Rui L. Reis

Rui L. Reis
University of Minho · 3B's Research Group in Biomaterials, Biodegradables and Biomimetics

CEng, MSc, PhD, DSc, Doc h.c

About

2,037
Publications
373,545
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
65,571
Citations
Introduction
Biomaterials, Tissue Engineering, Regenerative and Precision Medicine, Controlled Drug Delivery, Biodegradable and Natural Origin Polymers, Biomimetics, Stem Cells, 3D Disease Models
Additional affiliations
January 1998 - present
University of Minho
Position
  • Managing Director

Publications

Publications (2,037)
Book
This book offers a comprehensive overview of the development and application of microfluidics and biosensors in cancer research, in particular, their applications in cancer modeling and theranostics. Over the last decades, considerable effort has been made to develop new technologies to improve the diagnosis and treatment of cancer. Microfluidics h...
Chapter
The tumor microenvironment (TME) is like the Referee of a soccer match who has constant eyes on the activity of all players, such as cells, acellular stroma components, and signaling molecules for the successful completion of the game, that is, tumorigenesis. The cooperation among all the “team members” determines the characteristics of tumor, such...
Article
An important hallmark in cancer research is the discovery of suitable features capable to reliably predict tumor invasiveness, and consequently, their metastatic potential at an early stage. Current methods are based on molecular biomarker screening and imaging that may not reveal the altered properties of tumor cells, being also labor-intensive an...
Article
Full-text available
Extracellular matrix (ECM)-based bioinks have been steadily gaining interest in the field of bioprinting to develop biologically relevant and functional tissue constructs. Herein, we propose the use of supercritical carbon dioxide (scCO2) technology to extract the ECM components of cell-sheets that have shown promising results in creating accurate...
Article
Extracellular vesicles (EVs) are small lipidic particles packed with proteins, DNA, messenger RNA and microRNAs of their cell of origin that act as critical players in cell-cell communication. These vesicles have been identified as pivotal mediators in cancer progression and the formation of metastatic niches. Hence, their isolation and analysis fr...
Article
Full-text available
Solid-state optics has been the pillar of modern digital age. Integrating soft hydrogel materials with micro/nanooptics could expand the horizons of photonics for bioengineering. Here, wet-spun multilayer hydrogel fibers are engineered through ionic-crosslinked natural polysaccharides that serve as multifunctional platforms. The resulting flexible...
Article
Full-text available
This study investigated the osteogenic performance of new brushite cements obtained from Li⁺-doped β-tricalcium phosphate as a promising strategy for bone regeneration. Lithium (Li⁺) is a promising trace element to encourage the migration and proliferation of adipose-derived stem cells (hASCs) and the osteogenic differentiation-related gene express...
Article
Full-text available
The creation of microphysiological systems like tissue and organ-on-chip for in vitro modeling of human physiology and diseases is gathering increasing interest. However, the platforms used to build these systems have limitations concerning implementation, automation, and cost-effectiveness. Moreover, their typical plastic-based housing materials a...
Article
We describe the antithrombotic properties of nanopatterned coatings created by self-assembly of poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) with different molecular weights. By changing the assembly conditions, we obtained nanopatterns that differ by their morphology (size and shape of the nanopattern) and chemistry. The surface exposition of P...
Presentation
Introduction Although growth factors (GF) have a very promising therapeutic potential, their exogenous administration has proven costly and ineffective. Recent extracellular matrix (ECM)-inspired biomaterial approaches have sought to sequester labile therapeutic molecules, thus regulating their activity and presentation via heparin, aptamers or ot...
Article
Full-text available
The bone is a complex and dynamic structure subjected to constant stress and remodeling. Due to the worldwide incidence of bone disorders, tissue scaffolds and engineered bone tissues have emerged as solutions for bone grafting, which require sophisticated scaffolding architectures while keeping high mechanical performance. However, the conjugation...
Article
The generation of invasive fluctuating protrusions is a distinctive feature of tumor dissemination. During the invasion, individual cancer cells modulate the morphodynamics of protrusions to optimize their migration efficiency. However, it remains unclear how protrusion fluctuations govern the invasion of more complex multi-cellular structures, suc...
Article
Full-text available
The application of additive manufacturing in the biomedical field has become a hot topic in the last decade owing to its potential to provide personalized solutions for patients. Different bioinks have been designed trying to obtain a unique concoction that addresses all the needs for tissue engineering and drug delivery purposes, among others. Des...
Article
Full-text available
Natural deep eutectic systems (NADES), which have applications as solvents for both engineering and life sciences, are mainly composed of sugars, aminoacids or organic acids. In this work NADES composed by glucose, urea and proline (G:U:P in a molar ratio of 1:1:1) and proline and glucose (P:G 5:3) were prepared and added in different mass fraction...
Article
Full-text available
Decades of research in orthopaedics has culminated in the quest for formidable yet resorbable biomaterials using bioactive materials. Brushite cements most salient features embrace high biocompatibility, bioresorbability, osteoconductivity, self-setting characteristics, handling, and injectability properties. Such type of materials is also effectiv...
Article
Full-text available
Breast cancer is one of the leading causes of mortality worldwide being the most common cancer among women. Despite the significant progress obtained during the past years in the understanding of breast cancer pathophysiology, women continue to die from it. Novel tools and technologies are needed to develop better diagnostic and therapeutic approac...
Chapter
The most remarkable attractiveness of tissue engineering technology relies on its capability of regenerating patients’ tissues and organs by using their own cells, minimizing the shortage of donor organs, and eliminating all the problems related to transplanted organs and their immune rejection. Traditionally, a suitable biomaterial is selected to...
Article
Full-text available
With the worldwide increase of fisheries, fish wastes have had a similar increase, alternatively they can be seen as a source of novel substances for the improvement of society’s wellbeing. Elasmobranchs are a subclass fished in high amounts, with some species being mainly bycatch. They possess an endoskeleton composed mainly by cartilage, from whi...
Chapter
Understanding the pathogenesis of viral infection is of paramount importance for the development of better therapies. In the particular case of COVID-19, the mechanism of infection is highly complex and involves a critical cascade of events, which can lead to the death of the patient. Intense research is currently being performed to gain mechanisti...
Article
Current diagnostics present challenges that are imposed by increased life expectancy in the worldwide population. These challenges are related, not only to satisfy the need for higher performance of diagnostic tests, but also to the capacity of creating point‐of‐care, wearable, multiplexing and implantable diagnostic platforms that will allow early...
Article
Musculoskeletal interfaces are naturally hypoxic. An understanding of key interactions occurring between different cell populations and their environment is critical for native tissue recapitulation. Here, an enthesis coculture model (preosteoblasts and tendon cells) was used to understand the influence of hypoxia (5% O2 ) and osteogenic medium (OM...
Article
Full-text available
In recent years, there was an abrupt increase in the incidence of renal tumors, which prompt up the appearance of cutting‐edge technology, including minimally invasive and organ‐preserving approaches, such as laparoscopic partial nephrectomy (LPN). LPN is an innovative technique used to treat small renal masses that have been gaining popularity in...
Article
Full-text available
Growth factors (GFs) are proteins secreted by cells that regulate a variety of biological processes. Although they have long been proposed as potent therapeutic agents, their administration in a soluble form has proven costly and ineffective due to their short half‐lives in biological environments. Biomaterial‐based approaches are increasingly soug...
Article
Even after the revolution of rheumatoid arthritis (RA) treatment with biologic agents, this debilitating disease remains a major clinical problem. The outstanding outcomes of the systemic administration of antibodies (Abs) are narrowed by the risk of serious side effects and limited efficacy due to their short half‐life. Interleukin‐23 (IL‐23) is a...
Article
CD44 and the receptor for hyaluronic acid-mediated motility (RHAMM) are the main hyaluronan (HA) receptors. They are commonly overexpressed in different cancers activating signaling pathways related to tumor progression, metastasis and chemoresistance. Besides their involvement in signal transduction via interaction with HA, currently, there is a l...
Article
The present work reports on a 3D model of the tumor microenvironment that contains hyaluronic acid (HA) and alginate, and demonstrates the utility of this model to study the effect of HA size on the crosstalk between cancer cells and mesenchymal stem cells (MSCs). The system incorporates a core that contains HA of specific size (i.e. 6.4, 741 or 15...
Article
Full-text available
Rheumatoid arthritis is a rheumatic disease for which a healing treatment does not presently exist. Silk fibroin has been extensively studied for use in drug delivery systems due to its uniqueness, versatility and strong clinical track record in medicine. However, in general, natural polymeric materials are not mechanically stable enough, and have...
Article
Inducing thermal gradients in two injected fluid systems results in the temporal formation of mixing conductive streams. If preserved through sol-gel transition, this mechanism can be used to drive and pat- tern non-living and living entities in mixed hydrogels. Interfaces are vital in nature, where gradients of non-living and living entities build...
Article
Tendinopathies represent half of all musculoskeletal injuries worldwide. Inflammatory events contribute to both tendon healing and to tendinopathy conditions but the cellular triggers leading to one or the other are unknown. In previous studies, we showed that magnetic field actuation modulates human tendon cells (hTDCs) behavior in pro-inflammator...
Article
Full-text available
The combination of marine origin biopolymers for tissue engineering (TE) applications is of high interest, due to their similarities with the proteins and polysaccharides present in the extracellular matrix of different human tissues. This manuscript reports on innovative collagen-chitosan-fucoidan cryogels formed by the simultaneous blending of th...
Article
Marine polysaccharides are receiving wide attention not only from scientists but also from engineering and medical staff, given several properties that are being reported for this class of biopolymers, and also based on the reputation gained by the terrestrial representatives. The marine environment is a source yet to be untapped, with several appr...
Article
This chapter focuses on the fibril forming collagens type I, II, III; collagen type V and the basement membrane collagen type IV, given either their abundance, relevance to regeneration processes and possibility to purify those collagens from marine organisms. Fishes are certainly the most investigated source for the extraction of collagen, gelatin...
Chapter
The tumor microenvironment (TME), in particular the extracellular matrix (ECM), has been increasingly linked to the tumor aggressiveness and invasion. The dynamic interplay between cells and ECM regulates the normal function of tissues, modulating the cellular behavior and activating signaling events, mainly is triggered by the well-structured and...
Article
Electro-responsive controlled drug delivery has been receiving an increasing interest as one of the on-demand drug delivery systems, aiming the improvement of the therapeutics efficacy by controlling the amount of drug release at a specific time and target site. Herein, we report a simple method to develop an electro-responsive controlled drug deli...
Article
This study proposes a green and innovative methodology for the exploitation of natural polymers, namely chitin, by using solvents with reduced toxicity for the creation of porous structures with the potential to be used in the biomedical field. Chitin is a promising biopolymer for the design of biodegradable constructs, and encouraging developments...
Article
Bone is a dynamic tissue with an amazing but yet limited capacity of self-healing. Bone is the second most transplanted tissue in the world and there is a huge need for bone grafts and substitutes which lead to a decrease in bone banks donors. In this study, we developed three-dimensional scaffolds based on Ti6Al4V, ZrO2 and PEEK targeting bone tis...
Article
Spinal fusion (SF) surgery relies on medical hardware such as screws, cages and rods, complemented by bone graft or substitute, to stabilize the interventioned spine and achieve adequate bone ingrowth. SF is technically demanding, lengthy and expensive. Advances in material science and processing technologies, proposed herein, allowed the developme...
Preprint
Full-text available
Background: The specialized dermal papilla (DP) cells and the tyrosinase-active melanocytes are central players in hair growth and pigmentation, respectively. In the hair follicle (HF), oxygen levels average about 5%O2 (physoxia) and are intimately coupled with the production of reactive oxygen species (ROS), which contribute to hair growth. Consid...
Article
The design of innovative pharmaceutical products, able to reach unexplored market niches, requires natural materials use with improved swelling and moisture properties. Herein, chitosan (CHT), a natural polymer, was combined with virgin coconut oil (VCO), a resource extracted from coconut kernels, to develop emulsion-based films for biomedical purp...
Article
Platelet-derived products (PDPs) have gained popularity, mainly due to their high concentrations of bioactive molecules such as growth factors and cytokines, which play important roles in tissue healing and regeneration. PDPs are obtained through minimally invasive procedures and their therapeutic effect has been widely recognized. In veterinary me...
Article
The currently used hemostatic agents are highly effective in stopping hemorrhages but have a limited role in the modulation of the wound healing environment. Herein, we propose an intrinsically bioactive hemostatic cryogel based on platelet lysate (PL) and aldehyde-functionalized cellulose nanocrystals (a-CNC). PL have attracted great attention as...
Article
Full-text available
Biosensors devices have attracted the attention of many researchers across the world. They have the capability to solve a large number of analytical problems and challenges. They are future ubiquitous devices for disease diagnosis, monitoring, treatment and health management. This review presents an overview of the biosensors field, highlighting th...
Preprint
Full-text available
Background. Exosomes are extracellular vesicles originating from the exfoliation of the cellular membrane. They are involved in cell-to-cell and cell-to-matrix signaling, exchange of bioactive molecules, tumorigenesis and metastasis, among others. To mitigate the limited understanding of exosome transfer phenomena, we developed a simplistic model t...
Article
Cardiovascular disorders are a healthcare problem in today´s society. The clinically available synthetic vascular grafts are thrombogenic and could induce intimal hyperplasia. Rapid endothelialization and matched mechanical properties are two major requirements to be considered when designing functional vascular grafts. Herein, an electrospun tubul...
Article
Silk has been used in several biomedical applications, including tissue engineering, drug delivery systems, biomedical implants, and diagnostic medical devices, due to its attractive intrinsic properties such as biocompatibility, controllable biodegradability, and excellent mechanical properties. In recent years, several attempts have been made to...
Article
Gelatin capsules (GCs) with mean size between 200 and 400 nm are prepared via sonochemical method. Their size is low that the usual size for the sonochemically obtained protein capsules and depends on the preparation conditions. The nanometer size of GCs is explained by the low‐gelatin concentration and by the denaturated state of gelatin. The infl...
Article
Injuries affecting load bearing tendon tissues are a significant clinical burden and efficient treatments are still unmet. Tackling tendon regeneration, tissue engineering strategies aim to develop functional substitutes that recreate native tendon milieu. Tendon mimetic scaffolds capable of remote magnetic responsiveness and functionalized magneti...
Article
Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its int...
Chapter
Diabetes mellitus type 2 (type-2 diabetes) is a metabolic disorder characterized by the increased blood glucose concentration and insulin resistance in peripheral tissues (e.g., muscles and adipose tissue). The initiation of the pathological cascade of events that lead to type-2 diabetes has been subject of debate; however, it has been commonly acc...
Chapter
A body of evidence indicates that peripheral nerves have an extraordinary yet limited capacity to regenerate after an injury. Peripheral nerve injuries have confounded professionals in this field, from neuroscientists to neurologists, plastic surgeons, and the scientific community. Despite all the efforts, full functional recovery is still seldom....
Chapter
Treatment for the osteochondral defects (ODs) is more challenging nowadays that needs to be addressed by developing alternative bone tissue engineering materials. Gellan gum (GG) is a widely used natural polysaccharide in the field of tissue engineering (TE) and regenerative medicine due to its versatile properties. There are many reports about the...
Chapter
Gellan gum (GG) is a linear microbial exopolysaccharide which is derived naturally by the fermentation process of Pseudomonas elodea. Application of GG in tissue engineering and regeneration medicine (TERM) is already over 10 years and has shown great potential. Although this biomaterial has many advantages such as biocompatibility, biodegradabilit...
Article
Full-text available
Marine resources have considerable potential to develop high-value materials for applications in different fields, namely pharmaceutical, environmental, and biomedical. Despite that, the lack of solubility of marine-derived polymers in water and common organic solvents could restrict their applications. In the last years, ionic liquids (ILs) have e...
Article
High-throughput strategies for optimizing biomaterials to direct cellular behaviour are a fundamental need for propelling tissue engineering and regenerative medicine. In 2D, biomaterial’s gradients have proven to be powerful platforms for simultaneously screening several surface conditions. However, their translation to 3D is yet limited to 1) exp...
Article
Cell-based therapies delivered via intrathecal injection are considered as one of the most promising solutions for the treatment of amyotrophic lateral sclerosis (ALS). Herein, injectable manganese-based biocompatible hydrogel blends were developed, that can allow image-guided cell delivery. The hydrogels can also provide physical support for cells...
Article
Full-text available
We describe the bactericidal capacity of nanopatterned surfaces created by self-assembly of block copolymers. Distinct nanotopographies were generated by spin-coating with polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) followed by solvent vapor annealing. We demonstrate that the bactericidal efficiency of the developed coatings depends on the...
Article
The concepts and frameworks of soft matter physics and the laws of thermodynamics can be used to describe relevant developmental, physiologic, and pathologic events in which directed cell migration is involved, such as in cancer. Typically, this directionality has been associated with the presence of soluble long-range gradients of a chemoattractan...
Article
Surface biofunctionalization has emerged in the past decade as a rising tool in Tissue Engineering and Regenerative Medicine (TERM) approaches. The development of biomaterials with regenerative properties is challenging, mainly due to the requirement of obtaining a surface that promotes cell attachment, proliferation and differentiation. Biomolecul...
Article
Cellulose nanocrystals can bind different patterns of platelet lysate-derived protein in a surface sulfation dependent manner. The potential to direct stem cell fate by solid-phase presentation of defined protein coronas is demonstrated.
Article
Full-text available
Silk protein fibroin (SF)-based matrices from non-mulberry, and mulberry silkworms are used for different applications in regenerative medicine. Silk fiber spun by the wild non-mulberry silkworm Antheraea pernyi (Ap) is also a promising biomedical material, due to the presence of the inherent tripeptide sequence of Arginine-Glycine-Aspartic acid (R...
Article
The use of fucoidan, a marine-origin bioactive polymer, is herein proposed as a component of an innovative and effective strategy against melanoma, one of the rarest but most aggressive skin cancers. First, fucoidan antitumor activity, in its soluble form, was assessed presenting increased cytotoxicity over melanoma cells, when compared to human de...
Article
Full-text available
Layer‐by‐layer films based on chitosan and hyaluronic acid were produced by dip‐ and spin‐coating techniques onto glass, 316L stainless steel and titanium. These natural polymers were modified with catechol groups, in order to build coatings with improved adhesive properties. Polymeric coatings were exclusively composed by both modified polymers wh...