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Abstract. This study presents a molecular phylogeny of Zieria Sm., a genus of shrubs and small trees, with 59 species in
Australia and one endemic to New Caledonia. The phylogeny is based on four cpDNA markers and 116 samples representing
all species of Zieria except one, and the monotypic outgroup Neobyrnesia suberosa. The New Caledonian species,
Z. chevalieri, was resolved as sister to a well supported clade of all Australian taxa. There was widespread incongruence
between the cpDNA tree and species-level taxonomy, with 14 species shown as polyphyletic or paraphyletic. These included
widespread species (e.g. Z. smithii and Z. arborescens, each falling in at least four well supported clades) and some with
narrow geographic ranges (e.g. Z. alata and Z. oreocena). No species represented by three or more samples was resolved as
monophyletic. We suggest that a combination of factors explains this incongruence, including regional cpDNA introgression
(chloroplast capture), incomplete lineage sorting and inappropriate taxonomic boundaries. The cpDNA phylogeny provides
useful insight into the evolution of Zieria but, because of its complexity, does not provide a clear basis for assessing
phylogenetic relationships and monophyly of taxa. Better understanding of relationships, taxon limits and evolutionary
processes in Zieria will require comparisons with nuclear DNA markers and critical assessment of morphological and genetic

variation in widespread species.
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Introduction

Zieria Sm. is a predominantly Australian genus of shrubs and
small trees, with 59 species and 18 subspecies in Australia and
one species endemic to New Caledonia (Fig. 1). In Australia,
Zieria occurs naturally only in the eastern states, extending as far
west as Kangaroo Island in South Australia, as far south as
Tasmania, and north to the tropical regions of Queensland
(Armstrong 2002; George ef al. 2013). The greatest diversity
of species occurs in New South Wales (34 species) and
Queensland (35 species), whereas in Victoria there are nine
species, three in Tasmania and a single species in South
Australia. The species occupy a range of habitats, including
rainforests and rainforest margins, sometimes at high altitudes,
vine thickets, wet and dry sclerophyll forest, eucalyptand Banksia
woodlands (including mallee), heathlands, rock outcrops on dry
inland slopes, and exposed coastal headlands.
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The genus is traditionally placed in the Australasian tribe
Boronieae (sensu Engler 1931), and is monophyletic on the basis
of morphological (Armstrong 1991) and molecular (Bayly et al.
2013) phylogenetic analyses of that group. It is distinguished
by a combination of morphological features including opposite
leaves, conspicuous and four-merous flowers, free petals,
four stamens, free filaments, deeply four-lobed disc and dry
dehiscent fruits (Smith 1798; Duretto 1999; Armstrong 2002;
George et al. 2013). It is most closely related to the monotypic
genus Neobyrnesia J.A.Armstr. endemic to Arnhem Land,
northern Australia (Armstrong and Powell 1980; Bayly et al.
2013); Neobyrnesia and Zieria are allopatric (Fig. 1).

Classification of Zieria has undergone extensive revision
in recent decades chiefly on the basis of morphology.
A comprehensive monograph was provided by Armstrong
(2002, based on his earlier PhD thesis, Armstrong 1991), who
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Fig.1. Map showing the distribution of Zieria and Neobyrnesia (outgroup) in Australiaand New Caledonia,

adapted from Armstrong (2002). Inset shows the flower of Z. chevalieri, Mount Kaala, New Caledonia.

recognised 42 species and 16 subspecies, with 28 taxa being
newly described. Duretto and Forster (2007) published a
subsequent revision of the Queensland taxa, in which 16 new
species and one new subspecies were described, one variety was
promoted to species rank, and one species previously treated as a
subspecies was reinstated. Duretto and Forster (2008) also
reviewed the classification of Z. odorifera®, a species endemic
to New South Wales, recognising four subspecies, with three
newly described. The most recent account of the genus is in Flora
of Australia (George et al. 2013).

Some species of Zieria are relatively widespread (e.g.
Z. arborescens, Z. aspalathoides, Z. cytisoides, Z. smithii),
however, the majority are narrow-range endemics. Several
taxa are currently known only from single localities, including
Z. actites, Z. adenophora, Z. arborescens subsp. decurrens,
Z. baeuerlenii, Z. boolbunda, Z. buxijugum, Z. cephalophila,
Z. chevalieri, Z. covenyi, Z. floydii, Z. formosa, Z. hydroscopica

and Z. parrisiae (Armstrong 2002; Duretto and Forster 2007;
George et al. 2013). Duretto and Forster (2007) discussed the
speciation patterns in Zieria, including how such narrow
endemics, often restricted to rocky areas on mountains, may
be related to more widespread species, often present in forests
or more mesic vegetation. Narrow endemics may represent
taxa differentiated in longstanding refugial habitats, or recent
derivatives of more widespread lineages that have locally
colonised new habitats (e.g. from forests to rock outcrops).
Of'the large number of narrowly endemic taxa in Zieria, some
are considered threatened under state and federal conservation
legislation. These include 13 listed as Endangered and eight
listed as Vulnerable under the national Environment Protection
and Biodiversity Conservation (EPBC) Act 1999, 13 under the
Queensland Nature Conservation (Wildlife) Regulation 2006, 17
under the New South Wales Threatened Species Conservation
Act 1995, one under Victoria’s Flora and Fauna Guarantee Act

A Authorities for Zieria species and infraspecific taxa included in the study are given in Appendix 1.
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1988, two under South Australia’s National Parks and Wildlife
Act 1972, and two under Tasmania’s Threatened Species
Protection Act 1995.

Some threatened species have been the subject of genetic
research, including Z. baeuerlenii (Sharma 2001), Z. granulata
(Sharma and Young 2001), Z. covenyi (J. A. Armstrong and
I. K. Sharma, unpubl. data, cited by Armstrong 2002) and
Z. prostrata (Hogbin and Crisp 2003). These studies assessed
the levels of genetic variation to provide data to underpin
conservation management, and variously reported moderate
variation to no variation (e.g. in the clonally reproducing
Z. covenyi). Most focussed on rare species in isolation and
did not consider their broader relationships with other taxa,
the exception being that of Hogbin and Crisp (2003), who
studied relationships between populations of Z. prostrata and
geographically close populations of Z. smithii.

The phylogeny of Zieria produced by Armstrong (2002)
was based on a dataset of 48 morphological and 62 chemical
characters. The phylogeny showed six major clades, defined by
combinations of characters rather than clear synapomorphies,
and relationships between and within the clades were poorly
resolved or supported. The results were regarded as ‘very
tentative’ by Armstrong, given the high levels of homoplasy,
with the consistency index for the analysis being low at 0.25.
Since publication of Armstrong’s (2002) phylogeny, taxonomic
revisions (Duretto and Forster 2007, 2008) have resulted in
narrower or significantly altered limits for some taxa (e.g.
Z. montana and Z. fraseri), and 22 newly recognised or
reinstated taxa are yet to be included in a phylogenetic
analysis. A new, molecular phylogenetic study that includes a
greater proportion of currently recognised taxa offers potential to
further test relationships and interpret morphological homoplasy
demonstrated by Armstrong (2002).

The aim of our current study was to produce a comprehensive
molecular phylogeny of Zieria in Australia and New Caledonia,
based on sequencing four regions of cpDNA. This was done to
provide better insight into evolution and classification of the
genus, including: the monophyly of taxa, patterns of speciation,
e.g. relationships of widespread and narrowly endemic taxa;
the distinctiveness of restricted taxa of conservation interest;
patterns of variation in widespread species; patterns of habitat
diversification; biogeographic history, especially the connection
between Australia and New Caledonia.

Materials and methods
Taxon sampling

Ingroup sampling included 116 accessions representing 59 (0f60)
Zieria species and 16 (of 18) subspecies. Zieria floydii
J.A.Armstr., Z. aspalathoides subsp. brachyphylla J.A.Armstr.
and Z. odorifera subsp. copelandii Duretto & P.I.Forst. were
the only taxa not sampled. Neobyrnesia suberosa was included
as the outgroup. Plant material was obtained from field
collections, cultivated collections of known provenance, and
herbarium specimens. Fresh samples for DNA extraction were
dried in silica gel. Details of sampling locations and voucher
specimens for all samples are given in Appendix 1. Identification
of taxa was straightforward using existing taxonomic concepts
(George et al. 2013), except for Z. arborescens, a variable,
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widespread species in which separation of the subspecies is
not as clear as identification keys suggest (Duretto and Forster
2007; George et al. 2013; R. A. Barrett, pers. obs.). We did not
identify accessions of Z. arborescens to subspecies, but we note
in figures and tables those accessions collected near type localities
for the two segregate subspecies (subsp. glabrifolia and subsp.
decurrens).

DNA isolation, polymerase chain reaction (PCR)
and sequencing

DNA was extracted from 20-25 mg of dried, ground leaf material
using a DNeasy Plant Mini Kit (QIAGEN, Melbourne, Vic.,
Australia) or ISOLATE Plant DNA Mini Kit (Bioline, Sydney,
NSW, Australia), following the manufacturers’ instructions, with
afinal elution volume of 100 pL. For some herbarium specimens,
a modified protocol was used, which included the addition of the
following extra reagents during the lysis stage: 8 UL of proteinase
K, 4 uL RNase A and 30 uL of B mercaptolethanol, and
incubation at 60°C for 1 h.

The following four cpDNA markers were used: the rp/32—trnLL
intergenic spacer, the #7rnL—F region (which included the #rnL
intron and the #rnL—trnF intergenic spacer), the #rnQ-5"rps16
intergenic spacer and the #7nS—G region (which included the #nG
intron and the #rnG—trnS intergenic spacer). The rpl32—trnL
region was amplified using the primers #nL"*% and rpI32-F
(Shaw et al. 2007). The trnL—F region was amplified using the
primers ¢ and fof Taberlet et al. (1991), and in some cases where
amplification was unsuccessful, the region was amplified in two
overlapping fragments using the following combinations of
internal primers (Taberlet et al. 1991): e paired with f; and d
paired with c. The #rnQ-5"rps16 region was amplified using the
primers #rnQ""Y? and rps16x1 (Shaw et al. 2007). The trnS—G
region was amplified using the primers of Shaw et al. (2005),
most commonly #nG"Y® and #nS““Y), but in a few cases it
was amplified in two overlapping fragments using the internal
primers 5'#rnG2G paired with #nG"Y® and 5'#-nG2S paired
with #rnSECY).

All polymerase chain reactions (PCRs) were performed in
a MyCycler Thermal Cycler System (Bio-Rad Laboratories,
Gladesville, NSW, Australia). All sets of PCRs included a
negative control to test for contamination, and, in most cases,
a positive control was included to test for reagent or protocol
errors. Reactions typically included 10 pmol of each primer,
5 mM of each dNTP, 1-2 uL of extracted DNA, 1.25 units
HotStar Tag DNA polymerase and its accompanying
10 x PCR buffer (QIAGEN), 0.5 uL Fermentas non-
acetylated BSA (20 mg mLfl), and 2 mM MgCl,. These were
made up to the 25 pL final volume with ultrapure water.

Thermo-cycling conditions varied according to the target
region. Cycling conditions for rp/32—trnL and trnS—-G were as
follows: template denaturing at 95°C for 15 min, followed by 30
cycles of 95°C for 1 min (denaturing), primer annealing at 50°C
for 1 min, 65°C extension for 4 min, and then a final 5-min
extension at 65°C. Cycling conditions for rnQ-5'rps16 were as
follows: 95°C for 15 min, 30 cycles of 95°C for 1 min, 50°C for
1 min with a 0.5°C temperature increase at each cycle, 65°C for
4 min, and then a final 5-min extension at 65°C. A ‘touchdown’
protocol was used to amplify ##rnL—F, including 95°C for 15 min,
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then six cycles 0f95°C for 30 s, primer annealing at 64°C for 30 s,
with a 2°C temperature decrease at each cycle, extension for
1 min at 72°C, then a further 30 cycles of 94°C for 30 s, 54°C for
30 s, 72°C for 1 min, and a final extension for 10 min at 72°C.

PCR products were purified using a QIAquick PCR
Purification Kit (QIAGEN, Melbourne, Vic., Australia),
PureLink Kit (Invitrogen, Melbourne, Vic., Australia), or
using ExoSAP-IT (Affymetrix, Santa Clara, CA, USA) or
ExoSTAR (GE Healthcare, Freiburg, Germany). PCR products
were quantified on agarose gels or using a NanoDrop 2000
UV-Vis spectrophotometer (Thermo-Scientific, Melbourne,
Vic., Australia) and directly sequenced using the ABI Prism
BigDye Terminator v3.1 Cycle Sequencing Ready Reaction
Kit (Applied Biosystems, Foster City, CA, USA). These
reactions used the original amplification primers and
sometimes the internal sequencing primers d and e (Taberlet
etal. 1991) for rnL—F, and 5'trnG2G and 5'trnG2S (Shaw et al.
2007) for trnS—G. Sequences were analysed on an ABI 3730x1
96-capillary automated DNA sequencer (Applied Biosystems)
at the Australian Genome Research Facility, Brisbane or
Melbourne.

Sequence editing and alignment

Contiguous sequences for each region were assembled and
edited using Sequencher v.4.8 (Gene Codes Corporation, Ann
Arbor, MI, USA), and aligned manually using Se-Al Sequence
Alignment Editor v. 2.0al1 (Rambaut 2002). Insertion—deletion
events (indels) were coded for parsimony analysis using a
method equivalent to the ‘simple coding’ of Simmons and
Ochoterena (2000), with a single character representing each
indel whether single- or multi-base. The full data matrix,
including indel characters, is deposited in TreeBase (http://
treebase.org/; accession number S17027).

Phylogenetic analyses

Combined cpDNA sequences were analysed using maximum
parsimony (MP) with PAUP* 4.0 B 10 (Swofford 2001) and
Bayesian inference (BI) with MrBayes v.3.1.2 (Ronquist and
Huelsenbeck 2003). MP analyses were performed using heuristic
tree searches, a CLOSEST addition sequence and tree bisection
and reconnection (TBR) branch swapping, all characters being
equally weighted and gaps treated as missing data. All other
settings were left on default.

When initial phylogenetic analysis yielded many thousands of
equally parsimonious trees, an expeditious search strategy was
employed. An initial heuristic search was commenced using the
above settings, and terminated when 50 000 trees were obtained,
then a strict consensus of equally parsimonious trees was
calculated. This consensus tree was loaded as a constraint in a
second analysis that searched only for trees that were as short as
or shorter than the shortest tree of the first analysis, but were
inconsistent with the constraint tree. This search used 1000
random addition sequences, each followed by TBR branch
swapping. Each replicate was aborted when 2000 trees with
lengths exceeding that of the first analysis were obtained.
When this strategy was used, if trees of equal length to that
of the first analysis were obtained (and inconsistent with the
consensus from the first analysis), a further consensus was
computed including the topology from the new analysis. The
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second step of the analysis was repeated until no more new
equally short but inconsistent trees were found. The aim of
this strategy was to produce a strict consensus tree that was
likely to represent the full set of equally most parsimonious trees.
Bootstrap support (Felsenstein 1985) was estimated using a full
heuristic search with 1000 bootstrap replicates and the search
settings as described above. A maximum of 2000 trees was saved
per replicate.

The models for BI analyses were GTRAR for 7p/32—trnL and
trnL-F, GTR+I for trnQ-rpsl6 and GTR+I+G for #rnS-G,
selected using the Akaike information criterion (AIC) as
implemented in MrModelltest 2.3 (Nylander 2004). Indels
were not separately coded for BI analyses because preliminary
analyses indicated that the level of resolution and topology in BI
trees was similar to that using MP. Also indels were generally
associated with branches ofhigh posterior probability, suggesting
that separate coding would add little in the way of extra support or
resolution. BI analyses used the default settings of MrBayes,
with parameters unlinked between partitions, and each included
two runs of four chains, each run for 3 000 000 generations.
Trees were sampled every 500 generations and a majority rule
consensus was computed, with trees from the first 300 000
generations discarded as burn-in. Tracer v.1.5 (Rambaut 2007)
was used to check that the burn-in period was adequate for
each analysis and that the runs had converged on a stationary
distribution. This was judged by comparing the distribution
likelihood values, and the standard deviation of split
frequencies, which were <0.01 at the end of the runs.

Results
Overview

Data from the combined chloroplast markers included a total of
4001 characters, of which 581 were variable and 230 were
parsimony informative, including 55 parsimony-informative
indel characters (statistics from the MP analysis are presented
inTable 1). The rpI32—trnL and trnS—G regions together provided
most of the parsimony-informative characters (74%).

The majority-rule consensus tree from the BI analysis was
similar to, but slightly better resolved than, the MP strict
consensus tree. The two measures of support, posterior
probability (PP) for BI and bootstrap support (BS) for MP,
were not always well correlated, with some high Bayesian PPs
occurring when the corresponding BS values were low. However,
there were no conflicting nodes between analyses, and only the
Bayesian consensus tree together with both PP and BS values is
presented here (Fig. 2).

Letters A—N (Fig. 2) label clades of three or more taxa that
were well supported and are discussed in the text (as distinct
from pairs of taxa or poorly supported nodes). Australian Zieria
formed a strongly supported clade (Node 1, PP 1, BS 100%) with
the New Caledonian species, Z. chevalieri, shown as its sister.

Within Australian Zieria, two large Clades A (Node 3) and B
(Node 4), a smaller Clade C (Node 6), and a clade of the two
subspecies of Z. veronicea (Node 5) were each strongly supported
inthe Bl analysis, with PP values of 1. However, the trichotomous
Node 2 was poorly supported (PP 0.87, BS 53%), and, therefore, it
is not clear whether Clade C and Z. veronicea are more closely
related to taxa in Clade A or Clade B, or to each other.
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Details of chloroplast datasets and results from maximum parsimony analyses

Tree statistics are based on equally most parsimonious trees produced by analyses of the combined dataset

Parameter rpl32—trnL trnL-F trnQ-rps16 trnS—-G Combined data
Included characters 975 871 666 1489 4001
Variable characters 186 106 92 197 581
Parsimony-informative characters, total 88 27 32 83 230
Parsimony-informative indel characters 17 8 7 23 55
Parsimony-informative characters as a percentage 47 26 35 42 40
of variable characters (%)

Number of steps on shortest trees 253 142 109 296 800
Consistency index (CI) 0.85 0.82 0.89 0.78 0.83
Retention index (RI) 0.93 0.87 0.96 0.90 0.92
Rescaled consistency index (RC) 0.79 0.71 0.86 0.702 0.76
Homoplasy index (HI) 0.15 0.18 0.11 0.22 0.18

Although the large Clade A was well supported in the BI
analysis (PP 1) it was poorly supported in the MP analysis
(BS 54%). Tt comprises five subclades, D, E, F, G and H, all
strongly supported by BI (PP of 1 for all), but variously well
to poorly supported by MP BS. Zieria tenuis, Z. madida,
Z. littoralis, Z. cephalophila and Z. boolbunda formed part of
a basal polytomy in Clade A. Zieria baeuerlenii and Z. collina
(MJB2012) were strongly supported as sister (although a
second accession of Z. collina was resolved in a different well
supported clade).

The other large Clade, B, which was strongly supported in both
analyses (PP 1, BS 100%), was not well resolved, consisting of
a polytomy of seven lineages (Node 4, Fig. 2). Node 41 within
Clade B had strong support from the BI analysis (PP 1) but not in
the MP analysis where there was no BS support. The relationship
of Z. caducibracteata IRT9585) and Z. smithii (DJO430) as sister
taxa was only poorly supported. Zieria alata (KM639) and
Z. arborescens (MFD2035) were resolved as sister. Samples
whose relationships remained unresolved within Clade B are
Z. robusta (MFD2049), Z. obcordata (608324), Z. citriodora
(the only accession) and Z. pilosa (2 accessions). Clade B was
further resolved into six subclades, I-N, all being well supported
by PP (0.98-1.0), but with variable BS support (53-97%). Other
relationships within these clades are discussed in more detail
below.

In summary, there was a poor correlation between the cpDNA
tree and clades identified in the morphological phylogeny of
Armstrong (2002). None of Armstrong’s morphological clades
was identified as monophyletic and most cpDNA clades
contained members of multiple morphological groups (Figs S1
and S2, available as Supplementary material for this paper). The
clades C—N resolved here in the cpDNA analysis broadly overlap
geographically in eastern Australia, although they include some
marked taxon disjunctions. Clade K was the most geographically
distinct, being restricted to Victoria and Tasmania.

Monophyly of species and sharing of chloroplast
haplotypes between species

Of the species represented by at least two accessions in this
analysis, the following were resolved as monophyletic:
Z. veronicea (Node 5, two subspecies), Z. laevigata (Node 8),
Z. ingramii (Node 9), Z. littoralis (Node 20), Z. baeuerlenii
(Node 28), Z. pilosa (Node 39) and Z. involucrata (Node 50).

Monophyly of the following species was neither supported nor
rejected, with accessions being part of unresolved polytomies
that included other species: Z. lasiocaulis (Node 32), Z. prostrata
(Node 53) and Z. odorifera (Node 15; including the three sampled
subspecies). All other species with multiple accessions were
resolved as polyphyletic or paraphyletic. These were Z. fraseri
(two samples, one from each subspecies, nested in Clade D),
Z. cytisoides (three samples, in different subclades of Clade A),
Z. obcordata (two samples from disjunct populations, occurring
in different parts of the tree, one in Clade A, one in Clade B),
Z. smithii (22 samples, some in Clade A, some in Clade B),
Z. collina (two samples, in different subclades of Clade A),
Z. furfuracea (three samples, representing three subspecies,
one in Clade L, one in Clade M and one in Clade A),
Z. arborescens (nine samples, in different subclades of Clade
B), Z. oreocena (four samples, in two subclades within Clade B),
Z. alata (two samples, in different subclades within Clade B),
Z. caducibracteata (two samples, one in a well supported clade
sister to a sample of Z. arborescens, the other weakly supported as
sister to a sample of Z. smithii), Z. minutiflora (a sample of subsp.
trichocarpa strongly supported as sister to a polytomy including
Z. vagans, Z. bifida and two samples of subsp. minutiflora; Clade
G), Z. distans (two samples in Clade H), Z. robusta (one sample in
Clade K, one in the basal polytomy of Clade B), and Z. murphyi
(two samples in Clade M, separated with moderate support).

On the basis of cpDNA markers, widespread species, or
species for which samples were collected from highly
separated locations, were commonly not found to be
monophyletic. However, even some species with narrow
distributions or with samples collected from relatively small
geographic areas had haplotypes that placed them in different
clades. For example, the two specimens of Z. alata, a species
endemic to the Wet Tropics of Queensland, were collected within
15 km of each other (Clade B), the four specimens of Z. oreocena
(Clade B) were collected within 50 km of each other in the
Grampians in western Victoria, where the species is endemic,
and the two samples of Z. caducibracteata were collected ~4 km
apart in the Budawang Range of New South Wales.

Most chloroplast haplotypes were unique to individual
specimens or species. However, the following three haplotypes
were shared between specimens of different species: one between
Z. prostrata and Z. arborescens (from samples collected nearly
200 km apart; Clade M, Fig. 5); one between Z. lasiocaulis and
Z. southwellii (across samples collected nearly 200 km apart;
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Clade I, Fig. 5); and one between samples of Z. odorifera,
Z. compacta and Z. cytisoides (across samples collected
~650 km apart; Clade D, Fig. 3).

Composition and distributions of Clades C-H

A portion of the Bayesian tree (Fig. 3) shows branch lengths and
support values of Clade A and its subclades, and Clade C. Maps
show the location of taxa within those clades (Fig. 4). Together,
branch lengths and maps allow visualisation of the degree to
which the chloroplast haplotypes are shared, relative divergences,
and the provenance of the samples in the clades.

Clade C (PP 1, BS 58%) included Z. exsul and Z. laxiflora
(both from coastal southern Queensland), Z. ingramii (inland
New South Wales), and Z. laevigata (near the New South
Wales—Queensland border). Both accessions of Z. ingramii,
which were from Goonoo State Forest, ~15 km apart, had
identical haplotypes. In contrast, in the more common species
Z. laevigata, haplotypes were resolved as related (Fig. 3) but
divergent (differing by 13 steps), despite accessions being
collected from populations only ~30 km apart in southern
Queensland.

In general, the haplotypes in Clade D were from specimens of
taxa that typically occur in more inland locations than do most
other Zieria taxa, on the western slopes or west of the Great
Dividing Range. The accession of Z. fraseri subsp. fraseri was
collected closest to the coast, and was well supported as sister to
the other (more inland) specimens in the clade. Both subspecies of
Z. fraseri were in this clade, but were not resolved as sister.
Accessions of the three subspecies sampled of Z. odorifera (of
four) were in a well supported subclade, with highly similar but
not identical haplotypes. Zieria odorifera subsp. williamsii,
Z. compacta and one sample of Z. cytisoides (DJO416) had
identical haplotypes that were highly similar to the haplotypes
of the two other Z. odorifera subspecies, which differed only by
one change each. The samples sharing the identical haplotype
were from localities up to 680 km apart. Another sample of
Z. ceytisoides (DJO320) was strongly supported as the sister to
Z. hydroscopica, although their haplotypes differed by seven
changes in the MP analysis. The two divergent samples of
Z. cytisoides in this clade (differing by 16 steps in the MP
analysis) were collected from localities more than 270 km
apart in southern Queensland.

Clade E included three samples, one each from Z. cytisoides,
Z. obcordata and Z. adenophora. Although it was highly
supported by BI, Clade E had poor support in the MP analysis.
Branch lengths were long, indicating deep divergences between
the three samples, which were remotely separated geographically,
from north Queensland to southern New South Wales. Of the
three species in Clade E, Z. cytisoides is widespread and
morphologically very different from the other two species; its
taxonomic relationship may be better reflected by the position
of two other accessions of Z. cytisoides that were resolved in
Clade D. In contrast, Z. obcordata and Z. adenophora of Clade E
are rare species that share some morphological affinities. Zieria
adenophora is known only from a single population, whereas
Z. obcordata has a disjunct distribution. The accession of
Z. obcordata (RGC10060) in Clade E was from the more
northern population, whereas an accession from a population
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~100 km to the south (608324) was placed in major Clade B
(Figs 2, 5), with strong support.

Clade F included a group of morphologically very similar
species, namely, Z. verrucosa, Z. granulata, Z. tuberculata,
Z. parrisiae, Z. formosa and Z. buxijugum, plus four samples
of Z. smithii from Victoria that had identical or highly similar
haplotypes. All of the other accessions of Z. smithii in this analysis
were resolved in Clade B and were from Queensland or northern
New South Wales. The morphologically similar species in this
clade occur in southern New South Wales, except Z. verrucosa,
which occurs only in Queensland, ~1000 km away. The three
most closely related haplotypes of that group, representing
Z. buxijugum, Z. formosa and Z. parrisiae, were from samples
located within ~6 km of each other, but they were not identical.

All accessions in Clade G were from Queensland. Zieria
minutiflora subsp. trichocarpa from northern Queensland
was strongly supported as the sister to samples of Z. bifida,
Z. minutiflora subsp. minutiflora and Z. vagans, which were
all from southern Queensland. The haplotypes of the three taxa
from southern Queensland were highly similar but not identical;
Z. bifida and Z. vagans are very similar in morphology but
different from Z. minutiflora.

All accessions in Clade H were also from Queensland.
This clade was well supported by BI (PP 1), but less so by MP
analysis (BS 76%). It included a sample of Z. furfuracea subsp.
gymnocarpa, which was separated from other subspecies in
Z. furfuracea in clades L and M. The relationship of
Z. furfuracea subsp. gymnocarpa to Z. distans (CMH157)
and Z. adenodonta was strongly supported (PP 1, BS 95%).
However, Z. distans included two different haplotypes that did
not form a monophyletic group within Clade H. Similarly,
Z. collina appeared to be polyphyletic with one accession
(MTM507) in Clade H and the other haplotype (MJB2012)
outside that clade, related to Z. baeuerlenii (Node 27, Fig. 2),
despite the two accessions of Z. collina being collected from
populations less than 6 km apart.

Composition and distributions of Clades I-N

A portion of the Bayesian tree (Fig. 5) shows branch lengths and
node-support values for Clade B and its subclades, I-N. Maps
show the location of taxa within these clades (Fig. 6).

Clade I consisted of three morphologically similar species.
Zieria southwellii and Z. montana are restricted to the area around
the New South Wales—Queensland border, and the endangered
Z. lasiocaulis is restricted to the headwaters of the Wilson River
in the North Coast District of New South Wales. Two accessions
of Z. lasiocaulis, which were collected from populations less
than 3 km apart, had slightly different sequences; however, the
sequence of Z. lasiocaulis (492944) was identical to that of
Z. southwellii, from more than 300 km away.

Five species in Clade J are narrow endemics, three occurring in
northern Queensland (Z. whitei, Z. rimulosa and Z. obovata) and
two in southern Queensland (Z. graniticola and Z. inexpectata).
The sixth sample in the clade is Z aspalathoides subsp.
aspalathoides, a widespread and variable taxon; the accession
here was from southern Queensland. BI analysis resolved
Z. graniticola and Z. inexpectata samples as sisters, and
Z. obovata and Z. whitei samples as sisters, both with
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moderate to strong Bayesian support (respectively PP 0.98 and (but not Z. obovata) have strong morphological affinities with
0.97), but these relationships were poorly or not at all supported Z. aspalathoides. Zieria whitei, for instance, was intially
by MP analysis. Zieria inexpectata, Z. graniticola and Z. whitei described as a variety of Z. aspalathoides (var. intermedia;
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White 1942). Zieria obovata is morphologically very similar to
Z. minutiflora (not in this clade), and the two species are easily
confused. Zieria rimulosa, from Mount Mulligan, northern
Queensland, is morphologically distinct, although it does have
some characters in common with Z. aspalathoides and Z. obovata
(northern Queensland), such as densely pubescent branchlets,
and upper lamina leaf surfaces covered exclusively by simple
(vs stellate) hairs.

Clade K (PP 1 but BS low at 61%) comprised Victorian and
Tasmanian accessions of Z. arborescens (identical haplotypes),
one accession of Z. oreocena, and one accession of Z. robusta,
amorphologically distinctive species in the genus, very different
from Z. arborescens and Z. oreocena. Zieria oreocena is
morphologically very similar to Z.  arborescens but
geographically separated, being restricted to the Grampians in
western Victoria. Zieria robusta has a disjunct distribution, and
two accessions were sequenced. The accession in Clade K was
from eastern Victoria; the other accession, from nearly 500 km
to the north in New South Wales, also fell in Clade B, but at
the basal node outside Clade K. All accessions of Z. arborescens
from outside Victoria and Tasmania were placed elsewhere
in Clade B. Surprisingly, Z. arborescens (RAB512) from the
Otways, Victoria, was also notin this clade. Of the four accessions
of Z. oreocena, only one occurred in Clade K.

Clade L contained two accessions of Z. oreocena, collected
from close but distinct habitats at different altitudes in the northern
Grampians, Victoria (Fig. 6). One population was in a sheltered
valley beside a creek and the other was in a sheltered rocky
outcrop near the summit of Hollow Mountain. The accessions
were strongly supported as sister to a subclade of Z. smithii
(three accessions) and Z. furfuracea subsp. euthadenia, all
from southern Queensland, and Z. hindii, from northern New
South Wales, some 1500 km further north of the Grampians.
A third accession of Z. oreocena (MIB1982), collected ~40 km
to the south, was on the basal node of Clade B, and a fourth
accession (DJO222) collected less than 4 km from MJB1982,
was resolved in Clade K (PP 1, but low BS of 61%). Thus,
phylogenetic relationships here supported by the Bl analysis were
not necessarily correlated with geographic distance.

Clade M consisted of 11 taxa, including species from a wide
geographical range, from the wet tropics in Queensland to the
south-east of New South Wales, but with a clear disjunction in
the mid- and southern parts of Queensland. Some, but not all,
taxa within the clade share morphological affinities. Two
accessions of the widespread Z. arborescens occurred in this
clade (one from Queensland and one from New South Wales), as
well as an accession from near the type locality of the highly
restricted Z. arborescens subsp. decurrens, and one accession of
Z. caducibracteata, a species that is morphologically similar to
Z. arborescens. Zieria arborescens (MTM270) and Z. prostrata
(MJB2019) had identical haplotypes despite being from locations
nearly 200 km apart. Clade M also included the morphologically
distinctive species, Z. involucrata and Z. murphyi, as well as
Z. covenyi, a putative triploid hybrid (Armstrong 2002). Zieria
insularis and Z. smithii have morphological affinities, although
Z. smithii is highly variable. The seven samples (representing
five species) that were resolved in a well supported subclade of
Clade M (PP 1 BS 97%, Node 53, Fig. 2) were all collected in
northern New South Wales or Queensland, with Z. furfuracea
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subsp. furfuracea (466549), from further south, moderately
supported as the sister. All other accessions of Clade M were
from locations even further south, in southern New South Wales.

Clade N consisted of six taxa, including several accessions of
Z. smithii, all collected from Queensland (but not all accessions
of Z. smithii from Queensland were in this clade). The clade
also included the sample of Z. arborescens (subsp. glabrifolia),
from southern Queensland. Interestingly, one accession of
Z. arborescens (RAB512), from the Otways, Victoria, was
nested in this clade, indicating that this haplotype is more
closely related to those of other taxa occurring in Queensland,
than to haplotypes of its own species occurring elsewhere in
Victoria; this was the only sample from outside Queensland that
occurred in this clade.

Discussion

This study presents the first molecular phylogenetic study of
Zieria, including almost all recognised species and subspecies,
based on cpDNA. Interpretation of relationships is complicated
because of widespread discordance between the cpDNA gene
tree, existing species-level classification and the morphological
groups proposed by Armstrong (2002). It is now widely
recognised that species trees are not always congruent with
gene trees because evolutionary processes often produce
discrepancies between gene trees and the phylogenies of the
organisms within which the genes evolved (Doyle 1992;
Maddison 1997; Mallo et al. 2014). We conclude that the
cpDNA phylogeny provides useful insight into evolutionary
processes in Zieria (discussed below) but does not provide a
clear basis for assessing phylogenetic relationships of taxa,
speciation or biogeographic patterns within Australia, which
were among our original aims.

Incongruence between cpDNA phylogeny and species
taxonomy

The cpDNA phylogeny showed widespread incongruence with
current species taxonomy in Zieria. There is a range of possible
explanations for such incongruence, including the following: (1)
homoplasy in the cpDNA sequence data, i.e. parallel evolution of
similar sequences in different taxa; (2) inappropriate taxonomy,
confounded by homoplasy of morphological characters; (3)
introgression between species (chloroplast capture); and (4)
variable retention of ancestral chloroplast lineages across
different taxa (incomplete lineage sorting). Homoplasy of
molecular characters becomes a less likely explanation as the
number of characters supporting different clades of sequences
increases (McKinnon et al. 1999; Holmes et al. 2014), and it is a
poor explanation for many of the well supported clades in our
dataset. The other three explanations are each more plausible and
it is likely that a combination of these factors is at play in Zieria.

Introgression and incomplete chloroplast lineage sorting can
be expected to leave different genetic and geographic signatures.
With introgression, there is a chance that more derived haplotypes
(near the tips of trees or networks) will be shared between species,
and that interspecific sharing of chloroplast haplotypes or groups
will be geographically concentrated, reflecting the area in which
introgression has occurred (McKinnon et al. 1999; Muir and
Schlétterer 2005; Nevill e al. 2014). With chloroplast lineage
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sorting, there is less chance that tip haplotypes will be shared
between species (i.e. there is bias towards sharing of ancestral
haplotypes), and interspecific sharing of chloroplast haplotypes
or groups need not be geographically concentrated (Schaal ez al.
1998; Muir and Schldtterer 2005). In the current study, there
are few haplotypes shared among different species that might
provide evidence for recent introgression between species
(discussed below). However, this could be an artefact of low
and uneven sampling within species (despite including multiple
representatives of most). It could also reflect dilution over time
of signals of chloroplast lineage sorting or introgression, e.g.
patterns of haplotype distribution could be affected by past range
expansions or contractions that might have been considerable
(e.g. Mellick et al. 2012; Rossetto et al. 2012) across multiple
glacial or interglacial cycles.

The greatest insight into the processes responsible for the
taxonomic incongruence of cpDNA sequences in Zieria
potentially comes from the two species in our dataset that were
the most highly sampled, among the most geographically
widespread, and had clearly polyphyletic cpDNA sequences.
These two species are Z. smithii, which occurs from northern
Queensland to eastern Victoria, and Z. arborescens, which occurs
from southern Queensland to Tasmania and includes three
accepted subspecies, although the distinction between the
subspecies is not clear cut (see note in Materials and methods).

The cpDNA sequences of Zieria smithii show clear
geographic patterns. Both samples from northern Queensland
group with other taxa from that area in Clade M, all samples from
eastern Victoria and southern New South Wales group with other
taxa from southern New South Wales in Clade F, and samples
from south-eastern Queensland fall in two clades (N and L) with
other taxa from that area. This geographic pattern of chloroplast
variation and similarity to other taxa would be consistent with
regional introgression of chloroplasts. However, it could also be
consistent with poor taxonomy, i.e. that Z. smithii encompasses
multiple, cryptic taxa, yet to be recognised, that are each related to
different species. The RAPD data of Hogbin and Crisp (2003), for
instance, suggested that the coastal species Z. prostrata was
incompletely differentiated from nearby populations of
Z. smithii (although this was not recovered in our cpDNA
sampling where one sample of Z. prostrata had an identical
haplotype to Z. arborescens from Mount Norman, almost
200 km away). The considerable morphological variation seen
in Z. smithii, including the northern Queensland populations
previously recognised as subsp. tomentosa, was discussed by
Duretto and Forster (2007).

Zieria arborescens displays some cpDNA variation that is
geographically correlated, but also variation that suggests an
influence of chloroplast lineage sorting. Of particular note is
the placement of the sample of Z. arborescens from the Otway
Ranges in south-western Victoria (RAB512) in Clade N, in which
all other samples are from Queensland, separated by more than
1200 km. This geographic separation, although it could be
reduced with further geographic sampling, is well beyond the
realms of plausibility for recent chloroplast introgression,
especially in an entomophilous genus that has seeds of limited
dispersal (Armstrong 1979, 2002). Placement of the Otway
sample in Clade N is well supported (BS 97%, PP 1, and with
six characters supporting the node in parsimony reconstructions),
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also making homoplasy unlikely. As such, this example provides
the best evidence in our dataset that morphologically defined
species of Zieria could harbour highly divergent chloroplast
lineages that pre-date speciation events. In other cases where
similar haplotypes in different species are widely geographically
separated (e.g. those in clade B of subsp. arborescens MFD2035
from New South Wales and Z. alata KM639 from north
Queensland), the inferred relationships have lower bootstrap or
character support.

The patterns of variation in Z. smithii and Z. arborescens
provide good evidence that introgression, lineage sorting and
inappropriate taxonomy all potentially account for the observed
cpDNA patterns. In other non-monophyletic taxa that are
represented by fewer samples, or where divergence of
chloroplast haplotypes is not so strong, it is difficult to make
firm conclusions. For instance, in the case of Z. robusta, the two
samples represent disjunct populations in Victoria and New South
Wales, and it is not clear whether divergence between them could
reflect introgression (e.g. similarity of the Victorian sample of
Z. robusta to Victorian samples of Z. arborescens in Clade K),
lineage sorting, or geographic variation associated with
morphological differentiation of disjunct populations, e.g.
Victorian populations have leaflets that are more deeply
crenate, and petioles and undersurfaces of primary veins on
leaflets that are more prominently tuberculate. Likewise for
Z. furfuracea, it is not clear whether the three highly divergent
haplotypes in Clades L, M and H, each from a different
subspecies, reflect introgression with other species (e.g. they
each group with different species from the regions in which
they were sampled), variable retention of deeply divergent
chloroplast lineages, or that the species is not monophyletic
and each of the three subspecies are separate evolutionary
lineages. Similarly, contrasting explanations could be plausible
for each of'the other species in our analysis that are not resolved as
monophyletic.

Relationship of Zieria in Eastern Australia
and New Caledonia

The chloroplast phylogeny shows the deepest divergence in
Zieria, with strong support (BS 100%, PP 1.0), to be that
between the single New Caledonian species, Z. chevalieri, and
Australian taxa. As with other taxa, the position of Z. chevalieri is
inconsistent with the morphological assessment and phylogeny of
Armstrong (2002) that grouped Z. chevalieri with Z. laevigata,
Z. laxiflora and Z. fraseri, which are variously placed in Clades C
and D in the cpDNA phylogeny.

An early divergence between plants of these two areas (as
opposed to a more nested position of Z. chevalieri) potentially
lends itselfto a vicariant explanation for distribution of the genus.
Such an explanation would be consistent with the very limited
dispersal capacity of the ant-dispersed seeds and is interesting,
given controversy over the history of New Caledonia and its flora
(Lowry 1998), and debate over the importance of long-distance
dispersal (Grandcolas et al. 2008; Swenson et al. 2014) versus
vicariance (Bauer et al. 2006; Ladiges and Cantrill 2007; Heads
2008). Controversy stems from molecular dating of clades where
it is concluded that clades are too young to support a vicariance
explanation. Molecular dating within Rutaceae by Bayly et al.
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(2013) estimated that the divergence between Z. chevalieri and
Australian taxa occurred (6.5) 11.9 (17.9) million years ago. This
is younger than the initial rifting of Zealandia from eastern
Australia, which commenced ~85 million years ago
(McLoughlin 2001), the re-emergence ~37 million years ago
of most of present-day New Caledonia after being below sea
level from the Late Cretaceous to the Eocene (Aitchison et al.
1995; Pelletier 2006), and the likely presence of substantial areas
of exposed land between Australia and New Caledonia into the
Eocene and Oligocene (De Beuque et al. 1998; Exon et al. 2006;
Ladiges and Cantrill 2007; Sutherland ez al. 2010; Bache et al.
2012). However, it would be unwise to emphasise the molecular
dating as a basis for confirming or rejecting biogeographic
hypotheses in Zieria because, as previously suggested (Bayly
et al. 2013), large parts of the Rutaceae tree are not supported by
good fossil calibrations, including in Zieria, and could be prone to
substantial underestimates of clade ages. Furthermore, as
mentioned above, over water, long-distance seed dispersal is
considered highly improbable for Zieria.

Because the cpDNA of Z. chevalieri in New Caledonia is
substantially divergent from that of Australian taxa, the species is
significant in terms of the phylogenetic diversity of the genus,
making it of conservation concern. It is known only from Mount
Kaala in northern Grande Terre (New Caledonia). We have seen
only a small number of plants in the field (fewer than 100 in May
2009), and Armstrong (2002) reported a total population of ~200
plants. Zieria chevalieriis currently listed as Vulnerable under the
TUCN Red List of Threatened Species (http://www.iucnredlist.
org, accessed November 2014) under Criteria Bl and 2C, based
on the assessment of Jaffre et al. (1998). A population survey and
revision of the conservation status of Z. chevalieri is warranted,
given the high level of mining activity around Mount Kaala and
our field observations in 2009 that the population had been
affected by road building and recent fire.

Conclusions and prospects for further research

As discussed above, we propose that the cpDNA tree presented
here does not overall represent a hypothesis for a species tree in
Zieria. It largely reflects evolutionary processes other than those
of phylogenetic descent, such as introgression between species
and chloroplast lineage sorting, as well as inappropriate species-
level taxonomy. Gaining further insight into the history and
systematics of Zieria will require additional data, and priorities
should be to obtain phylogenetic data from the nuclear genome,
more carefully scrutinise the morphology of some species and
more thoroughly sample some species.

Assessing the degree of congruence between phylogenies
produced by nuclear and chloroplast markers could help
ascertain the underlying causes of observed phylogenetic
patterns. For instance, it would be valuable to know how taxa
resolved here as polyphyletic might be resolved by nuclear
markers. If they were shown to be monophyletic using nuclear
markers, current taxonomy would be supported and chloroplast
capture or lineage sorting implicated as explanations. A finding of
non-monophyly would highlight a need for taxonomic revision.

Additional data on morphology would be useful to compare
with genetic variation. This is especially true for widespread and
morphologically variable species such as Z arborescens,

R. A. Barrett et al.

Z. aspalathoides, Z. cytisoides and Z. smithii. Zieria contains a
striking mixture of a few very widespread species, and a large
number of narrowly endemic species. It is possible that
widespread taxa could have complicated relationships with a
range of endemics that have differentiated through peripheral
isolation or that widespread species harbour geographic variants
worthy of taxonomic recognition. Correlation of geographic
patterns of morphological and genetic variation would allow a
more critical assessment of species limits.

A strength of the present study was the inclusion of multiple
representatives of many taxa (41% of included species, i.e. 24
of 59). This allowed for the detection of widespread cpDNA
polyphyly; more limited sampling would have provided a
poorer understanding of the complexity of cpDNA variation.
Nonetheless, many taxa in Zieria were not well sampled relative
to their geographic distributions and morphological variation
(e.g. Z. aspalathoides, Z. caducibracteata, Z. cytisoides and
Z. odorifera). No species represented by more than two
samples in our dataset was shown to be monophyletic,
although 51 species were represented here by only one or two
samples. Further sampling would give a clearer picture of the
complexities of cpDNA variation.
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Note added in proof

In the time between acceptance and publication of this paper
another phylogenetic study of Zieria has been published:
Morton CM (2015) Phylogenetic relationships of Zieria (Rutaceae)
inferred from chloroplast, nuclear, and morphological data.
PhytoKeys 44, 15-38.

The chloroplast DNA markers used in that paper were a subset
of those used herein. Taxon sampling included 32 species, all
of which are also represented here. Because species were each
represented only by single accessions, that study did not detect
the incongruence between cpDNA variation and species-level
taxonomy reported here.
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