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Using Airborne Laser Scanner and Path Length
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Effect and Estimate Leaf Area Index
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Abstract— The airborne laser scanner (ALS) provides great
potential for mapping the leaf area index (LAI) at the landscape
scale using grid cell statistics, while its application is restricted by
the lack of clumping information, which has been an unsolved
issue highlighted for a long time. ALS generally provides an
effective LAI because its footprint is too large to capture small
gaps to apply traditional ground-based clumping correction
methods. Here, we present a grid cell method based on path
length distribution model to calculate the clumping-corrected
LAI using ALS data without the requirement of additional
field measurements. We separated the within- and between-
crown areas to consider between-crown clumping, and used the
path length distribution as estimated by local canopy height
distribution to consider 3-D foliage profile and within-crown
clumping. The path length distribution model takes advantage
of the 3-D information rather than the gap size distribution,
thus avoiding the limitation of large ALS footprint. With the
0.4-m-footprint ALS data, the results are generally promising
and a multilevel clumping analysis is consistent with landscape
flown. The ALS LAIs of different resolutions are consistent, with
a difference of less than 5% from 5- to 250-m resolutions. Due
to its consistency and simple configuration, the method provides
an opportunity to map the clumping-corrected LAI operationally
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and strengthens the ability of airborne lidar to monitor vegetation
change and validate the satellite product. This grid cell method
based on path length distribution is worth further testing and
application using more recent laser technology.

Index Terms— Airborne laser scanner (ALS), clumping, leaf
area index (LAI), lidar, path length distribution.

I. INTRODUCTION

LEAF area index (LAI), defined as one half of the total
leaf area per unit ground surface area, is a key vegetation

parameter for modeling mass (water and carbon) and energy
(radiation and heat) exchange between the biosphere and the
atmosphere [1]–[6].

LAI estimation has been achieved from ground to satellite
levels, while its accurate estimation is still difficult at land-
scape or regional scales. Indirect ground-level methods based
on Beer’s law, which utilizes the gap probability measured
by optical instruments, are convenient and fast for measuring
the LAI at scales from tens to hundreds of meters [7]–[11].
However, they are impractical for measuring the LAI over
larger scales due to time, cost, and labor limitations. Space-
borne or airborne passive optical remote sensing, which is
based on physical vegetation models or empirical relationships
between vegetation indices, is able to map the LAI over larger
scales [12]–[15]. Passive optical remote sensing is valuable for
global and regional studies, but its accuracy and consistency
are limited by several other factors, such as atmosphere, soil,
and underlying vegetation; thus, calibration and validation are
always required [16]–[19]. Indirect ground measurement pro-
vides an alternative, but it cannot provide spatially continuous
validation data.

The airborne laser scanner (ALS), also commonly known
as airborne lidar, provides a great opportunity to accurately
map the LAI due to its ability to penetrate canopies and
its fast coverage over large areas [20]. Its penetrating abil-
ity allows it to better characterize the interior canopy, thus
alleviating the saturation problem [21]–[23]. The similarity
between lidar penetration rate and gap fraction also provides
an opportunity to use the well-developed methods in indirect
LAI measurements that are based on Beer’s law. In the past
decade, gap fraction-based methods have been introduced in
lidar measurements to derive the LAI and found to be superior
to allometric or empirical methods [24]–[29].
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While much progress has recently been achieved, the vast
majority of airborne lidar work estimates effective LAI (LAIe)
rather than the actual LAI. Correcting clumping effect is
still an unsolved and highlighted issue in airborne lidar
studies. The LAIe is calculated as a negative logarithm of
gap probability or transmittance, which is originally used to
model the LAI inhomogeneous scene based on Beer’s law.
The clumping effect of leaves, however, will increase the
gap probability, and thus, the LAIe will be smaller than
the actual LAI. Under these circumstances, the LAIe is the
LAI of a hypothetical homogeneous canopy with an identical
gap probability of the clumped canopy. And the clumping
index is defined as the quotient of the LAIe to the actual
LAI [30], [31]. For LAI mapping, 3-D discrete airborne lidar
data were generally gridded into an image with a grid size of
tens of meters [28], [32], which generally covers several tree
crowns and large gaps between crowns. Thus, both between-
crown and within-crown clumping exist in each grid cell.
The need for modeling and quantifying the clumping effect
has been highlighted for airborne lidar research for a long
time [22], [32]–[36]. To make comparisons with the true LAI,
empirical values [37], [38] and ground measurements [39]
have been adopted. However, the clumping index is a variable
parameter that changes with observation direction, location,
scale, and season, even in the same forest [8], [31], [40], [41].
Very few attempts have been made to quantify the clumping
effect using airborne lidar, those that have included performing
regression analyses with vegetation indices [42] and imple-
menting the traditional ground method with gap size infor-
mation [43]. The correlations between airborne and ground
measurements were found to be good. However, the lidar-
based clumping index is still different from the ground clump-
ing index and thus, field measurements are still needed for
regression in these methods [42], [43]. In addition, the results
of airborne lidar are generally worse due to the low point
density [43]. Although much progress has been achieved,
these methods did not quantify the clumping effect using
airborne lidar independently, which restricts airborne lidar
from operationally monitoring vegetation.

The large footprint and low point density of airborne lidar
are two major constraints for applying the traditional ground
method to correct the clumping effect, as airborne lidar foot-
prints (tens of centimeters or larger) are too large to capture
the small gaps [28] and the detailed gap size distribution, even
if it is possible to resolve the average gap probability. In addi-
tion, the 3-D information is also not utilized efficiently. The
3-D information is often converted to a 2-D binary image to
use the traditional gap distribution-based method [43].

The recently developed path length distribution model [7]
provides a potential solution for correcting clumping effect
without the gap size distribution. Because path length is
directly related to gap probability in Beer’s law, a physical
model was established to connect the average gap probability
and the LAI using the path length distribution. The path length
distribution models the clumping effect in combination with
the average probability rather than calculate clumping index
alone. Thus, we calculate the clumping-corrected LAI first and
then the clumping index rather than use clumping index to

correct LAI. The path length distribution model has the advan-
tage of characterizing nonrandomness inside crowns caused
by inconsistent path length and performs well for ground
measurements [7], [8], [44]–[46]. The importance of path
length was also recognized in a recent airborne lidar study,
where path length correction was made to the lidar penetration
rate as a correction ratio [47]. The distribution of path lengths,
which models the clumping effect from a special perspective,
might be useful for modeling clumping using airborne lidar.
In the previous version of path length distribution model,
the path length distribution was inversed from traditional gap
transect data, which is not available in airborne lidar data as
aforementioned. In this paper, we proposed a new approach
which obtains the path length distribution directly from the
3-D information.

Through obtaining gap probability and path length distri-
bution from airborne point cloud data, we migrated the path
length distribution model on airborne lidar data to quantify the
clumping effect and clumping-corrected LAI. We analyzed the
data using grids of varying cell sizes and performed the further
calculations in each grid cell. First, we separated the tree
crown areas from large gaps in each grid cell and associated
them with within-crown and between-crown areas of interest.
This step was achieved by using vertical crown cover (VCC),
which can be estimated to a high precision using a simple
proportion of canopy points in first-return data [48]. Second,
we calculated the within-crown LAI using gap probability and
path length distribution of within-crown areas in each grid
cell. The gap probability was estimated using laser penetration
metric (LPM), also called laser penetration index derived
from the vertical and horizontal distribution of hits in the
areas of dense cover. The path lengths were estimated by
canopy height model (CHM) which effectively measures the
spatial distribution of canopy heights in each grid cell. Third,
the LAI was calculated as the product of within-crown LAI
and the proportion of within-crown area (VCC) in each grid
cell. Finally, the LPM and LAI were validated using in situ
measurements (Fig. 1). It should be noted that the clumping
corrections of both airborne retrieval and field validation in
this paper focus on between-crown and within-crown clumping
beyond the shoot level, because neither airborne retrieval nor
indirect field measurement can quantify the needle-to-shoot
level of clumping. The correction of leaf angle distribution and
woody component was not applied because this information
is unavailable from airborne lidar and does not influence the
validation of clumping-corrected LAI.

II. MATERIALS

A. Study Area

The study area is located in the Genhe forest reserve
(120° 12′–122° 55′ E, 50° 20′–52° 30′ N), which is at the
western face of north Greater Khingan (Fig. 2). The elevations
range from approximately 775 to 1300 m, and the slopes are
less than 15° in 80% of the area. Located in the northernmost
area of Inner Mongolia, Genhe has a monsoon-influenced
subarctic climate and is officially designated the coldest city
in China. The forest is mainly composed of Larix gmelinii
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Fig. 1. Workflow diagram for estimating the clumping index and LAI by using the path length distribution model and ALS data.

(Rupr.) Rupr., Betula platyphylla Suk, and Pinus sylvestris var.
mongolica Litv. [49].

B. Airborne Lidar Data
Airborne lidar data were collected using a Leica ALS60

system onboard a Yun-5 aircraft. This system works at a
wavelength of 1064 nm and with a 0.22-mrad beam diver-
gence. ALS60 was flown over the study area in the summer
of 2012. It operated at a 166-kHz pulse rate at 1800 m above
ground level with a field of view (FOV) of approximately 30°.
Absolute scan angle and positions of the reflecting surfaces
for each laser pulse were resolved using the range estimates
from lidar, the position of the platform from global positioning
system receivers, the attitude (roll, pitch, and yaw) of the lidar
sensor from inertial navigation systems, and the orientation
of the scanning mirror from angle encoders. Statistics of
scan angles indicate that 97% of pulses falling within the
0°–12° zenith angles and 99% of pulses falling within the
0°–15° zenith angles. A maximum number of four returns
were recorded per beam. The data used in this paper are a
subset of 20 flight lines, covering a 5700 m × 5800 m area
(Fig. 2). The average pulse density was 5.91 pulses/m2, and
the average point density was 8.24 points/m2.

C. Field Measurements
Field campaigns were conducted in 18 plots (45 m ×45 m)

of the flight area (Fig. 2), using upward photography and
tracing radiation and architecture of canopies (TRAC;
3rd Wave Engineering, ON, Canada). The field campaigns
of vegetation monitoring were coordinated from 2013, and
then the measurements were conducted during the same period
of the year as for the flight in 2012. Upward photography
measurements were conducted in all 18 plots, while TRAC
measurements were conducted in 13 plots, with 200- to 300-m
transects in each plot. The field measurement is a part
of simultaneous satellite-borne, airborne, and ground-based
experiments in addition to our study of LAI, and the other five

plots were specially designed for the study of terrain effects
and did not have TRAC measurement due to the limitations
of slope and accessibility.

The objective of this paper is to correct the clumping beyond
shoot level using airborne lidar. In field measurement, we also
quantified the clumping and calculate the LAI beyond the
shoot level, in order to make the field data correspond to
the airborne results. The needle-to-shoot level of clumping
was not measured because it relies on manual measurements
and is not available in airborne retrieval. Similarly, the woody
components and the leaf angle distribution were not measured
but considered in validation. Because the needle-to-shoot level
clumping, the woody components and the leaf angle distribu-
tion have the same contribution in airborne lidar retrieval and
field measurement; the missing of these information does not
limit the validation of the clumping beyond shoot level and
the clumping-corrected area index.

Upward photography was employed for validation mainly
because it provides a zenith-direction observation, similar to
the ALS data. It was also found to outperform fisheye photog-
raphy when correcting for the clumping effect and estimating
the LAI [50]. Approximately 50 upward photographs were
taken using a Nikon D3000 in each plot along two diagonals
across the sampling plot, generally under cloudy conditions,
in JPEG format [51]. The original images had a size of
2592 × 3872 pixels and a viewing angle of 66.4° × 47.9°,
and 60% of them were cropped to provide a viewing angle
similar to that of airborne lidar. The k-means clustering
method was employed to classify the images into sky and
trees. Inspired by a previous work [52], the two peaks of the
blue channel histogram were detected as two initial inputs
of the k-means clustering method for the automatic process.
The histogram was also found to be helpful for overcoming
exposure issues and scattering effects [52], [53]. The total gap
probability was calculated using classified images and then
used for validation of the ALS gap probability. Then, the
clumping effect was corrected by dividing the gap probability
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Fig. 2. ALS data area and 18 field sites in the Genhe forest reserve. (a) Position of the research area. (b) Google physical map of the research area.
(c) Globeland30 land cover map of the ALS data area. (d) Google satellite map of the ALS data area and the positions of the 18 field sites. (e) Upward
photography. (f) Point cloud data of site L1. (g) Transect of the point cloud data of site L1.

into between-crown and within-crown gaps, which was first
proposed by Macfarlane et al. [50] and was then successfully
applied to continuously monitor the clumping-effect-corrected
LAI at the ecosystem scale [54]. After image classification,
the gap transects were sampled from the classified images.
For each image, several lines were sampled and combined
into a long gap transect. We used an excessive sampling
scheme so that all the pixels of the images were used. The
large gaps between crowns were separated with a threshold
of ten times the leaf width [7]. The LAIe was calculated by
directly inverting Beer’s law and the total gap probability. The
LAI within crowns was calculated using the within-crown gap
probability, and then, the LAI within crowns was multiplied

by the fraction of the crown cover to calculate the LAI.
A plagiophile leaf angle distribution, which was suggested to
be more appropriate than a spherical distribution for temperate
and boreal ecoclimatic regions [55], was used in both ground
and airborne calculations, although the choice of leaf angle
distribution does not influence the validation of clumping
correction. The use of leaf angle distribution will be discussed
in Section V-E.

As both the leafy component and woody component con-
tribute to the ALS echo, the results of ALS data generally
represent the plant area index (PAI), which includes all the
components of the plants. To match the results of the ALS
data, the same classification was adopted in processing the
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Fig. 3. Workflow diagram for processing the normalized point cloud data and calculating the LAI for each grid cell.

photographs. The photographs were classified into the follow-
ing two components: those of the sky and those of plants.

III. METHODS

A. Preprocessing

The airborne lidar data were preprocessed using the
lasnoise, lasmerge, lastile, and lasground modules of
LAStools [56]. First, the lasnoise module was used in each
flight line to remove noise points (isolated points in the sky for
example). Second, the lasmerge module was used to merge the
flight lines together. Third, the lasground module was used to
extract the ground points and then calculate the relative height
above the ground for each point [57]. Because the ALS60 data
set for the whole research area is too big to execute the
lasground module, the data were split into 1000 m × 1000 m
tiles with a 50-m buffer in each direction using the lastile
module. The lasground module was applied to each tile, and
the results were merged with the buffer removed. The buffer
was used to avoid using the results at the edge of the data.
Then, the height normalized ALS data were obtained for future
processing. With a height threshold, points were classified
as canopy and ground returns. The height threshold was set

as 1 m to exclude the low grass and retain the relatively
high underlying vegetation. Since all these preprocesses are
commonly used in the lidar community, they could thus be
achieved easily by using the batch-scriptable and friendly
software LAStools or other similar tools or libraries.

B. Gridding
For LAI mapping, the 3-D height normalized ALS data

were gridded into an image. Grids with sizes of 5, 10, 30,
50, 100, 250, and 500 m were tested in this paper. The LAI
was retrieved for each grid cell. For each grid cell, two lidar
metrics and a path length distribution were calculated for LAI
retrieval (Fig. 3).

C. Theoretical Basis: Path Length Distribution Model
The path length distribution model was proposed by

Hu et al. [7] to address the clumping effect between crowns
and the crown shape-induced nonrandomness within crowns.
It is based on the theoretical prototype of Beer’s law and the
path length distribution within crowns. The model is ideal for
lidar, as it is able to take advantage of the 3-D point cloud
information of lidar data, and is thus able to provide path
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lengths directly, rather than via the traditional detailed gap
distribution, which is inaccessible for large-footprint lidar data.

The path length distribution, which is used to consider the
nonrandomness, is defined as the probability density function
of a specific path length

plr(lr) = p̂lr(lr)∫ 1
0 p̂lr(lr)d(lr)

(1)

lr = l/ lmax (2)

where lr is the relative path length normalized to [0, 1],
l is the absolute path length at a location of transect, and
lmax is the maximum path length along the transect. p̂lr(lr) is
the frequency of lr falling within the infinitesimal inter-
val [lr, lr + d(lr)].

The LAI of the path length distribution model can be
expressed as

LAI_PATHcrown =
∫ 1

0
(FAVD · lmax) · lr · plr(lr)d(lr) (3)

where FAVD is the foliage area volume density. The interme-
diate variables FAVD × lmax can be retrieved by solving

Pcrown(θ) =
∫ 1

0
e−G·(FAVD·lmax)·lr · plr(lr)d(lr) (4)

where P(θ) is the within-crown gap probability of each grid
cell, and G is the leaf projection coefficient which can be
calculated from leaf angle distribution [58].

Equations (3) and (4) of path length distribution are mainly
used to correct clumping within crowns, and their results
are clumping-corrected LAI within crowns (LAI_PATHcrown).
Only two inputs are needed for (3) and (4): the average gap
probability within crowns [Pcrown(θ)] and the path length
distribution within crowns [plr(lr)]. The clumping between
crowns was corrected by fraction of large gaps in path length
distribution model. All the calculations were made grid cell by
grid cell. For each grid cell, the fraction of large gaps and the
average within-crown gap probability were obtained from two
LPMs, while the path length distribution was obtained from
the path lengths from the CHM based on statistics.

D. Gap Probability From Lidar Metrics
Two lidar metrics were calculated and combined for the

LAI estimation in each grid cell. Within-crown gap probability
was used to estimate the LAI within crowns (LAIcrown)
in combination with path length distribution within crowns.
VCC, which is the proportion of tree crowns, ignoring within-
crown gaps [48], [59], was used to quantify large gaps between
crowns (i.e., correct horizontal clumping) and to convert the
LAIcrown to the LAI of the grid cell

LAIcell = LAIcrown · VCC. (5)

The relationship between the total gap probability (Pcell),
within-crown gap probability (Pcrown), and VCC is

Pcell = (1 − VCC) + Pcrown · VCC (6)

where 1 − VCC is the between-crown gap probability.

Fig. 4. VCC from first-return proportion.

1) Vertical Crown Cover (VCC): VCC was calculated to
quantify the proportion of tree crowns in each grid cell. First,
a height threshold of 3 m was used to determine whether the
grid has trees. If a grid cell contains no point higher than 3 m,
it is regarded as a “no-tree” grid cell; otherwise, it is regarded
as a “tree” grid cell.

For a “no-tree” grid cell, the VCC is not calculated and all
points of the grid cell are used for calculating LAIcell using
the path length distribution model (Section III-E).

For a “tree” grid cell, the VCC values are calculated as the
crown proportions of first returns (Fig. 4)

VCC = Nfirst_canopy/Nfirst (7)

where Nfirs_canopy is the number of first returns classified
as canopy and Nfirst is the total number of first returns.
Fig. 4 shows nine grid cells in the grid and the analysis with
the grid cells.

Then, only the returns from tree crowns are used to calculate
the LAIcrown using the path length distribution model, and
the LAIcell is calculated by multiplying the LAIcrown with the
VCC [see (5)].

It is reasonable to calculate the VCC using the first returns
of ALS, as the ALS footprint is generally larger than gaps
within a tree crown. It is convenient to distinguish and calcu-
late the proportions of tree crowns and large gaps between
crowns because the first returns from a crown are always
canopy returns, and the first returns from large gaps between
crowns are always ground returns. In this paper, the ALS
footprint had a diameter of 0.4 m, and there were rarely
big holes larger than 0.4 m within crowns in the vertical
direction; thus, a laser pulse could hardly pass through the
canopy without any contact and hit the ground as the first
return along the vertical direction.

The resolution of VCC is determined by point density to
ensure there are enough laser pulses in a grid cell. Considering
that the VCC measurement using ALS is like a systematic
sampling, the accuracy of VCC calculation is mainly influ-
enced by the number of laser pulses in each grid, which
is similar as sampling number. In this paper, the VCC was
calculated using ALS data with an average point density of
5.91 pulses/m2 and an average spacing of 0.41 m, which meets
the average spacing requirement of 1 m suggested in [48]. The
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TABLE I

REPRESENTATIVE LPMS

minimum grid size was set as 5 m considering there are on
average 148 laser pulses in each grid cell (yielding a VCC
precision of better than 0.01).

2) Within-Crown Gap Probability From the LPM (for the
LAIcrown): After excluding the ground returns between crowns
in each grid cell, the LPM was calculated as a proxy of within-
crown gap probability. It is not easy to clearly define the gap
probability because airborne lidar has finite-sized footprints.
Several LPMs have been constructed (Table I), with only
first returns, only last returns, all returns, or a combination
of first and last returns [27], [48], [60]. Field validations
showed that using only first returns will underestimate the gap
probability, while using only last returns will overestimate the
gap probability [27], [48]. In this paper, four LPMs (Table I)
were calculated and compared.

E. LAI From the Path Length Distribution Model
The path length of each laser pulse is not known locally

because lidar returns are always vertically inside the tree
crowns rather than in the envelope of tree crowns. Therefore,
we proposed to use a high-resolution CHM to represent the
upper envelope of tree crowns. The CHM was generated as
a proxy of the path length distribution, as path length is the
distance covered when traveling through the canopies.

A pit-free CHM was generated via a multilevel method
that combines the partial CHMs generated with points above
certain heights [61]. This process can be achieved with
a script using the lastile, lasthin, blast2dem, and lasgrid
modules of LAStools [56]. With an average point density
of 5.91 pulses/m2 and an average spacing of 0.41 m, the pit-
free CHM was generated with a resolution of 0.5 m.

Then, the path length distribution was obtained from the
pit-free CHM in each grid cell based on statistics. Grids with
sizes of 5, 10, 30, 50, 100, 250, and 500 m were tested in
this paper. The minimum grid size was set as 5 m to take
the representativeness and statistical requirements of the gap

probability and path length distribution into consideration. In a
5-m grid cell, there were on average 206 points (yielding a
gap probability precision of better than 0.005) and 100 path
lengths. Only the CHM in the crown area was used.

The LAI was retrieved for each grid (Fig. 3). First, the VCC,
within-crown gap probability, and within-crown path lengths
were calculated for each grid cell. Second, the within-crown
gap probability and within-crown path lengths were input into
the path length distribution model to retrieve the LAIcrown [see
(3) and (4)]. Finally, the LAI of each grid cell was calculated
by multiplying by the VCC [see (5)].

F. Clumping

The LAIs and clumping indices were calculated for analyz-
ing the clumping effect in different scales. All these clumping
indices and LAIe are directional quantities, and were in the
near-vertical direction in this paper.

First, the LAIe of each grid cell was calculated by directly
inverting Beer’s law to the total gap probability (Pcell) for each
grid cell

LAIe = − ln(Pcell)/G. (8)

Then, the total clumping index was calculated conveniently
based on its definition

�All = LAIe/LAIcell (9)

where the LAIcell, defined in (5), is the result of our method
(Fig. 3) and takes into consideration both the between-crown
clumping by the VCC and the within-crown clumping by the
path length distribution model [LAIcrown, see (3)].

In addition, we defined an LAIe_VCC between the LAIe and
LAI and two clumping indices were used here to represent
different sources of the clumping effect. The LAIe_VCC,
which considers the between-crown clumping by the VCC but
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does not consider the within-crown clumping, is defined as the
product of the effective LAI within crowns and the VCC

LAIe_VCC = − ln(Pcrown)/G · V CC. (10)

The LAIe, LAIe_VCC, and LAIcell are all values in each
grid cell and have different degrees of clumping. We split the
total clumping into two parts

�VCC = LAIe/LAIe_VCC (11)

�PATH = LAIe_VCC/LAIcell (12)

where �VCC represents the clumping effect between crowns;
the difference between LAIe and LAIe_VCC is due to the
between-crown clumping, which is dominated by the VCC;
and �PATH represents the clumping effect within crowns; the
difference between LAIe_VCC and LAI is due to the within-
crown clumping, which is caused by the heterogeneous spatial
distribution of vertical leaf profile and can be eliminated by
the path length distribution model.

IV. RESULTS

A. Gap Probability From Laser Penetration Metric (LPM)

Several LPMs were validated using field photography
(Fig. 5). The total gap probabilities from the LPM for each
grid cell were calculated for comparison with the field data.

The results show that LPMall and LPMSolberg perform the
best against the field data, with an RMSE of 0.07. LPMfirst is
generally lower than the field gap fraction, while LPMlast is
higher than the field gap fraction. Their trends and accuracy
are consistent with those in [28] and [48].

The underestimation of LPMfirst and overestimation of
LPMlast are understandable because certain laser pulses hitting
canopies have canopy echoes as first returns and ground echoes
as last returns, due to the large footprints. When a pulse has
both canopy and ground returns, its footprint is occupied partly
by the canopy and partly by the ground, rather than being pure
canopy or pure ground. LPMfirst regards these mixed areas as
pure canopy and thus underestimates the fraction of ground,
while LPMlast regards these mixed areas as pure ground and
thus overestimates the fraction of ground. Both LPMall and
LPMSolberg utilize first and last returns, thus balancing the
contributions of first and last returns. The difference between
LPMall and LPMSolberg is very small, although LPMall also
utilizes the intermediate returns. This is because the propor-
tion of intermediate returns is very small, being only 3.7%,
3.7%, and 5.7% of that of the first, last, and single returns,
respectively.

The results show that both LPMall and LPMSolberg are capa-
ble of representing gap probability well and have very little
difference; thus, LPMall can be used for further processing.

B. Path Length From Canopy Height Model (CHM)
The CHM was generated with a resolution of 0.5 m (Fig. 6).

In total, 99.9% of pixels in the research area have a height of
less than 30 m. The rivers, roads, and channels appear clearly
on the map, with heights of approximately 0 m. Some traces
of tree rotation can also be found, for example, in the bottom
left part of the image. Tall trees are generally distributed deep

Fig. 5. Validation of the LPMs using field photography. (a) LPM calculated
with all returns. (b) LPM calculated with only first returns. (c) LPM calculated
with only last returns. (d) Solberg’s LPM calculated with first and last returns.

Fig. 6. Pit-free CHM generated with a 0.5-m resolution using the ALS data.

in the mountains. The results show that the CHM is able to
well characterize the upper envelope of the forest. As the ALS
data are near nadir, with the scanning zenith generally less
than 12° and a cosine larger than 0.978, the influence of the
zenith angle is lower than 3%. Thus, the vertical height of the
CHM is used as the path length of the laser pulse.

C. LAI
The LAI was generated using the LPMs and CHM in the

path length distribution model (Fig. 7). The largest LAI was
mainly distributed in dense forests in the mountains and in
a forest-grassland transition zones. According to our field
survey, we found that there is better underlying vegetation in
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Fig. 7. LAI generated with a 5-m resolution using the ALS data using the
path length distribution model.

Fig. 8. Field validation of the LAI from the ALS data using the path length
distribution model.

the forest-grassland transition zones due to better lighting and
watering. Meanwhile, in dense forests, most light is generally
blocked by the trees, and there is less water in the mountains
than in the forest-grassland transition zones near a river. In the
forest-grassland transition zones near a river, the underlying
vegetation is generally very dense and nearly 2 m in height,
and the gap probability is much lower than that in the forests.
In addition, there are also some trees in the forest-grassland
transition zones, although not as many as in the forests. These
trees and well-grown underlying vegetation lead to a high LAI
in these areas.

ALS LAIs from the path length distribution model generally
characterize the clumping-corrected LAIs, with an RMSE
of 0.41 (Fig. 8). The ALS LAIs of most sites are in good
agreement with the field measurements, with a difference of
less than 0.5, while a difference from 0.5 to 1 was found
in several plots, which is not as good as expected. These
differences might come from the differences in the mechanism
and resolution between the ALS data and the upward camera.
The pattern of LAI validation is similar to that of the LPM
validation (Fig. 5) and will be discussed in Section V. A similar

large error was also found in previous ALS studies of the LAIe
estimation [26], [47], [48].

The LAIs of different resolutions were compared, and the
results are generally consistent, especially when the LAI and
the pixel size are not very large (Fig. 9). The LAIs of different
resolutions are aggregated to 500-m pixels for comparisons.
The average differences of all pixels are less than 5% from
5- to 250-m resolutions [Fig. 9(a)–(e)] and 6% between
5- and 500-m resolutions [Fig. 9(f)]. The differences become
larger when larger resolutions are compared. This could occur
because the variation of FAVD becomes greater for larger
pixels. The consistency indicates that implementation of the
path length distribution model on ALS data is not sensitive to
the resolution. Note that the 5-m-resolution data already have
enough cloud points and path length distribution information
for statistics for each grid cell, which is a requirement for
obtaining reasonable results.

V. DISCUSSION

A. Clumping Index at Different Scales
Three maps of the clumping index were then calculated to

analyze the spatial pattern of the clumping effect at different
scales. The clumping index between crowns �VCC [Fig. 10(b)]
contributes the most information to the spatial pattern of the
total clumping index �ALL [Fig. 10(a)], while the clumping
index within crowns �PATH [Fig. 10(c)] is more homogeneous
spatially. This phenomenon is understandable, as the between-
crown clumping is more related to the spatial distribution
of canopies and the large gaps between crowns, while the
within-crown clumping is more related to the shape of the
tree crowns. The between-crown clumping map [Fig. 10(b)]
is visually correlated with the CHM map (Fig. 6), because the
between-crown clumping is calculated based on VCC, which
is the proportion of areas higher than a height threshold and
is related to CHM. The areas with continuously large canopy
heights are dense forests which have more trees and smaller
gaps between the crowns, resulting in a smaller VCC and a
larger clumping index. The areas with low canopy heights have
fewer trees and greater gaps between the crowns and thus are
more clumped and have a smaller between-crown clumping
index. The difference in the within-crown clumping index
between the different land covers is less obvious [Fig. 10(c)],
indicating the between-crown clumping contributes most of
the spatial variance and the two clumping indices are well
separated. The between-crown clumping is influenced by the
density and size of trees, which vary with different species
and even different locations of the same species. The within-
crown clumping is influenced by the collective effect of the
crown shape and the leaf area density within crowns, which
might vary with different species. The within-crown clumping
is less variable because the variance of crown shape and leaf
area density is generally smaller than that of the tree density.

B. Validity of Correcting Clumping Effect Using the Path
Length Distribution Model

The ALS clumping index was compared with field measure-
ment (Table II). The ALS clumping index generally agrees
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Fig. 9. Comparison of the LAIs with different resolutions. The LAIs of different resolutions are aggregated to 500-m pixels for comparison.

Fig. 10. Clumping index maps at different scales. (a) Clumping index in total. (b) Clumping index between crowns. (c) Clumping index within crowns.

with that of the field measurement, with an average difference
of approximately 0.05. This difference is not large, since there
is also a difference of 0.04 between field photography and
TRAC measurement. These differences might mainly come
from the differences in data acquisition mechanism between
the ALS and the field measurements, which result in different
input data at different resolutions. The difference in the LAIe,
which comes from the gap probability [Fig. 5(a)], also propa-
gated to the clumping index, because the LAIe is the numerator
for calculating clumping index. There are observation towers
for other instruments installed in some sites, which might have
more influences on the field observations on large zenith angle
than the near-nadir ALS measurement. Differences between
the mechanisms of the ALS and upward camera do exist and
are another source of the differences in validation. In addi-
tion, some of the field sites are on a sloping terrain with
a slope of approximately 15°; thus, the slope effect might
also bring some uncertainties to the field measurements and
validation.

The main advantage of using the path length distribution
is that it is a physical model utilizing the advantage of
3-D information while avoiding the disadvantage of identi-
fying small gaps with large-footprint ALS data. The path
length distribution model itself does not have many para-
meters to adjust and is thus convenient and comparable for
application. The consistency between the results at different
resolutions also demonstrates its stability and potential for
application.

C. Accuracy of the LPM as a Proxy of Gap Probability
The LPM data are an important data source for the LAI

estimation. The pattern of the LAI validation (Fig. 8) is similar
to that of the LPM validation [Fig. 5(a)].

There are still some differences in mechanism and resolu-
tion. First, the upward camera has a much higher resolution
(higher than 0.01 m), which can be used to quantify the
proportion of sky and trees more precisely, while the ALS
has a much larger footprint (0.4 m). Second, their coverages
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TABLE II

CLUMPING INDEX OF ALS, FIELD PHOTOGRAPHY, AND TRAC
IN 18 FIELD SITES. TRAC MEASUREMENTS

WERE MADE ON 13 SITES

are also different; the ALS generally has a full coverage
of the whole plot, with hundreds of large footprints, while
the upward photographs cover parts of the plot, especially
after cropping. The upward photography and downward LPM
are equally limited, but their agreement is comforting. Thus,
there are still some differences between the LPM of ALS and
the gap probability of upward photography [Fig. 5(a)]; these
differences further propagate to the LAI (Fig. 8). There is a
maximum error of 0.13 in gap probability [Fig. 5(a)], which
results in a maximum error of 0.8 in LAIe and will be further
magnified after considering the clumping.

The use of small-footprint and high-density data should be
helpful for better characterizing gap probability, as the canopy
and ground returns will be less mixed and there will be more
returns in each grid cell.

D. Accuracy of CHM as a Proxy of Path Length Distribution

The height in each grid cell was used as the path length
in this paper due to the limitations of the ALS footprint
and point density. The CHM is able to characterize the
relative path length distribution roughly, while there are still
some differences. The returns at the top of the canopies
and the ground are the most complete and informative
and thus were used to extract the path length distribution
in this paper. Although we believe that the relative ratios
of the path lengths are similar, the use of heights will
underestimate the changes in path lengths. The impact of
the CHM will be reduced by the VCC, as path length

Fig. 11. Comparison of LAI using two field-based methods.

modeling is only used for correcting the clumping effect within
crowns.

Extracting the lower envelope of the canopies in the ALS
point data is difficult due to the much lower point density in
the lower part of the canopies. In addition, the ALS pulses do
not always have returns exactly within the lower boundary of
the canopies. The waveform data might have the potential for
extracting a more accurate path length, as the lower envelope
is clearer in the waveform profile. Alternative methods, such
as the cloth simulation filter [62], could also be tested for
extracting ground points.

E. Matching Lidar and Field Measurements

Matching lidar and field measurements is important for
comparison due to the variety in observation angles, projected
areas, and LAI definitions.

Matching the observation angle is necessary when compar-
ing the gap probability, as the gap probability changes with
the zenith angle even in a homogenous scene due to the
change in path length. The ALS data generally have small
observation angles, while some field instruments, such as
LAI-2000, Fisheye camera, and TRAC, have larger observa-
tion zenith angles or wider FOVs. In this paper, only upward
photography was used for gap probability validation after
being cropped to an FOV similar to that of ALS. Both TRAC
and upward photography were used for correcting clumping
effect, and the results show that the final LAI validation with
upward photography (RMSE = 0.41) is slightly better than
that with TRAC (RMSE = 0.45). It is not a question of
which instrument is better, because these two sets of data
generally agree with each other well (Fig. 11), but more
whether the viewing direction and FOV of the ALS and
upward photography match better. The use of the near-vertical
gap probability in field measurements was also highlighted
in several previous studies, and their results showed that
using a smaller zenith angle close to the ALS data produced
better results [48], [60]. Considering the observation angle
of airborne lidar is also important, because sometimes the
airborne lidar collects data without an accurate gyro stabilizer,
especially in a small aircraft or an unmanned aerial vehicle.
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The aircraft attitude can propagate to the laser pulse and
enlarge the observation zenith. We recommend a small FOV
for ALS acquisition to maintain the consistency of observation
angle and data processing.

The LAI was used for the final validation because the LAI
is defined vertically and thus has fewer problems in matching
the observation zenith angles, as the change in path length
caused by the observation angle has been considered in the
LAI calculation with a cosine correction. The gap probability
at different angles was converted into the LAI for different
representative areas.

Matching the LAI definition was also considered in this
comparison. The same basic theory, same viewing angle, and
same classification were adopted in processing the ALS and
photography data to reduce the uncertainties in comparison.
They are comparable and enough for clumping validation
because both the results of the ALS and upward photography
data are clumping-corrected area index without considering
woody component, G function, and needle-to-shoot area ratio.
Because the leafy component and woody component are not
distinguishable in both the ALS and upward photography data,
the results of both the ALS and upward photography consist of
the contribution of all plant components and thus represent the
PAI for both. In addition, their G functions are also the same,
as the ALS and upward photography have similar viewing
angles. Since Beer’s law-based method was used for both the
ALS and upward photography, the G function has the same
contribution and does not influence the comparison.

VI. CONCLUSION

We present a grid cell method based on path length distri-
bution model to calculate the clumping-corrected LAI using
the ALS data independently without additional measurements.
Various useful and practical indicators, including ALS-derived
gap probability and crown cover from laser penetration indices
and path length distribution from local canopy height distri-
bution, were brought together to comprehensively model the
clumping effect and LAI.

Both the between-crown and within-crown clumping effects
are corrected. The between-crown clumping is corrected by
separating the within- and between-crown areas, and the
within-crown clumping is corrected by using path length
distribution as estimated by local canopy height distribution
to consider the 3-D foliage profile. The main advantage of
using the path length distribution is that it is a physical model
utilizing the advantage of 3-D information while avoiding the
disadvantage of identifying small gaps with large-footprint
ALS data.

The lidar gap probability and path length distribution are the
main inputs and main factors influencing the LAI estimation
accuracy. The LPM and CHM were used as proxies of the gap
probability and path length distribution, respectively. The LPM
that uses both first and last returns provides a more reasonable
estimation of gap probability. The CHM roughly characterizes
the change in path lengths, while might slightly underestimate
their magnitudes.

Limited field data show that the results are promising and a
multilevel clumping analysis is consistent with the landscape

flown. With the 0.4-m-footprint ALS data in this paper, the
results show that the path length distribution model is capable
of characterizing the clumping-corrected LAI robustly and
rapidly in a large area. The ALS LAIs of different resolu-
tions are consistent, with a difference of less than 5% from
5- to 250-m resolutions. The path length distribution model
itself does not have many parameters to adjust and is thus
convenient and comparable for application. Due to its con-
sistency with the resolution and its simple configuration,
the method provides an opportunity to map the clumping-
corrected LAI operationally and to strengthen the ability of
airborne lidar to validate the remote sensing products and to
monitor vegetation changes. This grid cell method based on
path length distribution is worth further testing and application
using more recent laser technology.
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