AJEV Papers in Press. Published online March 23, 2017.

AJEV PAPERS IN PRESS • AJEV PAPERS IN PRESS

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

1	Research Note
2	Location Effects on the Aromatic Composition of
3	Monovarietal cv. Carignan Wines
4 5	Cristina Úbeda, ¹ Rubén del Barrio-Galán, ² Álvaro Peña-Neira, ² Marcela Medel-Marabolí, ² and Enrique Durán-Guerrero ³ *
6 7 8 9 10 11	¹ Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile; ² Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas Universidad de Chile, Casilla 1004, Santiago, Chile; and ³ Analytical Chemistry Department, Faculty of Sciences-Andalusian Center of Wine Research (CAIV), University of Cádiz, Agrifood Campus of International Excellence (Ceia3), Pol. Río San Pedro, Puerto Real 11510, Cádiz, Spain.
12 13	*Corresponding author (enrique.duranguerrero@uca.es; tel: +34 956 01 64 56; fax: +34 956 01 64 60)
14 15 16	Acknowledgments: This work was supported by the Comisión Nacional de Ciencia y Tecnología (CONICYT), projects FONDECYT: 11140403, 11140275, 1140882 and FONDEQUIP EQM-130129. The wine samples were kindly contributed by VIGNO (Vignadores de Carignan).
17	Manuscript submitted Sept 2016, revised Feb 2017, accepted Mar 2017
18	Copyright © 2017 by the American Society for Enology and Viticulture. All rights reserved.
19	
20	Abstract: The aromatic profile of monovarietal Carignan wine has been characterized, and the
21	influence of the origin on the volatile composition wines from six different zones of Chile and
22	from two different seasons has been studied. The solid phase microextraction conditions
23	employed were previously studied. An extraction temperature of 45°C, 40 minutes of incubation,
24	1.5 g of salt and 180 seconds of fiber desorption were employed for the analysis of the 28 wine
25	samples studied. Sixty-three volatile compounds were determined in Carignan cv. wines, and
26	they were characterized by substantial amounts of ethyl esters and small amounts of volatile acid
27	compounds among others. Analysis of variance results showed significant effects on the
28	"location" factor ($p < 0.05$), which was corroborated by principal component analysis and linear
29	discriminant analysis, where clear groups were observed regarding production area. The
30	geographical origin affected the volatile composition of the studied wines and production areas

31 closer to the Andes Mountains showed significant lower contents of esters and acids than the

32 ones closer to the ocean.

33 Keywords: aroma, Carignan, characterization, chromatography, extraction, location

34

Introduction

The Carignan cultivar is originally from Spain, specifically from Cariñena, a small town located in the region of Aragón, which provides the name of the wines with Origin Denomination (O. D.) produced in this zone. This variety was introduced to France in the XIIth century, becoming

the most widely red grape cultivar in French vineyards (Galet 1990).

Historically, the grapes of this cultivar have been used to produce blend wines with other grapes
from Rioja O.D. Its intense acidity, deep violet-red color and fruity/floral aroma, which are now
highly valued organoleptic properties, have encouraged the production of monovarietal Carignan
wines.

While this variety is extensively cultivated in many European countries such as Spain, France
and Italy, it is also cultivated in the Americas, being Mexico, United States, and Chile the main
countries, respectively (OIV 2011). Among the 722 hectares approximately cultivated in Chile,
82% are located in the Maule Region, a valley that is one of the most productive wine regions in
this country (SAG, Servicio Agrícola y Ganadero, http://www.sag.gob.cl/).

48 Chilean orography is very heterogeneous, resulting in a wide range of climatic zones, with some 49 of them influenced more by the Pacific Ocean and others influenced more by the Andes 50 Mountains. Thus, the climate of the Maule Valley can be divided into five climatic zones with

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

three climate indexes (Montes 2006) (Figure 1). Climate indexes are used for the estimation of 51 52 the potential climate of a particular place to ensure the maturation of different varieties (Huglin and Schneider 1998). The Huglin Index (HI) relates the average and maximum daily 53 54 temperatures during the active growing season and day length coefficient (Huglin 1978). 55 According to Huglin and Schneider (1998), the Carignan variety has an HI requirement of 2,200 units to obtain a sugar content of approximately 18 to 20 ° Brix. The Cold Night Index (CI) can 56 57 be used to determine the average minimum nightly temperatures during the maturation period. It is very important to take into account this index because night temperatures influence the 58 formation of aromas in the grape and subsequently in wines (Tonietto 1999). Finally, the 59 Drought Index (DI) allows a characterization of the water component of the climate, indicating 60 the presence or absence of drought in a wine region, which accounts for the climatic demand of a 61 standard vineyard, evaporation from bare ground and rain without surface runoff or without 62 internal drainage (Tonietto 1999). The three indexes described above can be integrated, creating 63 a climate classification system for wine regions (Tonietto and Carbonneau 2004) which allows 64 for the classification and grouping together of regions according to their similarities (Montes 65 2006). 66

67 Climatic conditions in conjunction with soil characteristics, cultivar, biodiversity and human 68 practices configure *terroir* (Van Leeuwen et al. 2004), which is clearly related to the typicality 69 and quality that can be found in a wine produced in a specific region (Roullier-Gall et al. 2014). 70 Many studies have focused on the effects of climate because it is considered to be the main 71 influence (De Andrés-De Prado et al. 2007). One of the characteristics that may be affected by

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

72	terroir is the volatile profile of grapes (Jiang et al. 2013), and the aroma is one of the most
73	important factors defining the character and quality of wine (Vilanova et al. 2007).
74	The differences between wines produced from grapes grown in different areas separated by a few
75	kilometers are significant and these differences are even more significant between wines of the
76	same variety grown in different countries; this applies to wines produced from Carignan grapes.
77	Nevertheless, the volatile composition of Carignan wines has been scarcely studied. As far as we
78	known, there are only few works which involve the study of the volatile composition of wines
79	made from Carignan grape (Baumes et al. 1986, Arozarena et al. 2000, Hernández-Orte et al.
80	2002, Geffroy et al. 2015).

In addition, although solid-phase micro extraction (SPME) has been widely employed for the analysis of volatiles in oenological samples, only Hernández-Orte et al. (2002) have applied previously this extraction technique to Carignan wine samples, using it for the analysis of volatile sulfur compounds.

Therefore, the objectives of this study were on the one hand, to optimize solid-phase microextraction conditions to characterize the aromatic profile of pure Chilean Carignan wines and on the other hand, to evaluate the influence of the location of production on the volatile composition of these wines, using samples from six different zones of the Maule Valley and from two different harvests, 2012 and 2014.

Materials and Methods

92 Samples

91

For this study, 28 commercial Carignan cv. wines were analyzed in triplicate and included 15
samples of 2012 harvest wines and 13 samples of 2014 harvest wines. The samples were
collected from wine cellars from six different zones of the Maule Region of Chile: Caliboro (8)
[35°49'27"S; 71°54'14"W]; Melozal (8) [35°42'0" S; 71°48'0" W]; Cauquenes (2)
[35°58'00"S; 72°21'00"W], Huerta del Maule (2) [35° 40' 0"S; 71° 57' 0" W]; Loncomilla (4)
[35°34'31"S; 71°45'24"W], Sauzal (4) [35°45'00"S; 72°07'00"W].

99 Sauzal and Cauquenes locations have a mean Huglin index (HI) of 2223 units, the average value 100 of Drought index (DI) of -240 mm, and a Cold Night Index (CI) of 9.6 °C. Caliboro and 101 Melozal, have a HI of 2088 units, DI of -145 mm of average and a CI de 8.8 °C. Huerta del 102 Maule and Loncomilla are characterized by a HI of 2400 units, DI of -222 mm and mean CI of 103 9.7 °C.

104 **Reagents and standards**

All the chemicals used were analytical-reagent grade and provided from the following sources: ethyl isobutyrate, ethyl butyrate, ethyl 2-methylbutyrate, ethyl isovalerate, ethyl crotonate, ethyl hexanoate, ethyl octanoate, ethyl undecanoate, ethyl decanoate, ethyl 2-furoate, ethyl succinate, ethyl phenylacetate, isobutyl acetate, isoamyl acetate, isoamyl butanoate, isoamyl hexanoate, isoamyl lactate, isoamyl octanoate, methyl octanoate, methyl decanoate, isobutanol, butanol, 3-

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

110	methyl-1-butanol, 2 ethyl-1-hexanol, 3-methyl-1-pentanol, hexanol, 3-hexen-1-ol, 2,3-
111	butanediol, 1-nonanol, 1-decanol, 2-phenylethanol, 4-ethylphenol, limonene, o-cymene, trans-2
112	pinalol, linalool, alpha-terpineol, hexanoic acid, octanoic acid, decanoic acid, furfural,
113	benzaldehyde, 5-methyl-furfural, beta-damascenone, and oaklactone were purchased from
114	Sigma-Aldrich (Steinheim, Germany).

115 The internal standard employed, 4-methyl-2-pentanol, and also acetic acid, ethyl acetate and

sodium chloride were purchased from Merck (Darmstadt, Germany).

117 Headspace solid-phase micro-extraction (HS-SPME) and GC/MS conditions

The HS-SPME method was optimized to give the most suitable extraction and desorption of wine volatiles, with the optimized parameters including incubation temperature (35, 45, 55 and 65°C), extraction time (20, 30, 40 and 50 minutes), desorption time (180, 300 and 420 seconds)

- and concentration of sodium chloride (1, 1.5 and 2 g). While one variable was studied, the rest
- were fixed to an average value (35°C, 30 minutes, 300 seconds and 1.5 g).
- In all cases, 7 mL of wine was placed into a 20-mL glass vial with sodium chloride and 15 μ L of 4-methyl-2-pentanol (IS) at 0.75 g/L, and the vial was then positioned in the autosampler tray for HS-SPME sampling.

Static headspace sampling was employed after the fiber was cleaned and conditioned (1 hour at 270 °C before the first use, and 5 minutes before each extraction). After incubating with temperature and agitation speed of 500 rpm, the volatiles in the headspace of the vial were extracted with a 2-cm 50/30-µm Carboxen/DVB/PDMS SPME fiber (Supelco, Bellefonte, PA,

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

130	USA). The fiber penetration in the vial during extraction was 30 mm, and after extraction, the
131	fiber was desorbed. The sample was injected using the splitless (3 min) mode with an injector
132	temperature of 250 °C and a transfer line temperature of 280 °C.
133	Gas chromatographic analysis was carried out using a 7890B Agilent GC system coupled to an
134	Agilent 5977 inert quadrupole mass spectrometer (Agilent Technologies, Palo Alto, CA, USA).
135	A DB Wax capillary column (60 m x 0.25 mm, 0.25 μ m film thickness, J&W Scientific, Folsom,
136	CA, USA) was used, with helium carrier gas at a flow rate of 1 mL/min. The oven temperature
137	program was as follows: the temperature was 35 °C for 10 min and was subsequently raised to
138	100 °C at 5 °C/min and then to 210 °C at 3 °C/min (holding 40 minutes). The electron ionization
139	mass spectra (40 – 300 amu) were acquired in scan mode at 70 eV.
140	All data were recorded using MS ChemStation software (Agilent Technologies, Palo Alto, CA,

USA). The samples were analyzed in triplicate, and blank runs using empty glass tubes wereperformed before and after each analysis.

143 **Identification and quantitation**

144 Compound identification was based on mass spectra matching using version 2.0 of the standard 145 NIST library and the retention index (LRI) of authentic reference standards or the data in the 146 literature. Quantitation has been carried out employing calibration curves of five levels of 147 concentration in triplicate for each volatile compound (relative area versus concentration). The 148 relative area was calculated by dividing the peak area of the target ion of each compound by the

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

peak area of the target ion of the internal standard. Those identified compounds whose
commercial standards were unavailable were quantified either with the calibration curve of an
equivalent compound (Table 1) or by means of relative area (Table 2).

152 Statistical analysis

Statistical analysis was carried out using the Statistica 8.0 software package (StatSoft, Inc. Tulsa, OK, USA). Analysis of variance (ANOVA) followed by a post hoc comparison test (Tukey's test), principal component analysis (PCA) and linear discriminant analysis (LDA) were performed.

157

Results and Discussion

158 Optimization of the extraction conditions

For the optimization of the extraction parameters, a Carignan wine from the 2015 harvest was 159 employed. Among the different conditions assayed, the temperature and extraction time showed 160 the highest influence on the results obtained. Thus, the higher the temperature employed, the 161 162 larger the recovery obtained of the less volatile compounds, especially the acids (Figure 2). 163 However, some highly volatile compounds, such as some esters and alcohols, were lost during extraction and exhibited poorly resolved chromatographic peaks. Incubation times also affected 164 165 recoveries, and therefore, intermediate conditions were selected, i.e., 45 °C and 40 minutes of 166 incubation. Varying the salt concentration generally affected recoveries, with the addition of 1.5

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

167 g being optimum for most compounds. Finally, 180 seconds of fiber desorption showed the168 highest recoveries of the studied volatile compounds and the best peak resolutions.

169 Characterization of the aromatic profile

A total of 62 volatile compounds were determined in monovarietal Carignan cv. wine samples
(Table 1, Figure 3). The most abundant chemical groups were esters (32), followed by alcohols
(15) and terpenes (5). Compounds from other families such as acids (4), aldehydes (3), lactones
(2) and C13 norisoprenoid (1) were also identified.

The volatile profile of these wines was very similar, despite growing zone differences, with respect to major volatile compounds. Table 2 shows mean concentrations of the volatile compounds in the wines from the different studied locations, grouping 2012 and 2014 vintages together.

The results showed that the Chilean wines of Carignan cv. were characterized by important amounts of ethyl esters such as ethyl acetate, ethyl hexanoate, ethyl octanoate, ethyl succinate, ethyl isobutyrate, ethyl butyrate and ethyl 2-methylbutyrate. Geffroy et al. (2015) found in Carignan wines from Aragón (Spain), ethyl 2-methylbutyrate as the major ester volatile compound followed by isobutyl acetate, ethyl furoate and ethyl acetate. Baumes et al. (1986) identified as the major esters ethyl 2-hydroxy propionate and ethyl butanoate, followed by ethyl succinate in Carignan wines from Montpellier (France).

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

185	These previous reports, however, are in accordance with our results regarding the major volatile
186	alcohols found in Chilean Carignan cv. wines, such as 3-methyl-1-butanol, isobutanol, 2-
187	phenylethanol and hexanol.
188	Carignan Chilean wines contained low amounts of volatile acid compounds (Table 2). The major
189	acid volatile compound found was acetic acid, followed by hexanoic, octanoic and decanoic
190	acids, being in agreement with the order found by Geffroy et al. (2015).
191	Among the volatile terpenes identified, trans-2-pinalol and o-cymene were the terpenes with the
192	highest concentration depending on the location, followed by alpha-terpineol. However, in
193	Spanish Carignan wines from the above mentioned studies, the major terpene compound was
194	linalool followed by alpha-terpineol, and citronellol was the most abundant terpene found in the
195	studied French wines (Baumes et al. 1986, Geffroy et al. 2015).
196	As seen, some differences in composition are found upon comparing Chilean and European
197	wines, so volatile composition seems to be dependent on the origin.
198	Effect of location and production year
199	Differences observed in volatile composition of wines are usually produced not only by the
200	location but also by the production conditions. To minimize that factor, all wines analyzed in this

research come from a group of Chilean winemakers that employ similar practices of production and harvesting, so we can suppose that the differences observed could be mainly derived from production area and harvest year. To identify significant differences these variables, the

quantitative compound data were subjected to analysis of variance (ANOVA). Table 3 shows theresults for the two factors studied.

Although almost half of the compounds exhibit significant differences when the "year" factor was taken into account, grouping similar compounds together showed that the wines from the same area had generally similar total volatile profiles between 2012 and 2014 (Figure 4). This indicates that production year is not a very relevant parameter that affects volatile composition of the studied wines.

Twenty-five compounds showed significant differences when production zones (p<0.05, Table 211 3) was taken into account. Therefore, a post hoc comparison Tukey's test was applied to the data 212 according to the variable "location", with the results presented in Table 2. Production area does 213 affect compound family profiles, such as esters and acids. As seen, significantly higher contents 214 of these types of compounds were found in wines from Sauzal and Cauquenes, both of which are 215 the closest regions studied to the Pacific Ocean. Conversely, significantly lower amounts of 216 217 esters were found in wines from Loncomilla and Caliboro, and lower contents of terpenes were found in wines from Melozal and Huerta of Maule, the closest regions to the Andes Mountains 218 219 (Figure 1). Production region does appear to affect the content of these compounds in wines and 220 therefore could result in decreased floral and fruity characteristics of these samples. In addition, significantly lower concentrations of acids were detected in wines from Huerta of Maule and 221 Loncomilla. 222

224 Multivariate statistical analysis

On the basis of the results obtained from ANOVA, the data were analyzed by multivariate 225 statistical analysis. Non-supervised pattern recognition statistical analysis, such as principal 226 component analysis (PCA), was employed to identify possible patterns related to the 227 228 classification factors. From PCA, 14 significant principal components (PCs) were obtained, according to Kaiser's criterion (eigenvalues>1), and explained 89.10% of the total variability (7 229 PCs explained the 73.10% of the variability). Figure 5 shows a plot of the first two PCs, which 230 explained 38.06% of the total variability. The majority of samples from Melozal and Caliboro 231 232 are located in the first and second sectors of the plot (positive values of first PC), so this PC could be related to distance to the Andes Mountains. Compounds with a higher value on this PC 233 were esters such as isoamyloctanoate, isoamyldecanoate, ethyl tetradecanoate, ethyl methyl 234 235 succinate, ethyl dodecanoate, ethyl isovalerate, ethyl isobutyrate, ethyl phenyl acetate and ethyl 236 decanoate and acids such as hexanoic acid, octanoic acid and decanoic acid. As seen, this is in 237 concordance with the ANOVA results, which showed a relation between ester and acid content and proximity to the Andes Mountains. 238

To obtain suitable classification rules for the samples, supervised pattern recognition statistical analysis such as forward stepwise linear discriminant analysis (LDA), according to Wilks' lambda and employing the leave-one-out method, was applied to the set of data. "Location" was employed as a classification criterion using six categories: Caliboro, Melozal, Cauquenes, Huerta of Maule, Loncomilla and Sauzal. All of the samples were correctly classified using the leave-

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

one-out method. Figure 6 shows a scatterplot of the samples on the plane defined by the first two discriminant functions for a "location" classification criterion. As seen, six clear groups were formed, and all samples were correctly classified. Twenty-eight variables were obtained (p<0.05), with esters being the majority of the compounds that contributed to the classification function, with the coefficients shown in Table 4. Again, this chemical family contributes to the differentiation of the samples and therefore to their classification.

250

Conclusions

In this work, 28 monovarietal Carignan cv. wines from six different Chilean production zones 251 252 and two harvest seasons have been studied. This cultivar had been scarcely studied previously, and this is the first time that Chilean wines have been chemically characterized. Some 253 differences have been found in comparison to other Carignan wines from different European 254 255 regions, so location may be affecting volatile composition. The effect of Chilean production zone and year has been studied to corroborate this fact. Wines from locations closer to the Andes 256 Mountains showed significantly lower contents of esters and acids. After multivariate statistical 257 analysis, 100% of the studied wines were correctly classified regarding production zone, with 258 esters being the chemical family that contributed most to the correct classification of the 259 samples. Future researches could include different cultivars to be compared with in order to 260 enhance the specificity of Carignan wines. 261

262

Literature Cited

Arozarena I, Casp A, Marín R and Navarro M. 2000. Multivariate differentiation of Spanish red
 wines according to region and variety. J Sci Food Agric 80:1909-1917.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

- Baumes R, Cordonnier R, Nitz S and Drawert F. 1986. Identification and determination of volatile constituents in wines from different vine cultivars. J Sci Food Agric 37:927-943.
- De Andrés-De Prado R, Yuste-Rojas M, Sort X, Andrés-Lacueva C, Torres , and Lamuela Raventós RM. 2007. Effect of soil type on wines produced from Vitis vinifera L Cv.
 grenache in commercial vineyards. J Agric Food Chem 55:779-786.
- Ferreira V, Aznar M, López R and Cacho J. 2001. Quantitative Gas Chromatography Olfactometry Carried out at Different Dilutions of an Extract. Key Differences in the
 Odor Profiles of Four High-Quality Spanish Aged Red Wines. J Agric Food Chem
 49:4818-4824.
- 274 Galet P. 1990. Précis d'ampélographie pratique. Lavoisier, Versailles-Grignon.
- Geffroy O, Lopez R, Serrano E, Dufourcq T, Gracia-Moreno E, Cacho J and Ferreira V. 2015.
 Changes in analytical and volatile compositions of red wines induced by pre-fermentation
 heat treatment of grapes. Food Chem 187:243-253.
- Griesbaum K, Behr A, Biedenkapp D, Voges HV, Garbe D, Paetz C, Collin G, Mayer D and
 Höke H. 2002. Hydrocarbons. *In* Ullmann's Encyclopedia of Industrial Chemistry.
 Wiley-VCH (ed.), Weinheim, Germany.
- Gürbüz O, Rouseff MJ and Rouseff RL. 2006. Comparison of Aroma Volatiles in Commercial
 Merlot and Cabernet Sauvignon Wines Using Gas Chromatography-Olfactometry and
 Gas Chromatography-Mass Spectrometry. J Agric Food Chem 54:3990-3996.
- Hernández-Orte P, Cacho JF and Ferreira V. 2002. Relationship between varietal amino acid
 profile of grapes and wine aromatic composition. Experiments with model solutions and
 chemometric study. J Agric Food Chem 50:2891-2899.
- Huglin P. 1978. A new method of evaluating the heliothermal possibilities in the environment of
 grape culture. Comptes Rendus de l'Academie d'Agriculture de France 64:1117-1126.
- Huglin P and Schneider C. 1998. Biologie et écologie de la vigne. Lavoisier, Paris.
- Jiang B, Xi Z, Luo M and Zhang Z. 2013. Comparison on aroma compounds in Cabernet
 Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res
 Int 51:482-489.
- Montes C, Pérez-Quezadam JF, Peña-Neira A and Tonietto J. 2012. Climatic potential for
 viticulture in Central Chile. Aust J Grape Wine Res 18:20-28.
- 295 OIV. 2011. Estadísticas Vitícolas Mundiales. París.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

296 Raposo R, Ruiz-Moreno MJ, Garde-Cerdán T, Puertas B, Moreno-Rojas JM, Gonzalo-Diago A, Guerrero R, Ortíz V and Cantos-Villar E. 2016. Grapevine-shoot stilbene extract as a 297 298 preservative in red wine. Food Chem 152:100-107 Roullier-Gall C, Boutegrabet L, Gougeon RD and Schmitt-Kopplin P. 2014. A grape and wine 299 chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir 300 effects. Food Chem 197:1102-1111. 301 Tao Y, Li H, Wang H and Zhang L. 2008. Volatile compounds of young Cabernet Sauvignon red 302 wine from Changli County (China). J Food Compos Anal 21:689-694. 303 Tonietto J. 1999. Les macroclimats viticoles mondiaux et l'influence du mésoclimat sur la 304 305 typicité de la Syrah et du Muscat de Hambourg dans le Sud de la France: méthodologie de caractérisation. Montpellier, France. 306 Tonietto J and Carbonneau A. 2004. A multicriteria climatic classification system for grape-307 growing regions worldwide. Agr Forest Meteorol 124:81-97. 308 Van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S and Dubourdieu D. 2004. 309 Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55:207-217. 310 Vilanova M, Zamuz S, Vilariño F and Sieiro C. 2007. Effect of terroir on the volatiles of Vitis 311 vinifera cv. Albariño. J Sci Food Agric 87:1252-1256. 312 313

315 Table 1 Identified compounds in Chilean Carignan cv. wines.

Compounds	LRI ^a	Oion ^b	ID ^c
Ethyl esters		X1011	
Ethyl isobutyrate	1010	43	AC
Ethyl hutvrate	1010	71	A B C
Ethyl 2-methylbutyrate	1084	57	A B C
Ethyl isovalerate	1089	88	A B C
Ethyl crotonate	1214	69	A B C
Ethyl beyanoate	1214	88	A B C
Ethyl heptanoate ^{*1}	1348	88	B C
Ethyl octanoate	1437	88	A B C
Fthyl nonanoate ^{*1}	1534	88	C C
Ethyl decanoate	1647	88	ABC
Ethyl 2-furgate	1661	95	A C
Ethyl succinate	1679	101	A B C
Ethyl 9-decenoate ^{*1}	1659	88	Г, Б, С
Diethyl glutarate	1746	143	C
Ethyl phenylacetate	1799	91	ABC
Ethyl dodecanoate ^{*1}	1854	88	R, D, C
Ethyl methyl succinate	1892	115	D, C
Ethyl 3-methylbutyl succinate	1942	101	C
Ethyl tetradecanoate ^{*1}	2041	88	BC
Diethyl 2-hydroxy-3-methylsuccinate	2154	131	D, C
Ethyl hexadecanoate	2134	88	C
Ethyl hydrogen succinate ^{*2}	2292	101	C
A cetate esters		101	C
Ethyl acetate	879	43	ABC
Isobutyl acetate	1015	43	A B C
Isoamyl acetate	1122	43	A B C
Isoamyl esters	1122	15	п, в, с
Isoamyl butanoate	1306	71	AC
Isoamyl bexanoate	1479	70	ABC
Isoamyl lactate	1524	45 45	A C
Isoamyl octanoate	1680	70	A B C
Isoamyl decanoate ^{*3}	1888	70	B C
Methyl esters	1000	70	в, с
Methyl octanoate	1342	74	AC
Methyl decanoate	1558	74 74	A C
Alcohols	1550	7 -	71, C
Isobutanol	1074	43	ABC
Butanol	1172	56	A B C
$1-\text{Penten-}3-01^{*4}$	1200	57	Г., <i>Б</i> , С С
3-methyl-1-butanol	1200	55	Ă B C
4-methyl-1-pentanol ^{*5}	1315	56	B C
3-methyl-1-pentanol	1332	56	A. B. C

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Hexanol	1375	56	A, B, C
3-Hexen-1-ol	1410	41	A, B, C
1-Octanol ^{*6}	1577	56	B, C
2.3-Butanediol	1534	45	A, B, C
1-Nonanol	1681	56	A, B, C
1-Decanol	1793	70	A, B, C
2-phenylethanol	1940	91	A, B, C
Benzyl alcohol	1883	79	B, C
4-ethylphenol	2212	107	A, B, C
Terpenes			
Limonene	1179	68	A, B, C
o-cymene	1242	119	A, B, C
Trans-2 pinalol	1320	43	A, C
Linalool	1555	71	A, B, C
Alpha-terpineol	1693	59	A, B, C
Acids			
Acetic acid	1484	43	A, C
Hexanoic acid	1880	60	A, B, C
Octanoic acid	2076	60	A, B, C
Decanoic acid	2329	60	A, B, C
Aldehydes			
Furfural	1438	96	A, B, C
Benzaldehyde	1565	77	A, C
5-methyl-furfural	1565	110	A, C
C ₁₃ Norisoprenoid			
Beta-Damascenone	1849	69	A, B, C
Lactones			
Oaklactone	1947	99	A, B, C
γ-Carboethoxy-γ-butyrolactone	2315	85	С

^aLRI: Linear Retention Index. 316

^bQion: Quantification ion. 317

^cID: reliability of identification: A, mass spectrum and LRI agreed with standards; B, mass 318

spectrum agreed with mass spectral data base and LRI agreed with the literature data: Ferreira et al. 319

2001, Gurbuz et al. 2006, Raposo et al. 2016, Tao et al. 2008; C, mass spectrum agreed with mass 320 spectral data base. *¹Ethyl undecanoate equivalents; ^{*2}Ethyl succinate equivalents; ^{*3}Isoamyl octanoate equivalents; ^{*4} 321

- 2-Ethyl-1-hexanol equivalents; *5 3-Methyl-1-pentanol equivalents *6 Nonanol equivalents. 323
- 324
- 325

Table 2 Mean concentrations (μ g/L) of the studied compounds determined in the	e wine samples from the different production zones. Results from
Tukey's test according to the variable "location."	

Compounds	Caliboro	Melozal	Cauquenes	Huerta Maule	Loncomilla	Sauzal
Ethyl esters						
Ethyl isobutyrate	115 ^{ab}	141 ^b	42.3 ^a	121 ^{ab}	90.6 ^{ab}	77.8 ^{ab}
Ethyl butyrate	109 ^a	133 ^a	149 ^a	134 ^a	119 ^a	152 ^a
Ethyl 2-methylbutyrate	72.6 ^{ab}	109 ^b	27.1 ^a	87.3 ^{ab}	69.9 ^{ab}	63.9 ^{ab}
Ethyl isovalerate	15.7 ^a	30.0 ^b	5.24 ^a	22.4^{ab}	15.9 ^{ab}	20.0^{ab}
Ethyl crotonate	16.0 ^a	15.7 ^a	7.50^{a}	4.03 ^a	6.51 ^a	3.95 ^a
Ethyl hexanoate	1094 ^a	1231 ^a	1182 ^a	1094 ^a	918 ^a	1418 ^a
Ethyl heptanoate	6.03 ^a	5.92 ^a	$4.84^{\rm a}$	4.61 ^a	3.69 ^a	5.19 ^a
Ethyl octanoate	152 ^{ab}	147^{ab}	174 ^{ab}	134 ^a	144^{ab}	226 ^b
Ethyl nonanoate	5.86 ^a	5.93 ^a	23.1 ^b	5.84 ^a	5.42 ^a	5.71 ^a
Ethyl decanoate	41 ^a	40.3 ^a	62.8 ^a	44.2^{a}	41.7^{a}	53.8 ^a
Ethyl 2-furoate	0.16 ^a	0.62^{a}	0.09 ^a	0.21 ^a	0.15 ^a	0.22^{a}
Ethyl succinate	149^{ab}	141^{ab}	112 ^a	168 ^b	140^{ab}	151 ^{ab}
Ethyl 9-decenoate	9.4 ^a	6.39 ^a	5.95 ^a	5.75 ^a	6.08^{a}	6.35 ^a
Diethyl glutarate*	0.01^{ab}	0.02^{b}	0.01 ^a	0.02^{b}	0.02^{ab}	0.02^{ab}
Ethyl phenylacetate	4.01 ^{ab}	5.61 ^b	2.28^{a}	4.54^{ab}	3.89 ^{ab}	5.11 ^{ab}
Ethyl dodecanoate	41 ^a	28.9 ^a	82.2 ^a	62.3 ^a	63.3 ^a	56.5 ^a
Ethyl methyl succinate*	0.17 ^a	0.03 ^a	0.51 ^a	0.05^{a}	0.26^{a}	0.37^{a}
Ethyl 3-methylbutyl* succinate	0.54 ^a	0.40^{a}	0.49^{a}	0.61 ^a	0.57 ^a	0.62 ^a
Ethyl tetradecanoate	4.35 ^a	2.71 ^a	14.0 ^b	5.46 ^a	6.52 ^{ab}	6.10 ^{ab}
Diethyl 2-hydroxy-3- methylsuccinate*	0.03 ^a	0.04 ^a	0.03 ^a	0.04 ^a	0.03 ^a	0.04 ^a
Ethyl hexadecanoate	13.5 ^a	13.5 ^a	41.2 ^b	$18.4^{\rm a}$	18.8 ^a	18.2^{a}
Ethyl hydrogen succinate	55.1 ^a	49.6 ^a	59.7 ^a	61.0 ^a	49.5 ^a	66.5 ^a
Total	1903 ^a	2108 ^a	1997 ^a	1979 ^a	1703 ^a	2337 ^a

Acetate esters						
Ethyl acetate	59279 ^{ab}	70279 ^b	53279 ^{ab}	68279 ^{ab}	50779 ^a	63279 ^{ab}
Isobutyl acetate	65.6 ^a	62.2 ^a	39.8 ^a	64.2 ^a	45.2^{a}	69.6 ^a
Isoamyl acetate	394 ^a	380 ^a	376 ^a	405^{a}	376 ^a	376 ^a
Total	59738 ^{ab}	70721 ^b	53695 ^{ab}	68748 ^{ab}	51200^a	63725 ^{ab}
Isoamyl esters						
Isoamyl butanoate	0.51 ^a	0.59^{ab}	0.41 ^a	0.59^{ab}	0.54^{ab}	0.72 ^b
Isoamyl hexanoate	0.68^{a}	0.67^{a}	0.73 ^a	0.65^{a}	0.55^{a}	0.93 ^a
Isoamyl lactate	66.0^{a}	$40.8^{\rm a}$	50.3 ^a	48.5 ^a	51.8 ^a	78.7^{a}
Isoamyl octanoate	127 ^a	76.1 ^a	291 ^a	126 ^a	121 ^a	189 ^a
Isoamyl decanoate	24.6 ^a	16.3 ^a	170^{b}	70.9^{ab}	73.8 ^{ab}	77.4^{ab}
Total	219^b	134 ^a	512 ^c	247 ^b	248^b	347^b
Methyl esters						
Methyl octanoate	1.06^{ab}	0.96^{a}	1.41 ^b	1.18^{ab}	0.84^{a}	1.38 ^b
Methyl decanoate	$0.10^{\rm a}$	0.07^{a}	0.51 ^c	0.20^{ab}	0.05^{a}	0.33 ^{bc}
Total	1.16 ^a	1.02 ^a	1.92 ^b	1.37 ^{ab}	0.86 ^a	1.71 ^b
Total esters	61861 ^{ab}	72947 ^b	56205 ^{ab}	70973 ^{ab}	53151 ^a	66408 ^{ab}
Alcohols						
Isobutanol	43243 ^a	39910 ^a	42577 ^a	39243 ^a	43577 ^a	40910 ^a
Butanol	1083 ^a	823 ^a	1243 ^a	1280^{a}	1167 ^a	957 ^a
1-Penten-3-ol	0.31 ^a	0.15 ^a	0.14^{a}	0.15 ^a	1.22 ^a	1.92 ^a
3-methyl-1-butanol	99317 ^a	103460 ^a	113317 ^a	104317 ^a	107603 ^a	109031 ^a
4-methyl-1-pentanol	$40.8^{\rm a}$	39.3 ^a	48.5^{a}	46.3 ^a	50.0^{a}	52.0 ^a
3-methyl-1-pentanol	300^{a}	333 ^a	388 ^a	340^{a}	355 ^a	345 ^a
Hexanol	4427 ^b	2252 ^a	3702 ^{ab}	3452 ^{ab}	3377 ^{ab}	4327 ^b
3-Hexen-1-ol	23.6 ^a	27.6^{ab}	27.6^{ab}	36.1 ^b	21.1 ^a	24.1 ^{ab}
1-Octanol	$2.40^{\rm a}$	2.25 ^a	3.55 ^a	2.23 ^a	2.36 ^a	2.83 ^a
2,3-Butanediol	82.9 ^a	88.2 ^a	87.1 ^a	92.2 ^a	80.2^{a}	78.2^{a}
1-Nonanol	0.29 ^a	0.39 ^a	5.08 ^b	$0.50^{\rm a}$	0.87^{a}	0.27^{a}
1-Decanol	1.15 ^a	1.31 ^a	1.40^{a}	1.11 ^a	1.66 ^a	1.52 ^a

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

	10000	107003	1 - 1003	10,7003		10,7003
2-phenylethanol	18909ª	18509ª	17409ª	18709ª	20109ª	18709ª
Benzyl alcohol*	0.03 ^a	0.03 ^a	0.07^{a}	0.03^{a}	0.05^{a}	0.07^{a}
4-ethylphenol	14.7 ^a	32.7 ^{ab}	32.0^{ab}	24.9 ^a	31.6 ^a	107 ^b
Total	167444^{a}	165477^a	178839 ^a	167543 ^a	176374 ^a	174544 ^a
Terpenes						
Limonene	0.05^{b}	0.03 ^a	0.04^{ab}	0.04^{ab}	0.05^{b}	0.05^{b}
o-cymene	2.42^{ab}	2.72^{ab}	1.11 ^a	3.43 ^b	3.27 ^b	2.73 ^{ab}
Trans-2 pinalol	4.22^{ab}	2.66^{ab}	5.01 ^{ab}	1.61 ^a	6.59 ^b	7.29 ^b
Linalool	0.86^{a}	0.03 ^a	1.24^{a}	0.03 ^a	0.52^{a}	1.13 ^a
Alpha-terpineol	2.09 ^{bc}	1.54^{ab}	0.91 ^a	$1.80^{\rm abc}$	2.43 ^c	2.80 °
Total	9.64 ^{ab}	6.98 ^a	8.31 ^{ab}	6.91 ^a	12.8 ^b	14.1^b
Acids						
Acetic acid	1147^{a}	1267 ^a	1207 ^a	1207^{a}	1001 ^a	1259 ^a
Hexanoic acid	857^{a}	847^{a}	990 ^a	770^{a}	722 ^a	1045 ^a
Octanoic acid	376 ^a	304 ^a	492 ^a	249 ^a	323 ^a	510 ^a
Decanoic acid	104 ^a	94.2^{a}	105 ^a	82.9 ^a	95.8 ^a	142 ^a
Total	2484^{ab}	2512 ^{ab}	2793 ^{ab}	2309 ^a	2142 ^a	2955 ^b
Aldehydes						
Furfural	82.4 ^a	82.0^{a}	122 ^a	67.3 ^a	58.2 ^a	63.0 ^a
Benzaldehyde	1.81^{a}	10.7^{b}	4.36 ^{ab}	2.30^{ab}	7.48^{ab}	3.41 ^{ab}
5-methyl-furfural	5.25 ^a	4.83 ^a	0.75^{a}	7.25 ^a	2.00^{a}	1.67 ^a
Total	89.5 ^a	97.6 ^a	127 ^a	76.9 ^a	67.7 ^a	68 ^a
C ₁₃ Norisoprenoid						
Beta-Damascenone	2.28^{ab}	2.27^{ab}	2.18^{ab}	1.07 ^a	2.39 ^{ab}	6.44 ^b
Lactones						
Oaklactone	34.8 ^a	68.1 ^a	60.8^{a}	54.5 ^a	6.85 ^a	36.7 ^a
γ-Carboethoxy-γ-	0.04^{a}	0.04^{a}	0.05^{a}	0.05 ^a	0.05^{a}	0.05^{a}
butyrolactone						
Total	34.8 ^b	68.1 ^b	60.9 ^b	54.6 ^b	6.89 ^a	36.7 ^b

Different letters in different columns indicate significant differences according to Tukey's test (P < 0.05). From letter 'a' to letter 'c' indicates increasing concentrations. *: Result expressed in relative area with respect to the internal standard 4-methyl-2-pentanol.

1 Table 3 Analysis of variance results for the factors studied.

	Loc	cation	Year	
Compound	F-value	<i>p</i> -value	F-value	<i>p</i> -value
Ethyl esters		•		•
Ethyl isobutyrate	2.78	0.0274^{a}	10.68	0.0019 ^a
Ethyl butyrate	2.43	0.0479^{a}	0.47	0.4977
Ethyl 2-methylbutyrate	2.95	0.0207^{a}	29.03	0.0000^{a}
Ethyl isovalerate	3.87	0.0048^{a}	33.49	0.0000^{a}
Ethyl crotonate	3.84	0.0051^{a}	0.22	0.6423
Ethyl hexanoate	1.32	0.2706	0.31	0.5801
Ethyl heptanoate	1.00	0.4253	0.73	0.3954
Ethyl octanoate	1.52	0.2000	9.82	0.0028^{a}
Ethyl nonanoate	60.28	0.0000^{a}	0.52	0.4744
Ethyl decanoate	1.38	0.2485	14.73	0.0003^{a}
Ethyl 2-furoate	2.37	0.0525	0.00	0.9582
Ethyl succinate	2.24	0.0652	21.37	0.0000^{a}
Ethyl 9-decenoate	1.25	0.2996	0.04	0.8388
Diethyl glutarate	5.20	0.0006^{a}	26.23	0.0000^{a}
Ethyl phenylacetate	4.46	0.0019 ^a	17.44	0.0001 ^a
Ethyl dodecanoate	1.44	0.2276	15.36	0.0003^{a}
Ethyl methyl succinate	1.76	0.1388	11.28	0.0014^{a}
Ethyl 3-methylbutyl succinate	3.35	0.0110^{a}	1.18	0.2822
Ethyl tetradecanoate	5.62	0.0003 ^a	12.35	0.0009^{a}
Diethyl 2-hydroxy-3-methylsuccinate	1.86	0.1183	0.82	0.3684
Ethyl hexadecanoate	4.41	0.0021	35.36	0.0000^{a}
Ethyl hydrogen succinate	0.97	0.9746	0.52	0.4725
Acetate esters				
Ethyl acetate	3.30	0.0119 ^a	37.48	0.0000^{a}
Isobutyl acetate	1.98	0.0976	1.39	0.2434
Isoamyl acetate	0.18	0.9671	3.69	0.0601
Isoamyl esters				
Isoamyl butanoate	2.90	0.0225^{a}	1.73	0.1937
Isoamyl hexanoate	1.08	0.3816	5.22	0.0263^{a}
Isoamyl lactate	1.47	0.2164	3.98	0.0510
Isoamyl octanoate	2.09	0.0817	14.64	0.0003 ^a
Isoamyl decanoate	3.42	0.0099 ^a	17.22	0.0001^{a}
Methyl esters				
Methyl octanoate	4.54	0.0017^{a}	0.09	0.7695
Methyl decanoate	8.88	0.0000^{a}	4.59	0.0367 ^a
Alcohols				

Isobutanol	0.64	0.6687	0.84	0.3626
Butanol	2.52	0.0087	2.06	0.3020
1 Denten 2 el	5.55	0.0082	5.00 10.91	0.0837
1-Felitell-3-01	1.14	0.3313	2.20	0.0018
3-methyl-1-butanol	1.21	0.3199	2.29	0.1558
4-methyl-1-pentanol	2.18	0.0710	0.25	0.0185
3-methyl-1-pentanol	0.58	0.7145	2.84	0.0978
Hexanol	4.23	0.0028*	0.14	0.7127
3-Hexen-1-ol	7.10	0.0000	1.77	0.1888
1-Octanol	1.50	0.2081	0.05	0.8325
2.3-Butanediol	0.98	0.4401	4.67	0.0351 ^a
1-Nonanol	12.43	0.0000^{a}	0.00	0.9965
1-Decanol	0.78	0.5721	15.45	0.0002^{a}
2-phenylethanol	0.60	0.7023	6.77	0.0119 ^a
Benzyl alcohol	2.92	0.0218 ^a	0.42	0.5203
4-ethylphenol	2.78	0.0270^{a}	1.72	0.1955
Terpenes				
Limonene	5.99	0.0002^{a}	3.14	0.0820
o-cymene	2.42	0.0488^{a}	17.43	0.0001 ^a
Trans-2 pinalol	1.66	0.1606	4.82	0.0325 ^a
Linalool	1.40	0.2399	12.09	0.0010^{a}
Alpha-terpineol	4.90	0.0010^{a}	0.17	0.6810
Acids				
Acetic acid	1.59	0.1808	19.74	0.0000^{a}
Hexanoic acid	1.05	0.4013	0.79	0.3784
Octanoic acid	1.80	0.1297	6.75	0.0121 ^a
Decanoic acid	1.35	0.2600	19.04	0.0001 ^a
Aldehydes				
Furfural	0.94	0.4630	48.05	0.0000^{a}
Benzaldehyde	2.39	0.0507	8.63	0.0049^{a}
5-methyl-furfural	0.91	0.4809	34.94	0.0000^{a}
C ₁₃ Norisoprenoid				
Beta-Damascenone	0.87	0.5052	0.41	0.5243
Lactones				
Oaklactone	2.79	0.0268 ^a	10.87	0.0017^{a}
γ-Carboethoxy-γ-butyrolactone	2.20	0.0693	2.65	0.1091

^aValues are significant at p < 0.05.

5	Table 4	Linear D	Discriminant	Analysis	(LDA).	Coefficients	of the e	equation	of classific	ation.
---	---------	----------	--------------	----------	--------	--------------	----------	----------	--------------	--------

6						
Variable	Caliboro p ^a = 0.2857	Melozal p ^a = 0.2857	Cauquenes p ^a = 0.0714	Huerta Maule p ^a = 0.0714	Loncomilla p ^a = 0.1429	Sauzal p ^a = 0.1429
Ethyl acetate	45.0	55.0	48	92.9	45.7	47.0
Ethyl isobutyrate	421.7	-56.8	-10601	-2806.6	-2724.2	885.8
Isobutyl acetate	-8065.3	-7406.0	-53516	-20222.1	-16938.4	-3260.8
Ethyl-2-methylbutyrate	2583.7	2163.2	16294	4109.9	4429.4	-145.0
Ethyl isovalerate	-642.9	1167.2	7917	1511.5	496.4	433.5
Butanol	3482.9	-2454.3	-12105	-5340.8	400.7	3597.6
Ethyl crotonate	848.5	859.2	781	281.3	91.5	357.3
3-methyl-1-butanol	157.2	161.7	914	395.6	329.7	112.0
o-Cymene	2886.4	865.3	3078	8623.4	7783.6	3705.0
Ethyl heptanoate	-4140.1	-3081.7	-36841	-10669.7	-10267.7	-582.5
3-hexen-1-ol	13796.1	44286.6	256114	122831.3	87668.8	10499.9
Methyl octanoate	13062.1	11845.8	57717	22041.2	17891.7	6718.1
Ethyl octanoate	-87.2	-128.9	-577	-265.3	-159.5	-80.0
Isoamyl hexanoate	-2360.6	-383.4	-12858	-3967.1	-5818.3	-122.5
Ethyl nonanoate	11427.7	9720.3	83832	22490.5	21426.0	2075.7
Methyl decanoate	-18320.0	-9238.5	-129479	-31860.6	-37362.0	2668.9
5-methyl-furfural	46578.0	36839.5	457279	125977.2	118957.1	-3740.0
Alpha-terpineol	-5225.2	-11747.9	15902	8330.2	20305.7	1522.3
Decanol	13838.4	22311.9	178671	50598.4	44965.0	-207.1
Ethyl phenylacetate	-6864.7	-6238.9	-36506	-11267.7	-9727.5	-2821.8
Ethyl dodecanoate	34.8	-75.3	-138	-19.0	36.0	15.8
Beta-Damascenone	3189.7	2478.6	14161	6034.4	5441.8	1967.6
Hexanoic acid	2229.1	1909.9	8400	2923.3	2335.7	1105.7
Benzyl alcohol	1663.1	1149.0	18519	4884.1	4782.5	-17.9
Oaklactone	-1439.2	-1668.4	-15521	-5131.1	-3754.1	537.3
Diethyl 2-hydroxy-3- methylsuccinate	-43896.3	-45029.4	-229274	-88589.1	-70965.7	-27789.3
γ-Carboethoxy-γ- butyrolactone	32715.0	34554.9	159667	60648.2	46679.4	19006.4
Ethyl hydrogen succinate	44.0	32.5	195	312.3	159.4	132.4
Intercept	-1130.0	-1141.7	-14982	-2345.2	-1666.9	-830.1

7 ^ap: A priori probability.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

10 Figure 1 Climatic zones of Maule region. Locations studied.

11

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16086

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

12

Figure 2 Mean concentrations of volatile compounds in the optimization of the extraction
conditions: ■Alcohols; ■Lactones; ■Aldehydes (Left axis). ■Esters; ■Acids (right axis).
Concentration expressed in µg/L, except alcohols and esters in mg/L. The bars of the same
chemical family with different letters show significant differences (p < 0.05).

17

20 Figure 3 TIC of a monovarietal Carignan wine obtained by SPME–GC/MS.

21

- Figure 4 Volatile compounds in the different locations and in the different harvests studied. The
- bars of the same year with different letters show significant differences (p < 0.05).

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Figure 5 Principal component analysis (PCA). Plot of the samples in the plane defined by the
first two principal components (PC). Abbreviations: Cal: Caliboro; Mel: Melozal; Cau:
Cauquenes; Lon: Loncomilla; Hue: Huerta of Maule; Sau: Sauzal.

30

Figure 6 Linear discriminant analysis (LDA). Scatterplot of the samples on the plane defined by
 the discriminant functions.