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Abstract—In modern industries, machine health moni-
toring systems (MHMS) have been applied wildly with the
goal of realizing predictive maintenance including failures
tracking, downtime reduction and assets preservation. In
the era of big machinery data, data-driven MHMS have
achieved remarkable results in the detection of faults after
the occurrence of certain failures (diagnosis) and predic-
tion of the future working conditions and the remaining
useful life (prognosis). The numerical representation for
raw sensory data is the key stone for various successful
MHMS. Conventional methods are labor-extensive as they
usually depend on handcrafted features, which require ex-
pert knowledge. Inspired by the success of deep learning
methods that redefine representation learning from raw
data, we propose local feature-based gated recurrent unit
networks (LFGRU). It is a hybrid approach that combines
handcrafted feature design with automatic feature learning
for machine health monitoring. Firstly, features from win-
dows of input time series are extracted. Then, an enhanced
bi-directional GRU network is designed and applied on the
generated sequence of local features to learn the repre-
sentation. A supervised learning layer is finally trained to
predict machine condition. Experiments on three machine
health monitoring tasks: tool wear prediction, gearbox fault
diagnosis and incipient bearing fault detection verify the
effectiveness and generalization of the proposed LFGRU.

Index Terms—Machine Health Monitoring, Fault Diagno-
sis, Tool Wear Prediction, Gated Recurrent Unit (GRU),
Feature Engineering

I. INTRODUCTION

THE development of advanced sensing technologies, wire-
less communications, and computing systems has gen-

erated a huge amount of data for manufacturing systems in
recent years [1], [2]. Meanwhile, it motivates the research
of data-driven machine health monitoring systems (MHMS)
that are capable to detect faults and predict working con-
ditions [2]–[4]. Data-driven MHMS train models based on
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historical measured data, and make decisions upon the online
data collected from sensors of the monitored equipment. It
demonstrates that data-driven MHMS can update themselves
with on-line collected data in real time. As shown in Figure
1, data-driven MHMS includes two phases: one is training
model based on historical sensor signals and the other one
is applying the trained model on online sensor signals to
make decisions. However, it is difficult to design a complete
set of features to represent machine condition, considering
these commonly adopted time, frequency and time-frequency
domain analysis provide a broad range of measures. Therefore,
feature extraction/selection methods as a kind of information
fusion are usually conducted after handcrafted feature design.
To learn a more discriminative feature space, feature extraction
methods such as principal component analysis [5] and factor
analysis [6] have been used to transform original features
into a novel informative feature space, while feature selection
including fisher ratio [7] and distance measures [8] attempts to
select subsets of features. Then, the derived features are fed
into machine learning models, e.g., support vector machine
and linear regression models, to make predictions of machine
condition. For example, Widod [9] presented an overview of
machine condition monitoring and fault diagnosis based on
support vector machine. Prieto et al. [10] extracted significant
statistical-time features firstly and then apply a hierarchical
neural network for bearing fault classification. Yang et al.
[11] extracted energy features at various vital frequencies and
trained a random forest classifier for induction motor fault di-
agnosis. He et al. [12] constructed a k-nearest neighbor (kNN)
classifier on time domain features extracted by empirical mode
decomposition for bearing faults detection as one submodule.
Regardless of which kind of machine learning models are
applied, it is shown that the representation determines the
upper-bound performances of machine learning algorithms
[13]. However, the above pipeline system may have some
potential concerns as follows:

1) Expert Knowledge: Handcrafted feature design and adap-
tation of appropriate feature extraction/selection methods
all require prior domain-knowledge and expert expertise,
which may not be met in all scenarios.

2) Joint Optimization: Considering feature learning and ma-
chine learning models that work in a cascaded way, it is
impossible to jointly optimize them. One part should be
fixed, and the other part can be adjusted.

3) Temporal Information: The machinery data are usually
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sampled by sensors and expressed in a sequential form.
And the sequential information behind sensor data is quite
vital to represent machine condition. However, the hand-
crafted feature design usually extract measures from the
whole range of time-series data, which may not capture its
intrinsic temporal information.

As a branch of machine learning models, deep learning (DL)
provides a powerful solution to these above concerns [14],
[15]. Deep learning is featured by its capability of extracting
hierarchical representations from input data by building deep
neural networks with multiple layers of non-linear transfor-
mations. Intuitively, one layer operation can be regarded as a
transformation from input values to output values. The state-
of-arts of various application areas including computer vision,
automatic speech recognition, natural language processing,
audio recognition and bioinformatics have been achieved by
DL techniques. In the past few years, many deep learning
models including stacked autoencoder (SAE) and deep belief
network (DBN) have been developed in the field of machine
health monitoring [16]. Generally, DL-based MHMS as an
end-to-end system has the capability of learning features from
raw input directly, which do not require extensive expert
knowledge. Since feature learning and target prediction are
incorporated into the whole neural network, all model param-
eters can be trained and optimized jointly. Some researchers
focused on the pretraining of deep neural network (DNN).
Stacked auto-encoder (SAE) [17] and deep belief networks
(DBN) [18] are adopted to facilitate the training of DNN
and learn discriminative representation for machinery data.
Although these pretrained DNN models can directly work on
raw sensory time-series data, input dimensionality is easily
over hundred, even one thousand, which will increase model
size [19]. The huge number of model parameters may lead to
heavy computational cost and overfitting problems. To control
the model size, features in a low-dimensional space are usually
fed into pretrained DNN models. For example, Jia et al. [20]
firstly extracted the frequency spectra features of time-series
data, and then fed them into SAE-DNN for rotating machin-
ery fault diagnosis. Guo et al. [21] designed multi-domain
statistical features including time domain features, frequency
domain features and time-frequency domain features and built
a SAE-DNN upon them for bearing fault diagnosis. In [22],
Ma et al. adopted a DBN-DNN framework for degradation
assessment under an accelerated bearing life test, in which
the raw input consists of statistical feature, root mean square
(RMS) fitted by Weibull distribution and the frequency domain
features. Chen et al. [23] fed a feature vector consisting of
load and speed measure, time domain features and frequency
domain features into DBN-DNN for gearbox fault diagnosis.
Therefore, to relief the above concerns, we focus on DL-based
machine health monitoring methods here.

In this paper, we present a new framework named local
feature-based gated recurrent units networks (LFGRU) as a
generalized machine health monitoring system. Gated recur-
rent units networks as a variant of recurrent neural network
is able to process memories of sequential data by storing
previous inputs in the internal state of networks and map

from the entire history of previous inputs to target vectors
in principal. In our proposed framework, local features are
firstly extracted from segments or windows of time-series
data. Then, an enhanced GRU networks: bidirectional GRU
networks with weighted local features averaging has been
proposed to learn representation from the sequence of local
features. Supervised learning layer is added on the top to map
the learned representation to targets. In our framework, deep
learning models are applied to handcrafted features design
instead of raw time series data, considering the model size
can be controlled. Different from previous DL-based MHMS
that built upon extracted features of the whole range of time
series data, our proposed LFGRU extracts local features from
consecutive windows of time-series data, which can keep the
order information among windows. What is more, this kind
of local feature extraction are suitable for multi-sensory data.
The features extracted from synchronized segments of multiple
sensory data can be concatenated to summarize the informa-
tion of all sensors at the same time step. Gated recurrent
units was proposed to relief the problem of gradient exploding
or vanishing in RNN with a controlled model complexity
compared to another RNN variant: Long-short term memory
network [24]–[26]. In our proposed LFGRU, the bi-directional
recurrent structure has been incorporated, which can access
the sequential data in two directions including forward and
backward ones with two separate hidden layers so that our
model can fully explore the context of the input, i.e., the
past and future information at each state. The averaging local
feature is able to generate representation of sequential data
without capturing ordering information, which can provide
a supplementary to representation generated by bi-directional
GRU. Considering information in the middle of the sequence
might be easily lost in the bi-directional GRU, the weighted
average of local features is adopted here that assigns large
weights to features located in the middle. To verify the effec-
tiveness and generalizability of our proposed LFGRU, three
different machine health monitoring tasks including tool wear
sensing, gearbox fault diagnosis and incipient fault diagnosis
of rolling element bearings are introduced. Several state-of-
the-art models are compared with our proposed model. The
main contributions of our work can be summarized as follows:

1) Our proposed framework can be considered as a hybrid ap-
proach of handcrafted feature design and automatic feature
learning by DL model. The local feature extraction scheme
can reduce the model size of the applied enhanced GRU
networks. And the enhanced GRU networks are able to
encode the temporal information on the generated sequence
of local features. Therefore, in our proposed framework,
not only the model size of GRU can be controlled to
prevent overfitting, but also the handcrafted feature design
is not required to be at expert level.

2) An enhanced GRU networks has been proposed. Bi-
directional recurrent structure is firstly incorporated to
GRU network to capture the future and past context jointly.
Next, the center-biased feature averaging operation can pro-
vide a direct representation of the input sequence without
considering order information, which can be supplementary
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Fig. 1: Illustration of Data-driven Machine Health Monitoring
System.

Fig. 2: The illustrations of Vanilla RNN and GRU models.

to the output of bi-directional GRU. The concatenated
vector is regarded as the final representation learned by
our proposed enhanced GRU networks.

3) This approach is suitable for multi-sensory scenario, which
is illustrated in the following Section III-A and verified in
the experimental part.

4) Comprehensive experimental studies including three case
studies including tool wear prediction, gearbox fault diag-
nosis and incipient bearing fault detection are conducted.
The effectiveness and generalization capability behind our
proposed framework have been verified.

This paper is organized as follows. In Section II, RNN and
GRU models are reviewed. Then, our proposed LFGRU is
presented in Section III. After that, experimental results are
illustrated in the following Section IV. Finally, concluding
remarks are provided in Section V.

II. RECURRENT NEURAL NETWORKS AND GATED
RECURRENT UNITS NETWORKS

Recurrent neural networks (RNN) including GRU is related
to our work. In the section, a brief introduction to RNN and
GRU is given.

As stated in [14], recurrent neural networks (RNN) are able
to memorize arbitrary-length sequences of input patterns by
building connections between units from a directed cycle. The
key component in RNN is the transition function in each time
step t which takes the current time information xt and the

previous hidden output ht−1 and updates the current hidden
output as follows:

ht = H(xt,ht−1) (1)

where H defines a nonlinear and differentiable transformation
function. Due to the recurrent structure, ht−1 in Eq. (1) can be
regarded as a memory of previous inputs, i.e., RNN can keep
the memory of previous inputs in the network’s internal state.
Therefore, after processing the whole sequence, the hidden
output at the last time step i.e. hT can be regarded as a vector
encoding the original sequential data. Supervised learning
layer is added on top to map the obtained representation hT

to targets and the model can be trained via backpropaga-
tion through time [27]. Different formulations of transition
functions derive different RNN models. Vanilla RNN adopts
a linear transformation function with a non-linear activation
function as follows:

ht = ϕ(Wxt + Hht−1 + b) (2)

where W ∈ Rd×k and H ∈ Rd×d represent transformation
matrices and b ∈ Rd is the bias vector. And ϕ is the nonlinear
activation function such as sigmoid and tanh functions. Due
to the vanishing gradient problem during backpropagation
for model training, vanilla RNN may not capture long-term
dependencies. It means that ht may forget the information
in the early stage of sequential data. To alleviate this issue,
long short-term memory networks were firstly presented by
introducing gates function in the design of transition function
[25]. In our paper, we adopt another RNN variant: gated
recurrent units (GRUs) that can be regarded as a simpler
version of LSTMs [24], [28]. In GRU, two gates including
a reset gate r that adjusts the incorporation of new input
with the previous memory and an update gate z that controls
the preservation of the previous memory are introduced. The
transition functions in hidden units of GRU are given as
follows:

zt = σ(Wzxt + Vzht−1 + bz),

rt = σ(Wrxt + Vrht−1 + br),

h̃t = tanh(Wcxt + Vc(rt � ht−1)),

ht = (1− zt)� ht−1 + zt � h̃t.

(3)

where model parameters including all W ∈ Rd×k, V ∈ Rd×d

and b ∈ Rd are shared by all time steps and learned during
model training, � denotes the element-wise product, k is a
hyper-parameter that represents the dimensionality of hidden
vectors. For an intuitive illustration, if the update gate is
closed, i.e., zt = 0, the information in the initial time step can
be kept no matter how long the sequence is. The illustration
of vanilla RNN and GRU has been given in Figure 2.

In our proposed framework, an enhanced GRU networks
has been proposed with bi-directional structure and weighted
feature averaging scheme. Firstly, a bi-directional structure
is applied to the capture of future and previous context,
which can improve the expressiveness of the GRU model. The
adopted weighted feature averaging simply derives the mean
vector of representations in each time step with a center-biased
weighting scheme. The final representation consists of two
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Fig. 3: The architecture of our proposed LFGRU. As an end-
to-end system, this framework is able to predict target from
multi-sensory input.

parts: one is the output of bi-directional GRU and the other is
the weighted mean feature, which are supplementary to each
other.

III. LOCAL FEATURE-BASED GATED RECURRENT UNITS
NETWORKS

In this section, our proposed LFGRU networks will be
presented in the scenario of multi-sensory machine monitoring.
As shown in Figure 3, The enhanced GRU network is applied
on the sequence of local features extracted from raw sensor
inputs to learn representation of machine condition and predict
the corresponding target.

We assume each data collected from monitored machine
consists of one sensor input which is time-series data denoted
as x = [x1, x2, . . . , xl] that l is the length of data sample and
training data has a corresponding target value such as fault
type or tool wear that are defined in the specific applications.

A. Local Feature Extraction
Each sensory input is firstly divided into T local segments

and each segment is a window of original signal with a length
of l

T . For example, the j-th local window is a segment starting
from time step (j − 1) l

T to (j − 1) l
T + l

T − 1 denoted
as x(j−1) lT :(j−1) lT + l

T −1. Then, tri-domain features including
time, frequency and time-frequency ones are extracted from
each local window. The details of these handcraft features
design will be elaborated in the following experiments. There-
fore, the original sensory input can be transformed to a
sequence of local features as:

c = [c1, c2, . . . , cT ] (4)

where cj ∈ Rm consists of m features extracted from the
j-th local window. It is shown that this operation can be

Fig. 4: Visualization of center-biased weights for a sequence
of 10 local features.

easily extended to multi-sensory scenario. Local features can
be extracted from synchronized windows of multiple sensor
signals, respectively and concatenated together into one feature
vector as ci.

After local feature extraction, the sequence of feature
vectors c with a length of T can be generated. Compared
to the original time series x, the local feature sequence is
much shorter and can convey more discriminative information
compared to the noisy original signal. Compared to con-
ventional feature extraction conducted in MHMS that may
abandon sequential characteristic, local features are designed
and extracted from windows of the original noisy signal, which
are arranged in order to form a sequence.

B. Bi-directional GRU with Weighted Feature Averaging

Then, GRU is applied on the generated local feature se-
quence to learn representation. Here, an enhanced GRU model
has been proposed named bi-directional GRU with weighted
feature averaging.
Bi-directional GRU: The incorporated bi-directionality of
recurrent structure can increase the model capacity and flex-
ibility. As shown in Figure 3, the bidirectional recurrent
structure can enable GRU to process the sequence input in
two directions including forward and backward ways with
two individual hidden layers. Therefore, each hidden layer
at one certain time step can capture past (forward direction)
and future (backward direction) context jointly. In addition,
the bi-directional structure can reinforce the memory of the
beginning and the end stages of the raw time-series input. In
bi-directional GRU, the complete hidden element representa-
tion hT at the last time step is the concatenated vector of the
outputs of forward and backward processes as follows:

hT =
−→
h T ⊕

←−
h 1 (5)

where → and ← denote forward and backward process and
the corresponding hidden vector is updated as follows:

−→
h t =

−→
H(xt,

−→
h t−1)

←−
h t =

←−
H(xt,

←−
h t+1).

(6)

In bi-directional GRU, the function H is defined by Eq. (3).
Weighted Feature Averaging: The hidden output of the bi-
directional GRU at the last time step hT can be regarded as the
representation of the raw sensor signal. However, information
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in the middle range of the sequence might be lost in bi-
directional GRU. Considering the beginning and end ranges
of sequence contribute a lot to the outputs of backward
GRU and forward GRU, respectively. Therefore, weighted
feature averaging is introduced to provide another view of the
sequence of local features c. The average feature vector c̄ is
given as

c̄ =

T∑
k=1

wkck (7)

where k denote the index for time step. To highlight the impact
of the middle local features, weights are designed as follows:

wk =
exp(q(k))∑T
j=1 exp(q(j))

(8)

where
q(k) = min(k − 1, T − k) (9)

To give a clear illustration of the above equations, the weights
derived by Eq. (8) for a length-10 sequence of local features
are illustrated in Fig. 4. Then, the weighted average of local
features is fed into a fully-connected dense layer F1, and the
output of this dense layer is concatenated to hT generated by
bi-directional GRU to derive the final representation u.

u = hT ⊕ F1(c̄) (10)

C. Supervised Learning Layer

At last, the learned final representation u is passed into
another fully-connected dense layer F2 and supervised learn-
ing layer. If the targets are discrete labels such as fault types,
the supervised learning layer can be softmax layer, which is
defined as

P (
ỹ = j

F2(u)
) =

eF2(u)
Twj∑K

k=1 e
F2(u)

Twk
(11)

where K is the number of labels and w denotes parameters
of softmax layer. If the targets are continuous values such as
RUL estimation and tool wear depth, the supervised learning
layer can be a liner-regression layer given by

ỹ = WF2(u) + b (12)

where W and b denote transformation matrix and bias value in
the liner regression layer. The error between predicted values
and ground truth values in training data can be calculated and
backpropagated to train the parameters in the whole model.
Then, the trained model can be applied on the unseen input
data to make prediction about machine condition. The whole
framework has been illustrated in Figure 3.

IV. EXPERIMENTS

To test the performances of our proposed LFGRU machine
health monitoring system, three real-life case studies including
tool wear prediction, gearbox fault diagnosis and incipient
fault diagnosis of rolling element bearings are conducted.
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Fig. 5: Schematic of the experimental setup for tool wear
prediction [6].

A. Descriptions of Datasets

Tool Wear Prediction: This dataset was collected from a high
speed CNC machine operated under dry milling operations
[29]. The schematic diagram of experimental platform has
been shown in Figure 5. The operation parameters are as
follows: the running speed of the spindle was 10,400 rpm; the
feed rate in x direction was 1,555 mm/min; The depth of cut
(radial) in y direction was 0.125 mm; the depth of cut (axial)
in z direction was 0.2 mm. To acquire online data related to
this CNC machine’s operation condition, a Kistler quartz 3-
component platform dynamometer was mounted between the
workpiece and the machining table to measure cutting forces,
while three Kistler Piezo accelerometers were mounted on the
workpiece to measure the machine tool vibration in x, y, z
directions, respectively. DAQ NI PCI1200 was adopted to per-
form in-process measurements including force and vibration in
three directions (x,y,z) with a continuous sampling frequency
of 50 KHz during the tool wear test. Therefore, the sensory
data consists of seven channels: force in three directions,
vibration in three directions and AE-RMS. The corresponding
flank wear of each individual flute was measured offline
using a LEICA MZ12 microscope after finishing each surface
which is considered to be one cut number in the following
data analysis, which will be the target value. The task is
defined as the prediction of the actual flank wear (offline
measurement) from the seven-channel sensory data (online
measurement). Finally, three individual cutter records named
c1, c4 and c6 were selected as our dataset. Each test contains
315 data samples, while each data sample has a corresponding
flank wear. For training/testing splitting, a three-fold setting is
adopted that two tests are used as training domain and the
rest one is used as testing domain. Therefore, three different
testing cases can be created, which are denoted as C1, C4 and
C6. For example, the training/testing splitting scenario C1 is
referred to the case that c4 and c6 are adopted as training data
and c1 is used as testing data.
Gearbox Fault Diagnosis: This experiment was conducted
in the Drivetrain Dynamics Simulator (DDS). The DDS is
composed of four units including the motor, the planetary
gearbox, the parallel gearbox and brake as shown in Figure
6. In the experiment, the faults of gear and bearing were
investigated under two different operating conditions where
rotating speed and load configuration are set as 20HZ-0V and
30HZ-2V. These two fault locations have their own fault types
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Fig. 7: Fault Types Illustrations.

as described in Table I, where the real images of these fault
types and locations are shown in Figure 7. Therefore, four
different fault diagnosis datasets are created and each of them
is a five-class categorization task (four fault conditions and
one health condition). The sensing configuration is described
as follows: seven vibrating 608A11 sensors whose frequency
range, measuring range and accuracy are 0.5Hz-10kHz, ±50g
and 100mV/g were adopted in the surface of DDS test-bed.
Three of them measured the vibration of planetary gearbox
in three directions: x, y and z, other three of them measured
the three direction vibrations of the gear box, and the rest
one was used to measure the driving motor. A torque sensor
(model: FT293; measuring range: ±5V; accuracy: 4Nm/V)
was mounted between the motor and the planetary gearbox
to measure the load. And a compact spectra PAD data acqui-
sition instrument (Max 20 channels) was adopted for signal
collecting with 1024Hz sampling frequency and 512s sampling
window.
Incipient Fault Diagnosis of Rolling Element Bearings:
This testing scenario is introduced to verify the performance
of our model in the area of incipient fault diagnosis. Here,
we used the experimental data from the bearing data center
in the Case Western Reserve University (CWRU)1 following
the procedures adopted in [30] that vibration data under
the smallest damage radius 7mils are selected. Due to page
limits, the description of CWRU experimental platform and
data acquisition system are skipped, which can be referred
in [30]. Here, we create a four-class classification task. The
corresponding classes include health condition, inner fault, ball
fault and outer fault and each class contains 800 data samples.
Each data sample is the vibration signal acquired on fan end
whose length is fixed to 20000.

1The dataset has been kindly provided at http://csegroups.case.edu/
bearingdatacenter/home

Fig. 6: Schematic of the experimental setup for gearbox fault
diagnosis.

B. Experimental Setup

In our experiments, several methods are compared as fol-
lows:

• SVM/SVR: Support Vector Machine/Regression with rbf
kernel;

• MLP: Neural Network with two hidden layers;
• KNN: k-Nearest Neighbors
• SAE-DNN:

http://csegroups.case.edu/bearingdatacenter/home
http://csegroups.case.edu/bearingdatacenter/home
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TABLE I: Fault Types of Bearing and Gear Components

Component Types Description

Bearing

ball A crack occurs in the ball
combo A crack occurs in both inner and outer ring.
inner A crack occurs in the inner ring.
outer A crack occurs in the outer ring.

Gear

chipped A crack occurs in the feet.
miss One of feet is missing.
root A crack occurs in the root of feet.
surface The wear occurs in the surface.

� RNN: Vanilla RNN
� GRU: Gated Recurrent Units Networks
� BiGRU: Bi-directional Gated Recurrent Units Networks
� LFGRU: Our proposed local featured-based Gated Recur-

rent Units

Here • denotes the handcrafted feature from the whole range of
raw signal and � denotes the local feature extraction following
the steps illustrated in Section III-A.

In tool wear prediction tasks, considering the multi-sensory
input contain seven channels, the dimensionality of the hand-
crafted feature vector is 70, which includes time domain,
frequency domain and time-frequency domain features as
illustrated in Table II. Here, the wavelet energy feature is
the energy of a 8-level wavelet packet decomposition using
db1, which corresponds to the wavelet coefficient with higher
energy that is related to the characteristic frequency of the
machine. In SVR, we search the best regularization parameter
from [0.001, 0.01, 0.1, 1, 10]. In KNN, we search the best
neighbor neighbors from [3, 5, 7, 9]. The layer sizes behind
MLP and SAE-DNN are unified to be [140, 200] and their top
layer is a linear regression layer to predict tool wear depth.
For the last four methods, the shape of the input sequence of
local features is 20 × 70. And the sizes of hidden recurrent
layer in these four recurrent neural networks are unified to be
the same as 100. In our proposed method, the sizes of FC-
Layer 1 F1 and FC-Layer 2 F2 are set to be 100 and 400,
respectively. One of gradient descent optimization algorithms:
RMSprop is adopted to train these four models [31]. The
other hyperparameters including learning rates and epoch
number are all searched via validation dataset. To quantify
the performance of all compared methods, two measures to
evaluate regression loss are used including mean absolute error
(MAE) and root mean squared error (RMSE). MAE is the
average value of the absolute values of the errors. RMSE is
the square root of the average of the square of all of the errors.
The corresponding equations for the calculations of these two
measures over n testing samples are given as follows:

MAE =
1

n

n∑
i=1

|ỹi − yi| (13)

RMSE =

√√√√ 1

n

n∑
i=1

(ỹi − yi)2 (14)

TABLE II: Handcrafted Feature Sets for Gearbox Fault Diag-
nosis and Tool Wear Prediction

Quantity Equations

RMS zrms =
√

1
n

∑n
i=1

z2
i

Variance 1
n

∑n
i=1(zi − z̄)2

Maximum max(z)

Skewness E[(
z−µ
σ

)3]

Kurtosis E[(
z−µ
σ

)4]

Peak-to-Peak max(z) −min(z)

Spectral Skewness
∑k
i=1(

fi−f̄
σ

)3S(fi)

Spectral Kurtosis
∑k
i=1(

fi−f̄
σ

)4S(fi)

Spectral Power
∑k
i=1(fi)

3S(fi)

Wavelet Energy
∑N
i=1 wt

2
φ(i)/N

where yi and ỹi are true and predicted too wear depth.
In gearbox fault diagnosis tasks, the dimensionality of

the handcrafted feature vector is 27 that the first 9 features
described in Table II are extracted for three sensors on three
directions. In SVM and KNN, we select their best hyper-
parameters using the same setting discussed above. MLP and
SAE-DNN share the same structure of DNN in finetuning
phase that the layer size is [54, 108] and the top layer
is a softmax layer to classify machine conditions. In SAE-
DNN, before finetuning, unsupervised training is performed
by a stacked denoising autoencoder. The nonlinear activation
function is set to be tanh. For the last four methods, the
number of segments is T = 20, and thus the shape of the
input sequence of local features is 20 × 27. And the sizes of
hidden recurrent layer in these four recurrent neural networks
are unified to be the same as 50. In our proposed method, the
sizes of FC-Layer 1 F1 and FC-Layer 2 F2 are set to be 50
and 200, respectively. The RMSprop is adopted to train these
four models and the other hyperparameters including learning
rates and epoch number are all searched based on validation
dataset. To quantify the performance of all compared methods,
the classification accuracy over 5-fold training/testing splitting
is reported.

In incipient fault diagnosis task, the dimensionality of the
handcrafted feature vector is 10 as the one-channel vibration
data is used. The layer size in MLP and SAE-DNN is [20,
40]. For the last four methods, the number of segments is
T = 20 so that the shape of the input sequence of local features
is 20 × 10. And the sizes of hidden recurrent layer in these
four recurrent neural networks are unified to be the same as
20. In our proposed method, the sizes of FC-Layer 1 F1 and
FC-Layer 2 F2 are set to be 20 and 80, respectively. The
other settings for all comparative methods and training/testing
splitting scheme are kept the same as reported in the above
gearbox fault diagnosis tasks.

C. Experimental Results
In tool wear prediction tasks which is more challenging

compared to fault diagnosis tasks, two measures including
MAE and RMSE are reported in Table III. It is shown that our
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proposed LFGRU achieves the lowest regression error among
all compared methods. Compared to the most competitive
model: BiGRU, the enhanced GRU networks concatenates
the weighted averaging of local features and the output of
BiGRU. Therefore, the experimental results have verified the
effectiveness of the weighted feature averaging operation in
our proposed model. And recurrent models based on local
features especially three GRU variants outperform the rest
models, which have demonstrated that the temporal informa-
tion encoded by GRU can boost the tool wear prediction. At
last, we found most of compared models perform slightly
worse in dataset C6 than that in the rest two datasets. It
may be explained by the fact that the distribution of c6 is
different from the other two datasets c1 and c4. However,
our proposed LFGRU model presents a robust performance
over dataset C6. It further verifies the effectiveness of the
hybrid combination of local feature extraction and the en-
hanced GRU networks. Finally, to qualitatively demonstrate
the effectiveness of our proposed model, the predicted tool
wears under different datasets are illustrated in Fig 8. The
actual tool wear conditions measured offline by a microscope
are also displayed, respectively. It is found that the predicted
tool wear overall are able to follow the trend of the truth data
well.

In gearbox fault diagnosis tasks and incipient fault detection
task, the results are shown in Table IV. We compare our
proposed method with several state-of-the-art methods. The
first observation is that recurrent models including RNN,
GRU, BiGRU and our proposed LFGRU that encode temporal
information over the sequence of local features perform better
than conventional data-driven models including SVM, KNN
and MLP and the deep learning model: SAE-DNN. Therefore,
the importance of modeling the temporal dependency in fault
diagnosis has been verified. Among all recurrent models based
on local features, our proposed model outperforms other mod-
els. It should be explained by the introduction of bi-directional
recurrent structure and center-biased feature averaging scheme.
As shown in Table IV, the robust performance achieved by our
proposed method in the above two fault diagnosis tasks verify
the generalization capability of our method over various fault
severity and machinery equipments.

In addition, the robustness of our system on the quality of
handcrafted design was investigated. We vary the number of
adopted handcrafted features in the range [10, 15, 20, 25, 27]
into SVM model and our proposed LFGRU. And the classifica-
tion accuracies on one dataset: bearing (20HZ-0V) are shown
in Figure 9. It is clear that even with 10 hand-crafted features,
the accuracy achieved by our method can be as high as 0.8,
which significantly outperforms SVM model. To illustrate the
effectiveness of our proposed method intuitively, the learned
representation by our model has been visualized in Figure 10.
Here, we only report the results in gear dataset under a rotating
speed of 30HZ and a load of 2V. t-SNE algorithm [32] is
adopted to project the high-dimensional representation into a
2D space. The separability demonstrates the capability of our
model to learn discriminative and informative representation
from mechanical signals.

At last, all of our experiments are conducted using four

Nvidia GTX GPUs 1080 on a Linux Server with a 3.60GHz
Intel CPU. The testing time for each sample of our algorithm
is only 0.009s, which is suitable for real-time monitoring.

TABLE III: MAE(a) and RMSE(b) Achieved by Compared
Methods in Tool Wear Prediction Tasks. Bold Face Indicates
Best Performances

(a)

Algorithms Cases
C1 C4 C6

SVR 6.9 10.0 31.1
KNN 10.3 12.7 28.7
MLP 11.2 11.6 30.1
SAE-DNN 10.9 9.5 29.5
RNN 8.6 8.1 10.1
GRU 5.9 7.0 11.6
BiGRU 5.5 7.4 9.4
LFGRU 4.0 6.9 5.8

(b)

Algorithms Cases
C1 C4 C6

SVR 9.6 12.4 34.3
KNN 13.0 15.4 31.6
MLP 13.7 14.1 31.9
SAE-DNN 13.7 11.8 31.2
RNN 10.8 10.7 25.5
GRU 7.9 8.8 12.9
BiGRU 6.8 9.2 11.1
LFGRU 5.4 8.3 8.2

D. Sensitivity Analysis on Number of Segments
Number of segments T is a hyperparameter to control

the length of the sequential input into our proposed LFGRU
model. It is clear that a small T will make the size of local
segments large so that the too much sequential information
may be lost. Under a large T , the small size of local segment
may not be able to derive discriminative local features and
the computational burden is increased at the same time. To
verify the above statement empirically, we tested our proposed
LFGRU under five additional different numbers of segments:
T = [5, 10, 50, 100, 200] and our previous setting T = 20
over one tool prediction task C1. The other parameters of
our proposed LFGRU are kept unchanged as reported before.
The RMSE and MAE are compared and shown in Figure 11.
It can be shown that very large and small T both hinder
the performance of our proposed LFGRU. Under moderate
numbers of segments such as 10 and 20, our proposed LFGRU
model is able to achieve optimal performance.

V. CONCLUSION

A new deep learning based machine health monitoring
system, i.e., LFGRU has been proposed. After local feature
extraction, a sequence of local features can be generated which
does not require a high-level expert knowledge. Then, an
enhanced GRU networks is adopted to learn representation of
the sequence of local features. In three real machine health
monitoring tasks, the effectiveness and robustness of our
proposed LFGRU model has been verified.

In the future work, we are going to explore the performance
of our framework in the prognosis tasks. For example, the
estimation of remaining useful life (RUL) can be casted into a
regression problem [33], then our proposed technique may be
adopted to predict the target RUL value from raw input signal.
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