About
39
Publications
15,384
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
917
Citations
Citations since 2017
Publications
Publications (39)
Metabarcoding of environmental DNA (eDNA) is a powerful tool for describing biodiversity, such as finding keystone species or detecting invasive species in environmental samples. Continuous improvements in the method and the advances in sequencing platforms over the last decade have meant this approach is now widely used in biodiversity sciences an...
Accurate characterisation of ecological communities with respect to their biodiversity and food-web structure is essential for conservation. However, combined empirical study of biodiversity and multi-trophic food webs at a large spatial and temporal resolution has been prohibited by the lack of appropriate access to such data from natural systems....
Regular monitoring of ecosystems can be used for the early detection of invasive alien species (IAS), and provide information for management and preventing them from becoming established or advancing into new areas. Current methods of monitoring freshwater systems for IAS can be both financially costly and time‐consuming, with routine monitoring of...
The ever-increasing threats to riverine biodiversity call for the development of novel approaches for a complete assessment of biodiversity across highly resolved spatial, temporal and taxonomic scales. Past studies on riverine biodiversity patterns were often restricted to spatially scattered data, focused on specific taxonomic groups, and disrega...
DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho‐taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater s...
Accurate characterisation of ecological communities with respect to their biodiversity and food-web structure is essential for conservation. However, combined empirical study of biodiversity and multi-trophic food-webs at a large spatial and temporal resolution has been prohibited by the lack of appropriate access to such data from natural systems....
This publication is an output from EU COST Action DNAqua-Net (CA 15219 - Developing new genetic tools for bioassessment of aquatic ecosystems in Europe) and would not have been possible without the opportunities for international collaboration provided by the network, supported by COST (European Cooperation in Science and Technology). Therefore, ou...
Anthropogenic activities are changing the state of ecosystems worldwide, affecting community composition and often resulting in loss of biodiversity. Rivers are among the most impacted ecosystems. Recording their current state with regular biomonitoring is important to assess the future trajectory of biodiversity. Traditional monitoring methods for...
Intermittent rivers and ephemeral streams (IRES) – waterways in which flow ceases periodically or that dry completely – are found worldwide, and their frequency and extent are expected to increase in the future in response to global climate change and growing anthropogenic demand for fresh water. Repeated wet–dry cycles generate highly dynamic sett...
Assessment of the diversity and composition of biological communities is central to studies in ecology as well as for ecological monitoring. Historically, individual taxonomic groups have been assessed separately, while for an understanding of the state and change of biodiversity under ongoing global change an integrated assessment would be necessa...
Large tropical and subtropical rivers are among the most biodiverse ecosystems worldwide, but also suffer from high anthropogenic pressures. These rivers are hitherto subject to little or no routine biomonitoring, which would be essential for identification of conservation areas of high importance. Here, we use a single environmental DNA multi-site...
The use of environmental DNA (eDNA) analysis for species monitoring requires rigorous validation—from field sampling to the analysis of PCR‐based results—for meaningful application and interpretation. Assays targeting eDNA released by individual species are typically validated with no predefined criteria to answer specific research questions in one...
Environmental DNA (eDNA) analysis utilises trace DNA released by organisms into their environment for species detection and is revolutionising non ‐ invasive species and biodiversity monitoring. However, this technology requires rigorous validation along the whole workflow – from field sampling to statistical analysis – to ensure appropriate and me...
Anthropogenic activities are changing the state of ecosystems worldwide, affecting community composition and often resulting in loss of biodiversity. Riverine ecosystems are among the most impacted ecosystems. Recording their current state with regular biomonitoring is important to assess the future trajectory of biodiversity. However, traditional...
Tropical and subtropical freshwater habitats are among the most biodiverse ecosystems worldwide, containing a characteristic fauna and high numbers of endemic species. However, exploitation of organisms, global climate change, pollution and the introduction of invasive species are severely threatening this diversity. Implementation of appropriate c...
Fishes stocked for recreation and angling can damage freshwater habitats and negatively impact biodiversity. The pond‐associated crucian carp (Carassius carassius) is rare across Europe and stocked for conservation management in England, but impacts on pond biota are understudied. Freshwater invertebrates contribute substantially to aquatic biodive...
• The early detection of invasive non‐native species (INNS) is important for informing management actions. Established monitoring methods require the collection or observation of specimens, which is unlikely at the beginning of an invasion when densities are likely to be low. Environmental DNA (eDNA) analysis is a highly promising technique for the...
The ABCD conference format (All continents, Balanced gender, low Carbon transport, Diverse backgrounds) mixes live-streamed and pre-recorded talks with in-person ones to reflect a diverse range of viewpoints and reduce the environmental footprint of meetings while also lowering barriers to inclusiveness.
Environmental DNA (eDNA) analysis utilises trace DNA released by organisms into their environment for species detection and is revolutionising non-invasive species monitoring. The use of this technology requires rigorous validation - from field sampling to interpretation of PCR-based results - for meaningful application and interpretation. Assays t...
The ABCD conference format (All continents, Balanced gender, low Carbon transport, Diverse backgrounds) mixes live-streamed and pre-recorded talks with in-person ones to reflect a diverse range of viewpoints and reduce the environmental footprint of meetings while also lowering barriers to inclusiveness.
Fishes stocked for recreation and angling can damage freshwater habitats and negatively impact biodiversity. The pond-associated crucian carp ( Carassius carassius ) is rare across its native European range and has been stocked for conservation management in England despite plausible non-native status. However, its impacts on English pond biota hav...
Early detection is paramount for attempts to remove invasive non-native species (INNS). Traditional methods rely on physical sampling and morphological identification, which can be problematic when species are in low densities and/or are cryptic. The use of environmental DNA (eDNA) as a monitoring tool in freshwater systems is becoming increasingly...
Uncovering biodiversity as an inherent feature of ecosystems and understanding its effects on ecosystem processes is one of the most central goals of ecology. Studying organisms’ occurrence and biodiversity patterns in natural ecosystems has spurred the discovery of foundational ecological rules, such as the species–area relationship, and is of gen...
The early detection of invasive non-native species (INNS) is important to allow for informed management actions. Established monitoring methods require the collection or observation of specimens, which is unlikely at the beginning of an invasion when densities are likely to be low. Environmental DNA (eDNA) analysis is a highly promising technique f...
Over the last decade, steady advancements have been made in the use of DNA-based methods for detection of species in a wide range of ecosystems. This progress has culminated in molecular monitoring methods being employed for the detection of several species for enforceable management purposes of endangered, invasive, and illegally harvested species...
Environmental DNA offers great potential as a biodiversity monitoring tool. Previous work has demonstrated that eDNA metabarcoding provides reliable information for lake fish monitoring, but important questions remain about temporal and spatial repeatability, which is critical for understanding the ecology of eDNA and developing effective sampling...
The crucian carp (Carassius carassius) is one of few fish species associated with small ponds in the UK. These populations contain genetic diversity not found in Europe and are important to conservation efforts for the species which has declined across its range in Europe. Detection and monitoring of extant crucian carp populations are crucial for...
An update and overview of the discovery or Gammarus fossarum within the UK. FBA News No. 74 pp. 11-12.
Early detection is paramount for attempts to remove invasive non-native species (INNS). Traditional methods rely on physical sampling and morphological identification, which can be problematic when species are in low densities and/or are cryptic. The use of environmental DNA (eDNA) as a monitoring tool in freshwater systems is becoming increasingly...
Early detection is paramount for attempts to remove invasive non-native species (INNS). Traditional methods rely on physical sampling and morphological identification, which can be problematic when species are in low densities and/or are cryptic. The use of environmental DNA (eDNA) as a monitoring tool in freshwater systems is becoming increasingly...
Successful removal and eradication of invasive non-native species (INNS) relies on early detection, ideally with pathwayscreening, to prevent anyspread oroutbreak in to a new region. The collection of DNA from environmental samples, known as environmental DNA or eDNA, is a revolutionary techniqueallowing thescreeningof target specieswithout their p...
Environmental DNA offers great potential as a biodiversity monitoring tool. Previous work has demonstrated that eDNA metabarcoding provides reliable information for lake fish monitoring, but important questions remain about temporal and spatial repeatability, which is critical for understanding the ecology of eDNA and developing effective sampling...
The crucian carp ( Carassius carassius ) is one of few fish species associated with small ponds in the UK. These populations contain genetic diversity not found in Europe and are important to conservation efforts for the species, which has declined across its range. Detection and monitoring of extant crucian carp populations are crucial for conserv...
We report the discovery of a non-native gammarid, Gammarus fossarum (Koch, 1836) (Crustacea, Amphipoda), in UK rivers. Gammarus fossarum is a common freshwater gammarid in many parts of mainland Europe, but was previously considered absent from the UK. Gammarus fossarum was detected in a number of UK rivers following DNA metabarcoding of a mini-bar...
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this "environmental DNA" (eDNA) is revolutionising biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects...