Ross Dickins

Ross Dickins
Monash University (Australia) · Department of Clinical Haematology and the Australian Centre for Blood Diseases

PhD

About

66
Publications
12,292
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,174
Citations
Introduction
Ross Dickins works at the Australian Centre for Blood Diseases, Monash University (Australia). Ross does research in Genetics, Molecular Biology and Cell Biology.
Additional affiliations
June 2008 - April 2015
The Walter and Eliza Hall Institute of Medical Research
Position
  • Laboratory Head
January 2003 - April 2008
Cold Spring Harbor Laboratory
Position
  • PostDoc Position

Publications

Publications (66)
Article
Full-text available
Acute myeloid leukemia (AML) is a malignancy of immature progenitor cells. AML differentiation therapies trigger leukemia maturation and can induce remission, but relapse is prevalent and its cellular origin is unclear. Here we describe high resolution analysis of differentiation therapy response and relapse in a mouse AML model. Triggering leukemi...
Article
Full-text available
The majority of cases of T-cell acute lymphoblastic leukemia (T-ALL) contain chromosomal abnormalities that drive overexpression of oncogenic transcription factors. However, whether these initiating oncogenes are required for leukemia maintenance is poorly understood. To address this, we developed a tetracycline-regulated mouse model of T-ALL drive...
Article
Full-text available
Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogen...
Article
Modulators of epithelial to mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human...
Article
Tumors are composed of phenotypically heterogeneous cancer cells that often resemble various differentiation states of their lineage of origin. Within this hierarchy, it is thought that an immature subpopulation of tumor-propagating cancer stem cells (CSCs) differentiates into non-tumorigenic progeny, providing a rationale for therapeutic strategie...
Article
LMO2 is an oncogenic transcription factor that is frequently overexpressed due to chromosomal abnormalities in T-cell acute lymphoblastic leukemia (T-ALL). In transgenic mouse models, LMO2 overexpression causes thymocyte self-renewal resulting in T-cell leukemia with long latency. However, the requirement for LMO2 for leukemia maintenance is poorly...
Article
Acute myeloid leukaemia (AML) is characterized by the accumulation of transformed immature myeloid blasts. While most AML patients treated with standard therapy have poor outcomes, in the APL disease subtype retinoic acid induces leukaemia maturation and can be curative in combination with arsenic trioxide. Recently approved mutant IDH1/2 inhibitor...
Preprint
Full-text available
Antigen-specific CD8+ T cell differentiation in response to infection is associated with specific changes in the chromatin landscape resulting in acquisition of the lineage-specific effector functions required for pathogen clearance. Lysine (K)-specific demethylase 6B (KDM6b) is a histone demethylase that specifically recognizes and removes methyl...
Article
Dendritic cells (DCs) are can be broadly divided into conventional (cDC) and plasmacytoid (pDC) subsets. Despite the importance of this lineage diversity, its genetic basis is not fully understood. We found that conditional ablation of the Ets-family transcription factor PU.1 in DC-restricted progenitors led to increased pDC production at the expen...
Article
Background: IGLL1 and VPREB1 encode for the l5 and VpreB components, respectively, of the surrogate light chain (SLC) of the pre-B cell receptor (pre-BCR). During early B-cell development, immunoglobulin (Ig) heavy chains pairs with SLCs to form the pre-BCR, a central signaling unit that drives proliferation and survival. Accordingly, germline muta...
Article
Full-text available
In Fig. 3c of this Letter, the the effects of CRISPR-Cas9-mediated deletion of NR3C1, TXNIP and CNR2 in patient-derived B-lineage leukaemia cells were shown. For curves depicting NR3C1 (left graph), data s for TXNIP (middle graph) were inadvertently plotted. This figure has been corrected online, and the original Fig. 3c is shown as Supplementary I...
Article
Full-text available
Loss-of-function mutations in TET2 occur frequently in patients with clonal hematopoiesis, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML) and are associated with a DNA hypermethylation phenotype. To determine the role of TET2 deficiency in leukemia stem cell maintenance, we generated a reversible transgenic RNAi mouse to model res...
Article
Glucocorticoids (GCs) are central to all major therapy regimens for pre-B cell-derived acute lymphoblastic leukemia (ALL), but have no activity in myeloid leukemia. Such divergent responses represent an empirically established clinical standard; however, neither the mechanism by which GCs induce cell death nor the biological basis for the distinct...
Article
Full-text available
Genetic alterations disrupting the transcription factor IKZF1 (encoding IKAROS) are associated with poor outcome in B lineage acute lymphoblastic leukemia (B-ALL) and occur in >70% of the high-risk BCR-ABL1 ⁺ (Ph ⁺ ) and Ph-like disease subtypes. To examine IKAROS function in this context, we have developed novel mouse models allowing reversible RN...
Article
Full-text available
The Eμ-Myc mouse is an extensively used model of MYC driven malignancy; however to date there has only been partial characterization of MYC co-operative mutations leading to spontaneous lymphomagenesis. Here we sequence spontaneously arising Eμ-Myc lymphomas to define transgene architecture, somatic mutations, and structural alterations. We identif...
Article
B-lymphoid transcription factors (e.g. PAX5, IKZF1) are critical for early B-cell development1–2, yet genetic lesions occur in >80% of cases of B-cell acute lymphoblastic leukemia (ALL)3–4. The significance of these lesions in ALL remained unclear. Combining ChIP-seq and RNA-seq studies, we identified a novel B-lymphoid program for transcriptional...
Article
Signal transducer and activator of transcription 3 (Stat3) is a transcription factor that has many essential roles during inflammation, development and cancer. Stat3 is therefore an attractive therapeutic target in many diseases. While current Stat3 knockout mouse models led to a better understanding of the role of Stat3, the irreversible nature of...
Conference Paper
Background and Hypothesis: B-cell identity is determined by a set of B-cell transcription factors including PAX5, IKZF1 and EBF1. However, B-lineage leukemia clones often carry secondary genetic lesions that result in reduced activity or inactivation of these transcription factors. Studying patient samples from clinical trials for B-lineage childho...
Article
Background: Acute myeloid leukemia (AML) is an aggressive malignancy characterized by clonal expansion of transformed myeloid precursors that fail to differentiate into mature cells. Since myeloid lineage maturation curbs self-renewal and is considered irreversible, engaging this process in AML is an attractive therapeutic strategy. Results: Normal...
Article
Mutation or altered expression of key transcription factors resulting in aberrant myeloid differentiation is a critical step in the pathogenesis of acute myeloid leukemia (AML). The ETS-domain hematopoietic transcription factor PU.1 (SPI1) is an essential regulator of myeloid differentiation. While genetic mutation of PU.1 is rare, PU.1 is down-reg...
Article
Full-text available
Anti-platelet drugs are the mainstay of pharmacotherapy for heart attack and stroke prevention, yet improvements are continually sought. Thrombin is the most potent activator of platelets and targeting platelet thrombin receptors (protease-activated receptors; PARs) is an emerging anti-thrombotic approach. Humans express two PARs on their platelets...
Article
E proteins and their antagonists, the Id proteins, are transcriptional regulators important for normal hematopoiesis. We found that Id2 acts as a key regulator of leukemia stem cell (LSC) potential in MLL-rearranged acute myeloid leukemia (AML). Low endogenous Id2 expression is associated with LSC enrichment while Id2 overexpression impairs MLL-AF9...
Article
Full-text available
The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly i...
Article
Oncogenic lesions in hematopoietic progenitor cells give rise to B-cell or myeloid malignancies. While often transformed by the same oncogenes, B-cell and myeloid leukemias markedly differ in biological and clinical characteristics. Our metabolic analyses revealed that B-cell-unlike myeloid-leukemia cells are massively restricted in their glycolyti...
Article
Alterations of IKZF1, encoding the lymphoid transcription factor IKAROS, are a hallmark of high-risk acute lymphoblastic leukemia (ALL), however the role of IKZF1 alterations in ALL pathogenesis is poorly understood. Here, we show that in mouse models of BCR-ABL1 leukemia, Ikzf1 and Arf alterations synergistically promote the development of an aggr...
Article
Full-text available
The molecular regulators that orchestrate stem cell renewal, proliferation and differentiation along the mammary epithelial hierarchy remain poorly understood. Here we have performed a large-scale pooled RNAi screen in primary mouse mammary stem cell (MaSC)-enriched basal cells using 1295 shRNAs against genes principally involved in transcriptional...
Article
Full-text available
PI3KC2α is a broadly expressed lipid kinase with critical functions during embryonic development but poorly defined roles in adult physiology. Here we utilize multiple mouse genetic models to uncover a role for PI3KC2α in regulating the internal membrane reserve structure of megakaryocytes (demarcation membrane system) and platelets (open canalicul...
Article
Full-text available
Brought to you by the editorial team of Cell Death and Differentiation, Cell Death and Disease is a peer-reviewed author-pays online journal in the field of translational cell death. It seeks to promote diverse and integrated areas of Experimental and Internal Medicine with its specialties, including Cancer, Immunity and Neuroscience.
Article
Activating NOTCH1 mutations occur in approximately 60% of human T lineage acute lymphoblastic leukemias (T-ALLs), and mutations disrupting the transcription factor IKZF1 (IKAROS) occur in 5% of cases. To investigate the regulatory interplay between these driver genes we have used a novel transgenic RNAi mouse model to produce primary T-ALLs driven...
Article
Background: Loss-of-function mutations in the transcription factor IKZF1 (IKAROS) correlate with poor prognosis in B-progenitor acute lymphoblastic leukemia (B-ALL), and are particularly prevalent in the high-risk BCR-ABL1+ and BCR-ABL1-like disease subtypes. While recent studies using mouse models of Ikaros-deficient B-ALL have uncovered Ikaros-re...
Article
Full-text available
Pooled library sequencing screens that perturb gene function in a high-throughput manner are becoming increasingly popular in functional genomics research. Irrespective of the mechanism by which loss of function is achieved, via either RNA interference using short hairpin RNAs (shRNAs) or genetic mutation using single guide RNAs (sgRNAs) with the C...
Article
Full-text available
Evasion of cell death is fundamental to the development of cancer and its metastasis. The role of the BCL-2-mediated (intrinsic) apoptotic program in these processes remains poorly understood. Here we have investigated the relevance of the pro-apoptotic protein BIM to breast cancer progression using the MMTV-Polyoma middle-T (PyMT) transgenic model...
Article
Full-text available
Osteosarcoma (OS) is the most common cancer of bone. Parathyroid hormone (PTH) regulates calcium homeostasis and bone development, while the paracrine/autocrine PTH-related protein (PTHrP) has central roles in endochondral bone formation and bone remodeling. Using a murine OS model, we found that OS cells express PTHrP and the common PTH/PTHrP rece...
Article
Full-text available
Loss-of-function mutations in hematopoietic transcription factors including PAX5 occur in most cases of B-progenitor acute lymphoblastic leukemia (B-ALL), a disease characterized by the accumulation of undifferentiated lymphoblasts. Although PAX5 mutation is a critical driver of B-ALL development in mice and humans, it remains unclear how its loss...
Article
Recurring deletions of chromosome 7 and 7q [-7/del(7q)] occur in myelodysplastic syndromes and acute myeloid leukemia (AML) and are associated with poor prognosis. However, the identity of functionally relevant tumor suppressors on 7q remains unclear. Using RNAi and CRISPR/Cas9 approaches, we show that an ∼50% reduction in gene dosage of the mixed...
Article
Full-text available
The transcription factor Ikaros is an essential regulator of lymphopoiesis. Here we studied its B cell-specific function by conditional inactivation of the gene encoding Ikaros (Ikzf1) in pro-B cells. B cell development was arrested at an aberrant 'pro-B cell' stage characterized by increased cell adhesion and loss of signaling via the pre-B cell s...
Article
Full-text available
To design rational therapies for JAK2-driven hematological malignancies, we functionally dissected the key survival pathways downstream of hyperactive JAK2. In tumors driven by mutant JAK2, Stat1, Stat3, Stat5, and the Pi3k and Mek/Erk pathways were constitutively active, and gene expression profiling of TEL-JAK2 T-ALL cells revealed the upregulati...
Article
Full-text available
Histone deacetylase inhibitors (HDACi) are anti-cancer agents that induce hyperacetylation of histones, resulting in chromatin remodelling and transcriptional changes. In addition, non-histone proteins such as the chaperone protein Hsp90 are functionally regulated through hyperacetylation mediated by HDACi. Histone acetylation is thought to be prim...
Patent
Full-text available
The invention relates to recombinant vectors for inducible and/or tissue specific expression of double-stranded RNA molecules that interfere with the expression of a target gene. In certain embodiments, the invention relates to the use of Tet (tetracycline)-responsive RNA Polymerase II (Pol II) promoters (e.g., TetON or TetOFF) to direct inducible...
Article
Osteosarcoma is the most common primary cancer of bone and one that predominantly affects children and adolescents. Osteoblastic osteosarcoma represents the major subtype of this tumor, with approximately equal representation of fibroblastic and chondroblastic subtypes. We and others have previously described murine models of osteosarcoma based on...
Article
Full-text available
The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole-genome and exome sequencing of 40 cases, identified two subtypes that differ in the severity of aneuploidy, transcriptional profiles and submi...
Article
Full-text available
The tetracycline (tet)-regulated expression system allows for the inducible overexpression of protein-coding genes, or inducible gene knockdown based on expression of short hairpin RNAs (shRNAs). The system is widely used in mice, however it requires robust expression of a tet transactivator protein (tTA or rtTA) in the cell type of interest. Here...
Article
855 The cAMP signaling pathway has emerged as a key regulator of hematopoietic cell proliferation, differentiation, and apoptosis. Signal specificity is achieved through local activation of signaling enzymes that are anchored to subcellular organelles and membranes. In particular, A-kinase anchoring proteins (AKAPs) coordinate and control cAMP resp...
Article
2432 Introduction Acute myeloid leukemia (AML) is a genetically and morphologically heterogeneous disease characterized by the accumulation of immature myeloid lineage cells in the bone marrow and blood. It results from genetic alterations that cause increased self-renewal of myeloid progenitors, accompanied by a block in their normal differentiat...
Article
Full-text available
RNA interference (RNAi) is an extremely effective tool for studying gene function in almost all metazoan and eukaryotic model systems. RNAi in mice, through the expression of short hairpin RNAs (shRNAs), offers something not easily achieved with traditional genetic approaches-inducible and reversible gene silencing. However, technical variability a...
Article
RNA interference is a powerful tool for studying gene function, however, the reproducible generation of RNAi transgenic mice remains a significant limitation. By combining optimized fluorescence-coupled miR30-based shRNAs with high efficiency ES cell targeting, we developed a fast, scalable pipeline for the production of shRNA transgenic mice. Usin...
Article
Full-text available
Cystatin C (CstC) is a cysteine protease inhibitor of major clinical importance. Low concentration of serum CstC is linked to atherosclerosis. CstC can prevent formation of amyloid β associated with Alzheimer's disease and can itself form toxic aggregates. CstC regulates NO secretion by macrophages and is a TGF-β antagonist. Finally, the serum conc...
Article
Short hairpin RNAs (shRNAs) provide powerful experimental tools by enabling stable and regulated gene silencing through programming of endogenous microRNA pathways. Since requirements for efficient shRNA biogenesis and target suppression are largely unknown, many predicted shRNAs fail to efficiently suppress their target. To overcome this barrier,...
Article
RNA interference (RNAi) is a powerful tool for suppressing gene function. The tetracycline (tet)-regulated expression system has recently been adapted to allow inducible RNAi in mice, however its efficiency in a particular cell type in vivo depends on a transgenic tet transactivator expression pattern and is often highly variable. We aimed to estab...
Article
The RB protein family (RB, p107, and p130) has overlapping and compensatory functions in cell-cycle control. However, cancer-associated mutations are almost exclusively found in RB, implying that RB has a nonredundant role in tumor suppression. We demonstrate that RB preferentially associates with E2F target genes involved in DNA replication and is...
Article
Cellular senescence acts as a potent mechanism of tumor suppression; however, its functional contribution to noncancer pathologies has not been examined. Here we show that senescent cells accumulate in murine livers treated to produce fibrosis, a precursor pathology to cirrhosis. The senescent cells are derived primarily from activated hepatic stel...
Article
Full-text available
Genetically engineered mice provide powerful tools for understanding mammalian gene function. These models traditionally rely on gene overexpression from transgenes or targeted, irreversible gene mutation. By adapting the tetracycline (tet)-responsive system previously used for gene overexpression, we have developed a simple transgenic system to re...
Article
Full-text available
Inactivation of the p53 pathway represents the most common molecular defect of human cancer. But in the setting of melanoma, a highly aggressive and invariably fatal malignancy in its advanced disseminated form, mutation/deletion of p53 is relatively rare, whereas its positive regulator ARF is often lost. Here, we show that genetic deficiency in Ar...
Article
Full-text available
Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncoge...
Article
Full-text available
Chemoresistance remains a major clinical obstacle to curative chemotherapy of acute myeloid leukemia (AML), but the molecular mechanisms underlying resistance to chemotherapeutic agents used in AML are largely unknown. We have attempted to investigate genetic mechanisms causing resistance to Ara-C [1-beta-D-arabinofuranosyl-cytosine (cytarabine)],...
Article
Full-text available
Chromosomal translocations involving the immunoglobulin switch region are a hallmark feature of B-cell malignancies. However, little is known about the molecular mechanism by which primary B cells acquire or guard against these lesions. Here we find that translocations between c-myc and the IgH locus (Igh) are induced in primary B cells within hour...
Article
Full-text available
RNA interference is a powerful method for suppressing gene expression in mammalian cells. Stable knock-down can be achieved by continuous expression of synthetic short hairpin RNAs, typically from RNA polymerase III promoters. But primary microRNA transcripts, which are endogenous triggers of RNA interference, are normally synthesized by RNA polyme...