Roseann Lynch

Roseann Lynch
Regent University · Department of Psychology

About

186
Publications
240,193
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
49,349
Citations
Citations since 2016
132 Research Items
48410 Citations
201620172018201920202021202202,0004,0006,0008,000
201620172018201920202021202202,0004,0006,0008,000
201620172018201920202021202202,0004,0006,0008,000
201620172018201920202021202202,0004,0006,0008,000

Publications

Publications (186)
Preprint
Full-text available
We report the discovery of two Black Widow millisecond pulsars in the globular cluster M28 with the MeerKAT telescope. PSR J1824$-$2452M (M28M) is a 4.78-ms pulsar in a $5.82\,$hour orbit and PSR J1824$-$2452N (M28N) is a 3.35-ms pulsar in a $4.76\,$hour orbit. Both pulsars have dispersion measures near $119.30\,$pc$\,$cm$^{-3}$ and have low mass c...
Preprint
The Green Bank North Celestial Cap (GBNCC) survey is a 350-MHz all-sky survey for pulsars and fast radio transients using the Robert C. Byrd Green Bank Telescope. To date, the survey has discovered over 190 pulsars, including 33 millisecond pulsars (MSPs) and 24 rotating radio transients(RRATs). Several exotic pulsars have been discovered in the su...
Article
Full-text available
Detections from the repeating fast radio burst FRB 121102 are clustered in time, noticeable even in the earliest repeat bursts. Recently, it was argued that the source activity is periodic, suggesting that the clustering reflected a not-yet-identified periodicity. We performed an extensive multiwavelength campaign with the Effelsberg telescope, the...
Preprint
Full-text available
Since the discovery of repetition it has been clear that the detections of fast radio burst (FRB) 121102 are clustered. Recently, it was argued that it is periodic, raising the question of whether the clustering reflected a not-yet-defined periodicity. We performed an extensive multi-wavelength campaign with Effelsberg, Green Bank telescope and the...
Preprint
Full-text available
The Green Bank North Celestial Cap (GBNCC) pulsar survey will cover the entire northern sky ($\delta > -40\degr$) at 350\,MHz, and is one of the most uniform and sensitive all-sky pulsar surveys to date. We have created a pipeline to re-analyze GBNCC survey data to take a 350\,MHz census of all pulsars detected by the survey, regardless of their di...
Preprint
In this paper, we present the results of timing observations of PSRs J1949+3106 and J1950+2414, two binary millisecond pulsars discovered in data from the Arecibo ALFA pulsar survey (PALFA). The timing parameters include precise measurements of the proper motions of both pulsars, which show that PSR J1949+3106 has a transversal motion very similar...
Article
The Pulsar Search Collaboratory (PSC) engages high school students and teachers in analyzing real data from the Robert C. Byrd Green Bank Telescope for the purpose of discovering exotic stars called pulsars. These cosmic clocks can be used as a galactic-scale detector of gravitational waves, ripples in spacetime that have recently been directly det...
Article
Full-text available
We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravi...
Preprint
We present a new statistical test that examines the consistency of the tails of two empirical distributions at multiple thresholds. Such distributions are often encountered in counting experiments, in physics and elsewhere, where the significance of populations of events is evaluated. This multi-threshold approach has the effect of "stacking" multi...
Preprint
The Pulsar Search Collaboratory (PSC) engages high school students and teachers in analyzing real data from the Robert C. Byrd Green Bank Telescope for the purpose of discovering exotic stars called pulsars. These cosmic clocks can be used as a galactic-scale detector of gravitational waves, ripples in space-time that have recently been directly de...
Article
Full-text available
The Pulsar Arecibo L-Band Feed Array (PALFA) survey, the most sensitive blind search for radio pulsars yet conducted, is ongoing at the Arecibo Observatory in Puerto Rico. The vast majority of the 180 pulsars discovered by PALFA have spin periods shorter than 2 s. Pulsar surveys may miss long-period radio pulsars owing to the summing of a finite nu...
Preprint
Full-text available
On August 17, 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these st...
Preprint
Full-text available
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work we improve initial estimates of the bina...
Preprint
Full-text available
The Pulsar Arecibo L-Band Feed Array (PALFA) survey, the most sensitive blind search for radio pulsars yet conducted, is ongoing at the Arecibo Observatory in Puerto Rico. The vast majority of the 180 pulsars discovered by PALFA have spin periods shorter than 2 seconds. Pulsar surveys may miss long-period radio pulsars due to the summing of a finit...
Article
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar...
Article
We report on a new all-sky search for periodic gravitational waves in the frequency band 475–2000 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8 Hz/s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO’s fir...
Article
Full-text available
Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitationa...
Article
The recent detection of the binary-neutron-star merger associated with GW170817 by both LIGO- Virgo and the network of electromagnetic-spectrum observing facilities around the world has made the multi-messenger detection of gravitational-wave events a reality. These joint detections allow us to probe gravitational-wave sources in greater detail and...
Article
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-w...
Article
Full-text available
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar...
Article
Full-text available
We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's fi...
Article
Full-text available
The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce...
Article
Full-text available
We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946$+$2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946$+$2052 is a 17-ms pulsar in a 1.88-hour, eccentric ($e \, =\, 0.06$) orbit with a $\gtrsim 1.2 \, M_\odot$ companion. We have used the Jansky Very Large Array to localize PSR J194...
Article
Full-text available
We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarization...
Article
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can...
Article
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects a...
Article
Full-text available
Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus off...
Article
Full-text available
On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ~40 Mpc, consistent with the gravit...
Article
Full-text available
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray...
Article
Full-text available
We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between September 2015 and January 2016, with a total observational time of 49 days. The search targets gravitational wave transients of \unit[10 -- 500]{s} duration in a frequency band o...
Article
Full-text available
On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credi...
Article
Full-text available
On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-w...
Article
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray...
Article
Full-text available
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the...
Article
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of th...
Article
Full-text available
The detection of GW170817 (ref. 1) heralds the age of gravitational-wave multi-messenger astronomy, with the observations of gravitational-wave and electromagnetic emission from the same transient source. On 17 August 2017 the network of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors observed GW170817, a str...
Article
Full-text available
The source of the gravitational-wave signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two week long electromagnetic counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter exam...
Article
Full-text available
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of with respect to the merger t...
Article
Full-text available
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of th...
Article
Full-text available
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the...
Article
Full-text available
The source of the gravitational-wave signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two week long electromagnetic counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter exam...
Article
Full-text available
On August 17, 2017 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just $\sim$40 Mpc, consistent with the g...
Article
Full-text available
The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The...
Article
Full-text available
On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise...
Article
Full-text available
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can...
Article
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of th...
Article
Full-text available
On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal...
Article
Full-text available
We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations...
Article
Full-text available
We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can b...
Article
Full-text available
We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can b...
Article
Full-text available
We report on an all-sky search for periodic gravitational waves in the frequency band 20–475 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO’s first observ...
Article
On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise...
Article
Full-text available
In 2012, five high school students involved in the Pulsar Search Collaboratory discovered the millisecond pulsar PSR J1400$-$1431 and initial timing parameters were published in Rosen et al. (2013) a year later. Since then, we have obtained a phase-connected timing solution spanning five years, resolving a significant position discrepancy and measu...
Article
Full-text available
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by Ice...
Article
Full-text available
We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power...
Article
Full-text available
We report on an all-sky search for periodic gravitational waves in the frequency band 20–475 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10[superscript -8] Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO’...
Article
Full-text available
We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can...
Article
Full-text available
We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noi...