ ), 130.2, 129.4, 128.4 (2C), 128.2, 128.1, 127.3, 125.2 (d, $J=2.2 \mathrm{~Hz}$ ), 118.8 ( $\mathrm{d}, \mathrm{J}=21.3 \mathrm{~Hz}$ ), 115.7 (d, $J=22.7 \mathrm{~Hz}$ ), 115.6, 49.7, 42.0, 7.7. HRMS $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{ClF}(\mathrm{M}+\mathrm{H})^{+}$calcd 542.0663 , found 542.0665 . LCMS: $t_{\mathrm{R}}=3.51 \mathrm{~min},>95 \% . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 541.8,543.7(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.14. N -(5-Benzoyl-4-phenylthiophen-2-yl)-2-(4(ethylsulfonyl)phenyl)acetamide (9a)

Compound 9a ( $68 \mathrm{mg}, 50 \%$ yield) was prepared from benzoyl chloride ( $0.061 \mathrm{~mL}, 0.529 \mathrm{mmol}$ ) and 2-(4-(ethylsulfonyl)phenyl)N -(4-phenyl-2-thienyl)acetamide (19a) ( $102 \mathrm{mg}, 0.265 \mathrm{mmol}$ ) in the same manner as described for 9 g as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 7.81$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.55 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-$ $7.16(\mathrm{~m}, 7 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, ~ D M S O-d_{6}$ ) $\delta \mathrm{ppm}$ 189.5, 168.3, 146.1, 145.7, 141.5, 138.8, 137.6, 136.1, 132.1, 130.8 (2C), 129.6 (2C), 129.3 (2C), 128.4 (4C), 128.2 (2C), 128.1, 127.0, 115.5, 49.7, 42.1, 7.6. HRMS $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$calcd 490.1147, found 490.1149. LCMS: $t_{\mathrm{R}}=3.32 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 490.0$ $(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.15. N -(5-Benzoyl-4-(3-chlorophenyl)thiophen-2-yl)-2-(4(ethylsulfonyl)phenyl)acetamide (9b)

Compound 9b ( $24 \mathrm{mg}, 9 \%$ yield) was prepared from benzoyl chloride ( $134 \mathrm{mg}, 0.953 \mathrm{mmol}$ ) and 19c ( $200 \mathrm{mg}, 0.476 \mathrm{mmol}$ ) in the same manner as described for 9 g as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), 3.30 ( q , $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.38-$ $7.47(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $12.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta \mathrm{ppm}$ 189.3, 168.4, $145.9,144.5,141.5,138.9,138.1,137.6,133.0,132.2,130.8$ (2C), 130.2, 129.4, 129.2 (2C), 128.4 (2C), 128.3 (2C), 128.2, 127.9, 127.5, 115.4, 49.7, 42.0, 7.7. HRMS $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{Cl}(\mathrm{M}+\mathrm{H})^{+}$calcd 524.0757, found 524.0764. LCMS: $t_{\mathrm{R}}=3.48 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right)$ $\mathrm{m} / \mathrm{z}$ 523.9, $525.9(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.16. $N$-(5-Benzoyl-4-(3-cyanophenyl)thiophen-2-yl)-2-(4(ethylsulfonyl)phenyl)acetamide (9c)

Compound 9c ( $57 \mathrm{mg}, 33 \%$ yield) was prepared from benzoyl chloride ( $89 \mathrm{mg}, 0.633 \mathrm{mmol}$ ) and N -(4-(3-cyanophenyl)thio-
phen-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide ( $\mathbf{1 9 g}$ ) ( 260 mg , 0.633 mmol ) in the same manner as described for 9 g as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 12.13$ (s, 1H), 7.87 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.86(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$calcd 515.1099, found 515.1107. LCMS: $t_{\mathrm{R}}=3.18 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} /$ $z 514.9(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.17. $N$-(5-(2-Chlorobenzoyl)-4-(3-chlorophenyl)thiophen-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (9d)

Compound 9 d ( $1.9 \mathrm{~g}, 29 \%$ yield) was prepared 2-chlorobenzoyl chloride ( $4.2 \mathrm{~g}, 23.8 \mathrm{mmol}$ ) and $\mathbf{1 9 c}(5.0 \mathrm{~g}, 11.9 \mathrm{mmol})$ in the same manner as described for 9 g as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 12.16(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.31(\mathrm{~m}, 8 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.30$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta \mathrm{ppm} 186.4,168.2,147.4,145.6,140.9,138.8,137.1$, 136.9, 132.2, 131.2, 130.4 (2C), 129.7, 129.5, 129.2, 129.2, 128.7, 127.9 (2C), 127.7, 127.5, 127.3, 126.7, 115.9, 49.2, 41.5, 7.2. HRMS $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2}(\mathrm{M}+\mathrm{H})^{+}$calcd 558.0367, found 558.0378. LCMS: $t_{\mathrm{R}}=3.54 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 557.8,559.8(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.18. $\boldsymbol{N}$-(5-(3-Chlorobenzoyl)-4-(3-chlorophenyl)thiophen-2-yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (9e)

Compound $\mathbf{9 e}$ ( $30 \mathrm{mg}, 11 \%$ yield) was prepared 3-chlorobenzoyl chloride ( $167 \mathrm{mg}, 0.953 \mathrm{mmol}$ ) and $\mathbf{1 9 c}$ ( $200 \mathrm{mg}, 0.476 \mathrm{mmol}$ ) in the same manner as described for $\mathbf{9 g}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d ${ }_{6}$ ) $\delta \mathrm{ppm} 12.16$ (s, 1H), 7.88 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.38(\mathrm{~m}, 8 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}$, $2 \mathrm{H}), 3.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-d $\mathrm{d}_{6}$ ) $\delta \mathrm{ppm} 187.8,168.5,146.7,145.2,141.4$, 140.6, 137.9, 137.6, 133.2, 133.1, 131.6, 130.9 (2C), 130.3, 130.2, 129.4, 128.9, 128.4 (2C), 128.2, 128.1, 127.5, 127.4, 115.6, 49.7, 42.0, 7.7. HRMS $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2}(\mathrm{M}+\mathrm{H})^{+}$calcd 558.0367, found 558.0372. LCMS: $t_{\mathrm{R}}=3.66 \mathrm{~min},>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 557.8,559.8$ $(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.19. $N$-(4-(3-Chlorophenyl)-5-(2-fluorobenzoyl)thiophen-2-

 yl)-2-(4-(ethylsulfonyl)phenyl)acetamide (9f)Compound $\mathbf{9 f}$ ( $73 \mathrm{mg}, 12 \%$ yield) was prepared 2 -fluorobenzoyl chloride ( $574 \mathrm{mg}, 3.62 \mathrm{mmol}$ ) and $\mathbf{1 9 c}$ ( $760 \mathrm{mg}, 1.81 \mathrm{mmol}$ ) in the same manner as described for $\mathbf{9 g}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d $\mathrm{d}_{6}$ ) $\delta \mathrm{ppm} 12.15(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.61 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 4 \mathrm{H})$, $7.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}$, $2 \mathrm{H}), 3.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-d $\mathrm{d}_{6}$ ) $\delta \mathrm{ppm} 185.1,168.6,158.9$ (d, $J=248.6 \mathrm{~Hz}$ ), $147.4,145.8,141.4,137.6,137.4,133.1(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 132.8$, 130.9 (2C), 130.3 (d, $J=2.9 \mathrm{~Hz}$ ), 130.0, 129.4, 128.4 (2C), 128.4, 128.3 (d, $J=15.4 \mathrm{~Hz}$ ), 128.1, $128.0,124.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 116.1$, 115.8 (d, $J=21.3 \mathrm{~Hz}$ ), 49.7, 42.0, 7.6. HRMS $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{FS}_{2} \mathrm{Cl}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd 542.0663, found 542.0666. LCMS: $t_{\mathrm{R}}=3.45 \mathrm{~min}$, $>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 541.8,543.8(\mathrm{M}+\mathrm{H})^{+}$.

### 5.1.20. 2-(4-(Ethylsulfonyl)phenyl)-N-(5-(3-fluorobenzoyl)-4-(3-(trifluoromethyl)phenyl)thiophen-2-yl)acetamide (9h)

Compound 9h ( $61 \mathrm{mg}, 34 \%$ yield) was prepared 3-fluorobenzoyl chloride ( $129 \mathrm{mg}, 0.811 \mathrm{mmol}$ ) and 2-(4-(ethylsulfonyl)phenyl)N -(4-(3-(trifluoromethyl)phenyl)thiophen-2-yl)acetamide (19h) ( $184 \mathrm{mg}, 0.406 \mathrm{mmol}$ ) in the same manner as described for $\mathbf{9 g}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta \mathrm{ppm} 12.15(\mathrm{~s}, 1 \mathrm{H})$, $7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.48 (m, 2H), 7.14-7.22 (m, 4H), 6.89 (s, 1H), 3.97 (s, 2H), $3.28(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta \quad \mathrm{ppm} 187.9(\mathrm{~d}, \quad J=2.2 \mathrm{~Hz}), 168.5,161.8(\mathrm{~d}$,
$J=245.0 \mathrm{~Hz}), 146.8,145.1,141.4,140.9$ (d, $J=6.6 \mathrm{~Hz}), 137.6,137.0$, 133.3, 130.9 (2C), 130.4 (d, $J=8.1 \mathrm{~Hz}), 129.6,129.1(\mathrm{q}, J=32.3 \mathrm{~Hz})$, 128.4 (2C), 127.6, 126.4 (q, $J=4.2 \mathrm{~Hz}$ ), 125.3 (d, $J=2.2 \mathrm{~Hz}$ ), 124.8 (q, $J=3.7 \mathrm{~Hz}$ ), $124.3(\mathrm{q}, J=274.7 \mathrm{~Hz}), 118.7(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 115.8$ (d, $J=22.7 \mathrm{~Hz}$ ), 115.7, 49.7, 42.1, 7.6. HRMS $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~F}_{4} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd 576.0926, found 576.0934. LCMS: $t_{\mathrm{R}}=3.56 \mathrm{~min}$, $>95 \%, \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 575.8(\mathrm{M}+\mathrm{H})^{+}$.

### 5.2. ROR $\gamma$ FRET assay

The assays were performed in an assay buffer consisting of $50 \mathrm{mM} \mathrm{NaF}, 50 \mathrm{mM} 3$-( N -morpholino) propanesulfonic acid, pH 7.5, $\quad 50 \mu \mathrm{M}$ 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate, $0.1 \mathrm{mg} / \mathrm{mL}$ bovine serum albumin, and 10 mM dithiothreitol in 384 -well plates (Greiner 784076, Longwood, FL). The total volume was $10 \mu \mathrm{~L} /$ well. The europium-labeled SRC1 solution was prepared by adding an appropriate amount of biotinylated SRC and europium labeled streptavidin (PerkinElmer Life and Analytical Sciences, Waltham, MA) into assay buffer, with final concentrations of 27 and 3.3 nM , respectively. The allophycocyanin (APC)-labeled-LBD solution was prepared by adding an appropriate amount of biotinylated ROR $\gamma$-LBD and APC-labeled streptavidin (CR130-100; PerkinElmer Life and Analytical Sciences) at a final concentration of 33 nM each. After 15 min of incubation at room temperature, a 20 -fold excess of biotin was added to block the remaining free streptavidin. Equal volumes of europium-labeled SRC- and APC-labeled ROR $\gamma$-LBD were then mixed with $0.2 \mu \mathrm{M}$ surrogate agonist $N$-(2-chloro-6-fluorobenzyl)- $N$-(( $2^{\prime}$-methoxy-[1,1'-biphenyl]-4-yl)methyl)benzenesulfonamide ${ }^{24}$ and dispensed into 384 -well assay plates at $10 \mu \mathrm{~L}$ volume/well. The 384 -well assay plates had 100 nL of test compound in DMSO predispensed into each well. The plates were incubated for 1 h at room temperature and then read on ViewLux (PerkinElmer Life and Analytical Sciences) in LANCE mode configured for europeum-APC labels. Data were collected and analyzed by Activitybase.

## 5.3. $\operatorname{ROR} \gamma \mathrm{t}$ dual FRET assay

Materials: RAR-related orphan receptor gamma (ROR $\gamma$ ) protein was made at GSK. Proteins were chemically biotinylated using standard methods. Typically proteins have between 1 and 5 biotins. Biotinylated-Peptide was purchased from CPC scientific. Streptavidin-labeled APC (CR130-150) and Eu-W1024 labeled streptavidin (AD0063) were purchased from Perkin Elmer. DMSO was purchased from EMD (MX14561). MOPS (M1254), sodium fluoride (S6521) and CHAPS (C3023) were purchased from Sigma. DTT (F780-01) was purchased from JT Baker. Immunopure D-biotin (29129) was purchased from Pierce. BSA (100350), Frac V, fatty acid free was purchased from Boehringer Mannheim. Compound preparation: Compounds were diluted in $100 \%$ neat DMSO at 10 mM . The compounds were then dispensed into an intermediate plate (polypropylene Greiner PP V-bottom: 781280) to make serial dilutions in $100 \%$ neat DMSO. Approximately 100 nL of the serial dilution was added to the assay plate (Costar 3573) using a Hummingbird (Genomic Solutions). Stock Buffer: A 0.5 M solution of MOPS was made by adding 104 g of MOPS to $800 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ in a graduated cylinder, using a calibrated pH meter, add increasing amounts NaOH to give a final pH of 7.5. This solution was filtered using a Costar $0.2 \mu \mathrm{~m}$ filtering apparatus and stored in the refrigerator until ready to use. Assay buffer: Add 100 mL of $10 \times$ MOPS stock solution to graduated cylinder bring up to 800 mL . Add 2.09 g of $\mathrm{NaF}, 0.03 \mathrm{~g}$ of CHAPS to the flask, 0.1 g of BSA to the flask. Make sure all components are dissolved. Add $\mathrm{dH}_{2} \mathrm{O}$ to give final volume of 1 L . The assay buffer was filtered with a Costar $0.2 \mu \mathrm{~m}$ filtering apparatus. On assay day, DTT was added to the assay buffer to a final concentration of 10 mM . Fresh DTT solid should be used. Assay:

ROR $\gamma$ were assayed using the generic protocol described. To polypropylene costar conical centrifuge tubes, add assay buffer, an appropriate amount of biotinylated-SRC1(2) from the $1 \mathrm{E}-4 \mathrm{M}$ $(100 \mu \mathrm{M})$ stock solution to give a final concentration of $4 \mathrm{E}-8 \mathrm{M}$ $(40 \mathrm{nM})$. To the above biotinylated SRC1(2) solution, add an appropriate amount of Europium-labeled streptavidin to give a final concentration of $1 \mathrm{E}-8 \mathrm{M}(10 \mathrm{nM})$. Invert gently to mix. Incubate 15 min at room temperature. At the same time, but in another polypropylene tube add an appropriate amount of biotinylatedROR protein from the stock solution to give a final concentration of $4 \mathrm{E}-8 \mathrm{M}(40 \mathrm{nM})$. To the biotinylated-ROR solution, add an appropriate amount of APC-labeled streptavidin to give a final concentration of $2 \mathrm{E}-8 \mathrm{M}(20 \mathrm{nM})$. Invert gently to mix. Incubate 15 min at room temperature. Following the 15 min incubations, add 20 fold excess biotin from the $1 \mathrm{E}-2 \mathrm{M}(10 \mathrm{mM})$ stock solution. Invert gently to mix. Incubate 10 min at room temperature. Gently mix the above solutions together to give a final solution containing 20 nM ROR_10 nM APC and 20 nM SRC1(2)_5 nM SA_EU. Incubate 5 min and use a Thermo Combi Multidrop to add $25 \mu \mathrm{~L}$ peptide/ ROR solution to assay plates containing 100 nL of test compound. Incubate plates for 1 h at room temperature, then read on ViewLux in Lance mode for EU/APC. Data analysis: Raw data was analyzed using ABASE (IBDS) software. The data was normalized initially using the following equation: Normalization $=100 *$ ((Basal HTRF-value)/(Basal HTRF - Minimal HTRF). The normalized data was then was fit to a 4-parameter logistic equation.

### 5.4. Mouse Th17 cell differentiation assay

CD4+T cells were purified from spleens using anti-CD4 magnetic microbeads (Miltenyi Biotec) and MACS columns (purity was $>95 \%$ ). CD4+ cells were resuspended in RPMI 1640 complete medium and added to 96 -well plates pre-coated with anti-mCD3 $(5 \mu \mathrm{~g} / \mathrm{mL})$ at $10^{5}$ cell/well in a total volume of $80 \mu \mathrm{l}$. One hundred microliters of a $2 \times$ cytokine cocktail and $20 \mu \mathrm{l}$ of compounds $(100 \times$ ) were added to the well. The final concentrations of antibodies and cytokines (all from R\&D Systems, Minneapolis, MN) were as follows: anti-mCD28 ( $5 \mu \mathrm{~g} / \mathrm{mL}$ ); anti-mIFN $-\gamma(10 \mu \mathrm{~g} / \mathrm{mL})$; antimIL4 ( $10 \mu \mathrm{~g} / \mathrm{mL}$ ); mIL-6 ( $20 \mathrm{ng} / \mathrm{mL}$ ); hTGF- $\beta 1$ ( $5 \mathrm{ng} / \mathrm{mL}$ ). The culture was incubated in $37^{\circ} \mathrm{C}$ for 3 days, and supernatants were collected for enzyme-linked immunosorbent assay (ELISA). The mouse IL-17 ELISA was performed according to the manufacturer's instruction (R\&D Systems). The results were analyzed using Prism software with nonlinear regression to determine the $\mathrm{IC}_{50}$ value.

### 5.5. Radioligand binding assay

ROR $\gamma \mathrm{t}$-LBD protein was incubated with $10 \mathrm{nM} 25-\left[26,27-{ }^{3} \mathrm{H}\right]$ hydroxycholesterol in the presence of various concentrations of compounds in the assay buffer ( 50 mM HEPES $\mathrm{pH} 7.4,150 \mathrm{mM}$ $\mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2,50 \mu \mathrm{M}$ CHAPS and 2 mM DTT). After incubation at $37^{\circ} \mathrm{C}$ for 60 min , the reaction mixture was immediately terminated by being quickly washed 8 times with ice-cold washing buffer. The results were analyzed using Prism software with nonlinear regression to determine the $\mathrm{IC}_{50}$ value, and then the $K_{\mathrm{i}}$ value was obtained through the Cheng-Prusoff equation.

### 5.6. CD-based Tm assay

CD assay was carried out using Jasco J-815 CD spectrometer. The assay concentrations of ROR $\gamma \mathrm{t}$-LBD protein and compounds were 4 and $50 \mu \mathrm{M}$, respectively. The assay buffer contains PBS pH 7.5 and $0.5 \%$ DMSO generated from compound dilution. Protein melting was recorded at 225 nm from $25-70^{\circ} \mathrm{C}$ with the ramping rate of $2^{\circ} \mathrm{C} / \mathrm{min}$ and sampling interval of $1^{\circ} \mathrm{C}$. The Tm value was determined by JASCO Protein Denaturation Analysis Software.

### 5.7. EAE induction and treatment

For EAE induction and treatment, C57BL/6 (B6) mice were purchased from Shanghai SIPPR/BK Experimental Animal Company Ltd (Shanghai, China) and were maintained under pathogen-free conditions. EAE was induced with $300 \mu \mathrm{~g} \mathrm{MOG}_{35-55}$ peptide (GL Biochem, Shanghai) emulsified with complete Freund's adjuvant. Pertussis toxin (200 ng, List Biological Laboratories, Campbell, CA) was administrated on the day of immunization and 48 h later. For treatment of EAE, compounds $\mathbf{8 h}$ or vehicle PBS was orally dosed twice daily from day 0 after immunization onward. Mice were examined daily and scored for disease severity using the following standard scale: 0 , no clinical signs; 1 , limp tail; 2 , paraparesis (weakness, incomplete paralysis of one or two hind limbs); 3, paraplegia (complete paralysis of two hind limbs); 4, paraplegia with forelimb weakness or paralysis; 5 , moribund or death. Data were expressed as Mean $\pm$ S.E.M. of 8 mice.

### 5.8. CIA induction and treatment

For CIA induction and treatment, DBA/ 1 mouse at age of 6-8 weeks were purchased from Shanghai Laboratory Animal Center and were maintained under pathogen-free conditions. CIA was induced in DBA/ 1 mouse with $200 \mu \mathrm{~g}$ of bovine type II collagen emulsified with an equal volume of complete Freund's adjuvant. The mice were then boosted with an equal amount of bovine type II collagen emulsified in Freund's incomplete adjuvant on day 21. For CIA treatment, compounds $\mathbf{8 h}$ or vehicle PBS was orally administered at indicated dose twice daily from 2nd immunization onward. Mice were monitored for onset of clinical disease and then the clinical score were evaluated by two evaluator blinded to the treatment groups. The occurrence of arthritis were observed by scoring all paws for severity of erythema and swelling, using score ranging from 0 to $4.0=$ no arthritis, $1=$ paws with swelling of 1 joint (wrist/ankle or digit), $2=$ swelling of 2 joints or more, $3=$ swelling of all joints, and $4=$ ankylosed joints. Data were expressed as Mean $\pm$ S.E.M of 10 mice.

Notes: All studies were conducted in accordance with the GSK Policy on the Care, Welfare and Treatment of Laboratory Animals and were reviewed by the Institutional Animal Care and Use Committee either at GSK or by the ethical review process at the institution where the work was performed.

## Acknowledgement

We thank Feng Ren, Hui Lei, Kevin Meng, Jinqiang Zhang, Bruce Wisely, Tom Consler, Gang An, Yang Qiu, Hongtao Lu for their helps and useful discussions.

## Supplementary data

Supplementary data (preparation details and spectroscopic data for compounds: $\mathbf{6 a - w}, \mathbf{7 a - i}$ and $\mathbf{8 a}$ ) associated with this article can
be found, in the online version, at http://dx.doi.org/10.1016/ j.bmc.2013.12.021.

## References and notes

1. Dardalhon, V.; Korn, T.; Kuchroo, V. K.; Anderson, A. C. J. Autoimmun. 2008, 31, 252.
2. Lubberts, E.; Koenders, M. I.; Oppers-Walgreen, B.; van den Bersselaar, L.; Coenen-de Roo, C. J.; Joosten, L. A.; van den Berg, W. B. Arthritis Rheum. 2004, 50, 650.
3. Komiyama, Y.; Nakae, S.; Matsuki, T.; Nambu, A.; Ishigame, H.; Kakuta, S.; Sudo, K.; Iwakura, Y. J. Immunol. 2006, 177, 566.
4. Tzartos, J. S.; Friese, M. A.; Craner, M. J.; Palace, J.; Newcombe, J.; Esiri, M. M.; Fugger, L. Am. J. Pathol. 2008, 172, 146.
5. Ivanov, I. I.; McKenzie, B. S.; Zhou, L.; Tadokoro, C. E.; Lepelley, A.; Lafaille, J. J.; Cua, D. J.; Littman, D. R. Cell 2006, 126, 1121.
6. Matusevicius, D.; Kivisäkk, P.; He, B.; Kostulas, N.; Ozenci, V.; Fredrikson, S.; Link, H. Mult. Scler. 1999, 5, 101.
7. Lock, C.; Hermans, G.; Pedotti, R.; Brendolan, A.; Schadt, E.; Garren, H.; LangerGould, A.; Strober, S.; Cannella, B.; Allard, J.; Klonowski, P.; Austin, A.; Lad, N.; Kaminski, N.; Galli, S. J.; Oksenberg, J. R.; Raine, C. S.; Heller, R.; Steinman, L. Nat. Med. 2002, 8, 500.
8. Kotake, S.; Udagawa, N.; Takahashi, N.; Matsuzaki, K.; Itoh, K.; Ishiyama, S. Saito, S.; Inoue, K.; Kamatani, N.; Gillespie, M. T.; Martin, T. J.; Suda, T. J. Clin. Invest. 1999, 103, 1345.
9. Chabaud, M.; Durand, J. M.; Buchs, N.; Fossiez, F.; Page, G.; Frappart, L.; Miossec, P. Arthritis Rheum. 1999, 42, 963.
10. Solt, L. A.; Burris, T. P. Trends Endocrinol. Metab. 2012, 23, 619.
11. Manel, N.; Unutmaz, D.; Littman, D. R. Nat. Immunol. 2008, 9, 641.
12. Yang, X. O.; Pappu, B. P.; Nurieva, R.; Akimzhanov, A.; Kang, H. S.; Chung, Y.; Ma, L.; Shah, B.; Panopoulos, A. D.; Schluns, K. S.; Watowich, S. S.; Tian, Q.; Jetten, A. M.; Dong, C. Immunity 2008, 28, 29.
13. Wang, X.; Zhang, Y.; Yang, X. O.; Nurieva, R. I.; Chang, S. H.; Ojeda, S. S.; Kang, H. S.; Schluns, K. S.; Gui, J.; Jetten, A. M.; Dong, C. Immunity 2012, 36, 23.
14. Wang, Y.; Kumar, N.; Solt, L. A.; Richardson, T. I.; Helvering, L. M.; Crumbley, C.; Garcia-Ordonez, R. D.; Stayrook, K. R.; Zhang, X.; Novick, S.; Chalmers, M. J.; Griffin, P. R.; Burris, T. P. J. Biol. Chem. 2010, 285, 5013.
15. Huh, J. R.; Littman, D. R. Eur. J. Immunol. 2012, 42, 2232.
16. Burris, T. P.; Busby, S. A.; Griffin, P. R. Chem. Biol. 2012, 19, 51.
17. Murali Dhar, T. G.; Zhao, Q.; Markby, D. W. Annu. Rep. Med. Chem. 2013, 48, 169.
18. Huh, J. R.; Leung, M. W. L.; Huang, P.; Ryan, D. A.; Krout, M. R.; Malapaka, R. R. V.; Chow, J.; Manel, N.; Ciofani, M.; Kim, S. V.; Cuesta, A.; Santori, F. R.; Lafaille, J. J.; Xu, H. E.; Gin, D. Y.; Rastinejad, F.; Littman, D. R. Nature 2011, 472, 486.
19. Solt, L. A.; Kumar, N.; Nuhant, P.; Wang, Y.; Lauer, J. L.; Liu, J.; Istrate, M. A.; Kamenecka, T. M.; Roush, W. R.; Vidovic, D.; Schürer, S. C.; Xu, J.; Wagoner, G.; Drew, P. D.; Griffin, P. R.; Burris, T. P. Nature 2011, 472, 491.
20. Xu, T.; Wang, X.; Zhong, B.; Nurieva, R. I.; Ding, S.; Dong, C. J. Biol. Chem. 2011, 286, 22707.
21. Solt, L. A.; Kumar, N.; He, Y.; Kamenecka, T. M.; Griffin, P. R.; Burris, T. P. ACS Chem. Biol. 2012, 7, 1515.
22. Kumar, N.; Lyda, B.; Chang, M. R.; Lauer, J. L.; Solt, L. A.; Burris, T. P.; Kamenecka, T. M.; Griffin, P. R. ACS Chem. Biol. 2012, 7, 672.
23. Huh, J. R.; Englund, E. E.; Wang, H.; Huang, R.; Huang, P.; Rastinejad, F.; Inglese, J.; Austin, C. P.; Johnson, R. L.; Huang, W.; Littman, D. R. ACS Med. Chem. Lett. 2013, 4, 79.
24. Zhang, W.; Zhang, J.; Fang, L.; Zhou, L.; Wang, S.; Xiang, Z.; Li, Y.; Wisely, B.; Zhang, G.; An, G.; Wang, Y.; Leung, S.; Zhong, Z. Mol. Pharmacol. 2012, 82, 583.
25. Kumar, N.; Solt, L. A.; Conkright, J. J.; Wang, Y.; Istrate, M. A.; Busby, S. A.; Garcia-Ordonez, R. D.; Burris, T. P.; Griffin, P. R. Mol. Pharmacol. 2010, 77, 228.
26. (a) Wang, Y.; Cai, W.; Liu, Q.; Xiang, J. WO2012027965A1, 2012.; (b) Wang, Y.; Yang, T.; Liu, Q.; Xiang, J. WO2012028100A1, 2012.
27. Wang, Y.; Yang, T. WO2012100732A1, 2012.

[^0]:    ＊Corresponding author．Tel．：＋86 216159 0761；fax：＋86 2161590730
    E－mail address：wang．2．yonghui＠gmail．com（Y．Wang）．

[^1]:    ${ }^{\text {a }}$ Male C57BL/6 mice
    ${ }^{\text {b }} 1 \mathrm{mg} / \mathrm{kg}$ (iv) and $10 \mathrm{mg} / \mathrm{kg}$ (po).
    ${ }^{\text {c }} 1 \mathrm{mg} / \mathrm{kg}$ (iv) and $2 \mathrm{mg} / \mathrm{kg}$ (po).

