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Abstract

Both robotic and virtual agents could one day be equipped with social abilities necessary for effective and natural interaction with
human beings. Although virtual agents are relatively inexpensive and flexible, they lack the physical embodiment present in robotic
agents. Surprisingly, the role of embodiment and physical presence for enriching human-robot-interaction is still unclear. This paper
explores how these unique features of robotic agents influence three major elements of human-robot face-to-face communication,
namely the perception of visual speech, facial expression, and eye-gaze. We used a quantitative approach to disentangle the role
of embodiment from the physical presence of a social robot, called Ryan, with three different agents (robot, telepresent robot, and
virtual agent), as well as with an actual human. We used a robot with a retro-projected face for this study, since the same animation
from a virtual agent could be projected to this robotic face, thus allowing comparison of the virtual agent’s animation behaviors
with both telepresent and the physically present robotic agents. The results of our studies indicate that the eye gaze and certain
facial expressions are perceived more accurately when the embodied agent is physically present than when it is displayed on a 2D
screen either as a telepresent or a virtual agent. Conversely, we find no evidence that either the embodiment or the presence of the
robot improves the perception of visual speech, regardless of syntactic or semantic cues. Comparison of our findings with previous
studies also indicates that the role of embodiment and presence should not be generalized without considering the limitations of the
embodied agents.
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1. Introduction

Social robotics is a rapidly emerging field, which aims to
develop robots capable of communicating and interacting with
human users in a socio-emotional way (Dautenhahn, 2007; Br-
eazeal, 2005). This is owing to advancements in computer tech-5

nology, artificial intelligence, and recent innovations in virtual
reality and computer graphics. The population of robotic agents
including social and humanoid robots made in 2008 was about
8.6 million units (Guizzo, 2010) with a projected annual growth
rate of 17% (IDC, 2016). Virtual agents, on the other hand, have10

received considerable attention in recent years as social agents
(e.g. for museum guidance (Kopp et al., 2005), education (Vala
et al., 2007), entertainment (Hartholt et al., 2009), and training
for job interviews (Hoque et al., 2013)) due to the flexibility of
computer rendered faces and the ubiquity of computer screens15

on mobile devices. Virtual agents are often used when a phys-
ical task or interaction such as moving objects is unnecessary.
As robotic technologies are focusing more on improving so-
cial interaction with users, determining which kinds of robots
or virtual agents are best suited for social interaction becomes20
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increasingly important. One fundamental research question is
what would be the difference between virtual agents and robots
in terms of human interaction, particularly in perceiving major
elements of face-to-face communication (both verbal and non-
verbal facial cues and skills).25

The most salient difference between a robot and a virtual
agent on a computer screen is physical embodiment. Several
investigations have compared various elements of social inter-
action among robots and virtual agents (Kidd and Breazeal,
2004; Ju and Sirkin, 2010; Fujimura et al., 2010; Delaunay30

et al., 2010; Al Moubayed et al., 2013; Mollahosseini et al.,
2014), and the majority of these investigations suggested that
the physicality of the robot benefits user interaction. However,
in the majority of these experiments, a robot with physical em-
bodiment was physically present in front of the subjects. This35

is potentially problematic since the subject’s percepts and eval-
uations may be affected not only by the robot’s embodiment but
also by its presence.

Some researchers evaluated the role of presence by compar-
ing a robotic agent with its telepresence or an animated/computer-40

rendered version of the robot (Kidd and Breazeal, 2004; Lee
et al., 2006; Kose-Bagci et al., 2009; Bainbridge et al., 2011).
The majority of these investigations suggested that the presence
of the robot improves user interaction and social aspects of the
robot. However, as shown in Figure 1, few have compared all45

three conditions in the same experiment/platform. Also, the

Email addresses: ali.mollahosseini@du.edu (Ali Mollahosseini), 
habdolla@du.edu (Hojjat Abdollahi), Timothy.Sweeny@du.edu (Timothy 
D. Sweeny), rcole@boulderlearning.com (Ron Cole), mmahoor@du.edu
(Mohammad H. Mahoor)

Preprint submitted to International Journal of Human-Computer Studies -- 
Accepted for Publication

April 20, 2018



(Kidd and Breazeal, 2004)
(Kose-Bagci et al., 2009)

(Lee et al., 2006)
(Bainbridge et al., 2011)

(Wainer et al., 2007)
(Kiesler et al., 2008)

This work

(Li and Chignell, 2011)

(Kidd and Breazeal, 2004) (Ju and Sirkin, 2010) (Fujimura et al., 2010)
(Delaunay et al., 2010) (Al Moubayed et al., 2013) (Mollahosseini et al., 2014)

Figure 1: Comparison of presence and embodiment dimensions across three categories of experimental stimuli in the literature (inspired from Li (2015)). The
majority of studies do not distinguish the telepresence of a robot (physical embodiment) from the copresence of a robot (physical presence).

majority of these studies compared the influence of these agents
on social elements such as likability (Kiesler et al., 2008), en-
joyment (Wainer et al., 2007), etc. by requiring subjects to com-
plete a questionnaire after interaction in the lab. Although the50

reliability of questionnaires can be validated by measurements
such as Cronbach’s Alpha (Cronbach, 1951), self-report may be
an inaccurate quantitative measure, especially with small sam-
ple sizes. Hence, better quantitative measures are necessary to
determine whether a physically present robotic agent can pro-55

duce different, and perhaps superior experiences compared to a
screen-based version of the same robot.

Recently, retro-projected robotic heads have received much
attention (Al Moubayed et al., 2013; Mollahosseini et al., 2014).
Retro-projected robotic heads harness character-animation tech-60

nologies to create an animated human face (aka avatar) and then
project this avatar onto a face-shaped translucent mask. The
mask and the projector can then be rigged onto a neck mecha-
nism that can move like a human head. By virtue of the com-
puter graphics used to generate the avatar, highly realistic, accu-65

rate, and dynamic animations can be generated. These avatars
can range from cartoon-like to photo-realistic faces and are usu-
ally able to show natural visual speech and facial expressions.

This paper studies the role of embodiment and presence in
human perception of a retro-projected robot’s facial cues. We70

used a retro-projected robotic head for this study, since the same
animation from a virtual agent could be projected to this robotic
face, thus allowing comparison of the virtual agent’s animation
behaviors with both telepresent and physically present robotic
agents. Because face-to-face communication is an important75

method of social interaction which plays a major role in indi-
viduals’ socialization and experience (Kendon et al., 1975), we
focus on three major elements of face-to-face communication—
visual speech, facial expression, and eye-gaze. We leverage

three different agency conditions (copresent robot, telepresent80

robot, and virtual agent) to evaluate whether the embodiment
and presence of a social robot provides any extra value for
discriminating these social cues compared with an on-screen
animation. Similar to other robotic platforms, retro-projected
robots have some limitations (e.g., the mask is static and the85

jaw and lip movements are only optical). We consider these
limitations in this study.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the definition of physical embodiment and pres-
ence and then defines research questions of this study. Section 390

introduces the robotic platform used in this study. Sections 4,
5, and 6 study the role of embodiment and presence in percep-
tion of a robot’s visual speech, facial expression, and eye gaze,
respectively. In each of these sections, a brief review of prior
work, the algorithm used to generate the facial cues, the exper-95

iments and settings, and the results, as well as a discussion of
the results and comparison with previous studies are presented.
Finally, Section 7 concludes the paper.

2. Embodiment and Presence

Socially Intelligent Agents (SIAs) are systems that are able100

to connect and interface to humans via the ability to show as-
pects of human-style social intelligence (Dautenhahn, 1998).
These agents can have a wide range of forms, some of which
have physical bodies (e.g. a robot) or virtual observable bod-
ies/faces (e.g. an intelligent avatar), and some of which inter-105

act with others using only voice or text without having any ap-
pearance (e.g. Siri). Since body gesture and expressions play
a crucial role in social interactions and communication (e.g.,
body language, head gesture, facial expressions, speech, etc.),
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researchers try to build SIAs that closely mimic the appear-110

ance, behavior, and social skills of human beings (Dautenhahn,
2001). The field of “embodied conversational agents” is an ex-
cellent example of this approach (Cassell, 2000).

Mimicking the appearance of humans in SIAs or “tighter
coupling of the [human] body to the interface” (Biocca, 1997)115

is viewed as central for providing the embodiment to the agents.
This embodiment can be both virtual (e.g., embodied conver-
sational virtual agents) and physical (e.g., robot). Pfeifer and
Scheier (1999) defined the physical embodiment in intelligent
robots as “a term used to refer to the fact that intelligence cannot120

merely exist in the form of an abstract algorithm but requires a
physical instantiation, a body.”

In-line with this definition, much work has examined the
role of embodiment with regard to a variety of social interac-
tion elements such as persuasion (Ju and Sirkin, 2010), like-125

ability (Kidd and Breazeal, 2004; Kiesler et al., 2008), enjoy-
ment (Wainer et al., 2007), trustworthiness (Kidd and Breazeal,
2004), helpfulness (Wainer et al., 2007), direct gaze recognition
(Ju and Sirkin, 2010), and ease of interaction (Fujimura et al.,
2010). The majority of these reports claimed that the physical-130

ity of the robot benefited user interaction. However, many of
these studies did not distinguish physical embodiment from the
copresence of the robot.

Copresence is a sociological concept describing the condi-
tion in which human individuals interact with each other (Goff-135

man, 1963; Zhao, 2003). In our case, copresence refers to how
the agent is presented to the user. Zhao (2003) defined cop-
resence in two dimensions: 1) the mode of being with others
(i.e., physical conditions that structure human interaction), and
2) the sense of being with others (i.e., subjective experience of140

being with others). The mode of copresence is related to the
concept of “distance” in the taxonomy of copresence, which
can be physical proximity (within range of the naked senses)
or electronic proximity (outside the range of the naked senses
but within the range of senses extended through electronic me-145

dia) (Li, 2015). In real-world environments, physical and digi-
tal presence correspond to “copresence” and “telepresence,” re-
spectively (Zhao, 2003). The mode of copresence is also sim-
ilar to the concept of “directness” in the literature (Milgram
et al., 1995; Li, 2015). Physical and digital presence can be150

simply defined as a situation in which the embodied agent can
be touched (or can touch the person). In other words, as Mil-
gram et al. (1995) stated: “[Physical or digital presence:] [the
condition] whether primary world objects are viewed directly
or by means of some electronic synthesis process.”155

The mode of copresence (e.g., physical or digital) can af-
fect a person’s sense of copresence or “social presence” (Zhao,
2003). Some researchers evaluated the role of presence by com-
paring a robotic agent with its telepresence or a video of the
robot (Kidd and Breazeal, 2004; Lee et al., 2006; Kose-Bagci160

et al., 2009; Bainbridge et al., 2011). For example, Bainbridge
et al. (2011) studied the role of physical presence in a simple
collaborative task with a humanoid robot that was either phys-
ically present or displayed via a live video or an augmented
video feed. Multiple social interaction aspects such as greet-165

ings, cooperation, trust, and personal space were examined in

different parts of the task. Participants in the experiment filled
out a questionnaire aimed to evaluate different interactive ex-
periences such as general impressions, characteristics of the in-
teractions, etc. The questionnaire data suggested that overall,170

participants had a more positive interaction with the physically
present robot.

In a recent survey (Li, 2015), the effects of physical em-
bodiment and physical presence were explored through a study
of 33 experimental works to compare how people interact with175

1) physically present robots, 2) telepresent robots, and 3) virtual
agents. The study showed that physical presence plays a greater
role in determining a person’s response to an agent than phys-
ical embodiment. The methods used in these studies include
post-treatment questionnaires or measuring subjects’ behaviors180

during laboratory experiments. Among these 33 studies, how-
ever, few compared all three conditions in the same experiment/
platform (See Fig. 1).

2.1. Research Questions

Based on the above and since face-to-face interaction is one185

of the essential elements of a social system, we have designed
three research questions to be addressed in this paper:

• Q1: What is the effect of physical embodiment on per-
ception of agents’ facial cues (telepresent robot vs. vir-
tual agent)?190

• Q2: What is the effect of physical presence on percep-
tion of agents’ facial cues (copresent robot vs. telepresent
robot)?

• Q3: What is the joint effect of physical embodiment and
presence on perception of agents’ facial cues (copresent195

robot vs. virtual agent)?

In order to answer these research questions, we studied three
major facial cues (i.e., visual speech, facial expressions and eye
gaze) in this investigation. Each experiment included four con-
ditions:200

1. Virtual Agent (VA): An animated face was presented
on a 2D screen.

2. Copresent Robot (CR): The robot was physically present
in front of each subject.

3. Telepresent Robot (TR): A video or still image of the205

robotic head was presented to each subject. The videos/
images were captured in a frontal angle of the physical
agent, and the face in the video was scaled to match the
size of the copresent robot.

4. Human Ground-Truth (GT): A human performed the210

task instead of the agent in front of each subject, or the
subject was presented with a video recording of the hu-
man. If a video was presented, the size of the face in the
video was scaled to match the size of the virtual agent’s
face. The purpose of performing the experiments with215

GT (human) is to evaluate what we expected to be opti-
mal perception of social cues in our research setting.
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In all four conditions, subjects were seated in front of the
agent, with the same viewing angle and distance between the
subjects and the agent. We used a retro-projected robotic head220

for this study since computer graphic generated avatars can show
natural visual speech and facial expressions, and the same vir-
tual agent animation behaviors can be compared with telep-
resent and physically present robotic agents. Similar to other
robotic platforms, retro-projected robots have some limitations.225

For instance, Android robotic heads are limited by the number
of actuators used in their face, or non-humanoid robots may not
be able to show facial expressions. Similarly, since the mask is
static in retro-project robotic heads, the jaw and lip movements
are only optical and some facial movements (such as nose wrin-230

kling during the expression of disgust) cannot be shown. There-
fore, the findings of this investigation cannot be generalized to
all other embodiments without considering the relevant differ-
ences between the embodied agents.

3. Robotic Platform235

Major obstacles for developing realistic robotic faces lie
in limitations of the actuators and the skin. The Facial Ac-
tion Coding System (FACS) (Ekman and Friesen, 1978) codes
for approximately 40 primary facial muscles movements (AUs)
that are involved in producing facial expressions and mouth240

movements during speech. Because these actions can be very
subtle and quick, mechanical actuators often fail to mimic them.
Also, due to cost and space constraints, Android robotic heads
have few actuators, and their faces are relatively larger than an
average head. For example, the Geminoid H1 robot (Nishio245

et al., 2007) is approximately five percent larger than its human
counterpart (Bartneck and Lyons, 2007). Additionally, the skin
of Android robots, which is often made of latex, can produce
unnatural wrinkles and folds on the robot’s face. For these rea-
sons, and because we aimed to study the effect of embodiment250

and presence of a robot compared with a virtual agent, we chose
a retro-projected robotic platform that can portray natural and
realistic facial animation.

In this study, we used Ryan (DreamFace-Tech., 2015), a
social robot with the capability of showing facial expressions,255

eye gaze, visual speech, facial emotion recognition, and sub-
ject movement tracking. Ryan uses state-of-the-art character
animation technology that is able to show natural visual speech
and facial expressions. This platform is designed for face-to-
face communication with individuals in different social, learn-260

ing, and therapeutic contexts.
Ryan (shown in Fig. 2) has a torso equipped with a 10”

LCD touch screen which can be used to gather sensory input,
display videos, and play games with users. Ryan is equipped
with a Microsoft Kinect to track users’ movements and two sta-265

tionary arms for an increased sense of realism. The neck has
two degrees of freedom (DoF) providing a total of 180◦ of yaw,
and 45◦ of pitch. The neck system controls the projector and
mask position allowing it to be rotated by the robot application
to track faces and head gestures. We developed a face anima-270

tion system in C# .Net using Microsoft XNA game engine. A

Figure 2: Ryan, the social robot.

graphic artist designed 3D models of different facial expres-
sions and lip movements. The animation software blended the
face models to produce accurate natural visual speech and facial
expressions based on a multi-target morphing method described275

in (Ma and Cole, 2004; Mollahosseini et al., 2014). The anima-
tion system was used for the virtual agent condition in the rest
of the experiments. The same animation was calibrated using
the algorithm presented in (Mollahosseini et al., 2014) and then
was projected on Ryan’s mask.280

Animations are based on a multi-target morphing method
(Ma and Cole, 2004; Mollahosseini et al., 2014) and .

4. Visual Speech

Visual speech includes the visible oral cues (e.g., movement
of the lips, tongue, and jaw) during speech production. These285

visual cues are not simply a by-product of speech production;
they influence auditory perception of speech and vice versa. For
example, McGurk and MacDonald (1976) showed that percep-
tion of mouth movements can affect the auditory perception of
speech and Sweeny et al. (2012a) showed that hearing speech290

sounds influences the perception of simple visual shapes.
Considering the importance of speech and dialogue in so-

cial interaction, it is not surprising that many social robotic
platforms have the capability of showing lip synchronization
with auditory speech. Mechanical and Android robotic plat-295

forms such as Kismet (Breazeal, 2000), HRP-4C (Kajita et al.,
2011), FR-i (Oh et al., 2010), Luo Head (Luo et al., 2011) and
Alex (Lin et al., 2013) have relatively basic visual speech due
to limited actuators and mechanical components that are neces-
sary to control the jaw movements. Virtual agents, on the other300

hand, have a greater capability for depicting natural visual sp-
eech, since advanced computer graphics can be used to gener-
ate highly realistic, accurate, and dynamic animations. Nev-
ertheless, lack of physical embodiment and physical presence
may constrain the perception of speech in virtual agents. Rear-305

projected robotic platforms also use computer animation and
can thus have faster and smoother lip movement compared with
mechanical and Android robots as actuators are not used to con-
trol the visual speech. However, since the mask is static (and
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therefore the jaw and lips), they might introduce inconsistency310

between the animation and the final projected face, and possi-
bly even hinder the perception of visual speech . Therefore,
it is necessary to study the role of embodiment and presence,
especially in this type of robotic heads.

4.1. Related Work315

Studies show that virtual embodied talking agents enhance
the level of engagement, increase speech comprehension in noisy
environments, make agents appear more realistic, and users tend
to spend more time with these systems compared to the agents
equipped with only voice (Walker et al., 1994; Lester et al.,320

1999). Siciliano et al. (2003) compared SynFace Virtual Agent
(VA) with audio (without visual speech) and video of a human,
and concluded that visual-based speech perceptibility of this
virtual agent is better than audio only, whereas it is significantly
lower than audio-visual perceptibility of human visual speech.325

Ouni et al. (2003) performed a similar experiment on Baldi vir-
tual agent. They eliminated syntactic and semantic cues by
evaluating the perception of visual speech on a non-meaningful
series of three Arabic words, and they concluded that speech is
better perceived on VA with visual speech than with auditory330

information only, but still nevertheless significantly lower than
audio-visual perceptibility of human visual speech.

Only a few studies have compared the role of embodiment
and presence of robotic agents in audio-visual speech percep-
tion. Al Moubayed et al. (2013) investigated the role of em-335

bodiment of a copresent robotic agent for improving the per-
ception of visual speech. A facial animation on a 2D screen
was compared with a retro-projection of the same animation
using Furhat (Al Moubayed et al., 2012) and a video of humans
from different viewing angles. A collection of short and ev-340

eryday Swedish sentences with a length of three to six words
in each sentence was created. The audio signal quality was
reduced using band-pass filtering in specified frequencies and
replaced with white noise. Six conditions were studied: audio
only, virtual agent viewed at frontal and 45◦ angle, copresence345

of a robot viewed at frontal and 45◦ angle, and the original video
recordings of the sentences viewed at the frontal angle. Fifteen
sentences were examined in each condition. Auditory-visual
perceptual sensitivity was measured as the number of correctly
recognized words divided by the number of words in each sen-350

tence. This study, conducted on ten subjects with normal hear-
ing, showed that audio-visual speech perceptibility was better
perceived with the copresent robot (even though the jaw did
not move in the mask), compared with the virtual agent on a
flat screen. However, there was no significant difference in the355

audio-visual perceptibility of the face when it was looked at ei-
ther from a front-view or a 45◦ angle on both the virtual agent
and robot.

Mollahosseini et al. (2014) studied individuals’ experiences
and impressions of a proposed visual speech algorithm. In par-360

ticular, they compared judgments of speech production quality
of a virtual agent with retro-projection of the same animation
using ExpressionBot. Two short segments of speech were pre-
sented with two different lip synchronization approaches (i.e.,
a proposed approach with kernel smoothing and lip closure in365

labial phonemes and a basic approach without any further smooth-
ing and processing). The participants (23 typical adults) rated
how realistic the visual speech looked on a scale from 0 to 5.
Results showed a significant preference for the proposed lip
synchronization approach over the basic approach. However,370

there was no difference in preference for visual speech from the
virtual agent compared with the copresent robot.

Table 1 summarizes the results of studies on audio-visual
speech perceptibility. As shown, none of these studies com-
pared all three conditions of CR, TR, and VA to distinguish the375

role of embodiment from the presence of an intelligent agent
in perception of visual speech. In this paper, we studied the
perception of visual speech from three different types of emo-
tional agents (i.e. VA, TR, CR) as well as from a human (as the
optimal case) and based on auditory information alone (as the380

baseline) using the same experimental setup. Since the method-
ology and evaluation metrics of evaluating visual speech per-
ception are not standard across the literature, we introduced a
new test of visual speech perception along with standard criteria
to evaluate the visual speech perception.385

4.2. Methodology

We used the same visual speech algorithm presented in (Mol-
lahosseini et al., 2014), which is based on a multi-target morph-
ing method (Ma and Cole, 2004). In particular, the recorded ut-
terances are processed by the Bavieca speech recognizer (Bolanos,390

2012), which receives the sequence of words and the speech
waveform as input and provides a time-aligned phonetic tran-
scription of the spoken utterance. The aligned phonemes are
represented using the International Phonetic Alphabet (IPA), a
standard that is used to provide a unique symbolic notational395

for the realization of phonemes in all of the world’s languages
(IPA-Handbook, 1999). Having IPA in our system will allow us
to add other languages easily as long as the speech recognizer
is trained for that language.

For a given language, visually similar phonemes are grouped400

into units called visemes. For example, the consonants /b/,
/p/ and /m/ in the words “buy,” “pie,” and “my” form a sin-
gle viseme class. English phonemes are categorized into 20
viseme classes. These classes represent the articulation targets
that the lips and tongue move toward during speech production.405

A graphic artist designed 3D models of these viseme classes in
Maya. Finally, natural visual speech was obtained by blending
the proper models corresponding to each part of speech with
different weights.

The avatar system converts phonetic symbols into the cor-410

responding visemes, and synchronizes them with the audio sig-
nal. To achieve a smooth and realistic appearance, the algorithm
models coarticulation by smoothing across adjacent visemes
using a kernel technique, while ensuring lip closure for labial
phonemes (e.g., /b/, /m/, /p/).415

4.3. Visual Speech Experiment

Seventeen native English speakers, eight female and nine
males, with age range of 19-39 years (Mean= 27.7, SD=6.8)
and normal hearing evaluated the audio-visual speech in five
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Table 1: Summary and overview of literature comparing audio-visual speech in different conditions

Work Agent Condition* Description Results**CR TR VA GT

Siciliano et al.
(2003) SynFace X X

• 12 normal hearing (NH) and 13 hearing-impaired (HI)
listeners
• Audio signal was degraded for NH group
• Video of the original talker was used for GT

• Average perceptibility of VA increased by 22%
compared to audio only
• Perceptibility of VA was significantly lower than GT

Ouni et al. (2003) Baldi X X

• Non-meaningful series of three Arabic words presented
to 19 participants
• Total of 300 words and 100 trials
• Audio signal was degraded

• Average perceptibility of VA increased by 24%
compared to audio only
• Perceptibility of VA was 15% lower than GT

Al Moubayed
et al. (2013) Furhat X X X

• Audio-visual perception viewed at frontal and 45◦
angle.
• A collection of short Swedish sentences
• Reduced audio signal quality

• Audio-visual speech was better perceived on CR
compared with VA.
• No significant difference between frontal and 45◦ view
angle

Mollahosseini
et al. (2014) Expressionbot X X

• Two short segments of speech
• Examined two different lip synchronization approaches.
• Participant rated how realistic the visual speech looked
on a scale from 0 to 5

• Significant preference for the proposed visual speech
approach over basic method
• No significant preferences between CR and VA

This Work Ryan X X X X • Section 4.2 • Section 4.4
* CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot, Virtual Agent, and
Ground Truth (human) respectively.
** Only the relevant finding from the original papers are reported in this summary.

conditions (VA, CR, TR, GT, and audio only). Unlike the au-420

ditory speech (e.g., an evaluation of hearing ability), there is
not a standard methodology to evaluate the perception of visual
speech. Several researchers have thus developed their own ap-
proaches and evaluation criteria. The sets of sentences in the
majority of these studies (See Table 1) are not comprehensive425

and do not consider syntactic and semantic cues. Measures of
performance such as the number of correctly recognized words
divided by the number of words in each sentence (Al Moubayed
et al., 2013), or subjective evaluation of how realistic the visual
speech appeared (Mollahosseini et al., 2014) are not standard,430

either. To address this issue, we developed an Audio-Visual
Speech Perception In Noise (AV-SPIN) test to evaluate the per-
ception of visual speech using a systematic and standardized
approach. The AV-SPIN material, including videos, sentences,
and IPA aligned auditory information, will be publicly available435

to the research community.1

The Speech Perception In Noise (SPIN) test was developed
to address sensory and linguistic cognitive processes of every-
day speech (Elliott, 1995; Kalikow et al., 1977). SPIN consists
of 250 meaningful sentences categorized as High-Predictability440

(HP) sentences and 250 non-meaningful sentences categorized
as Low-Predictability (LP) sentences. The listener’s task is to
recognize the last word in each sentence (referred to as the key-
word). HP sentences contain syntactic and semantic cues help-
ful for predicting the keyword (e.g., The sleepy child took a445

nap), while LP sentences do not provide any cues predictive of
the keyword (e.g., Betty knew about the nap). The sentences
were divided into ten sets each containing 50 sentences (25 HP
and 25 LP sentences), where odd-numbered sets were comple-
mentary of even-numbered sets (i.e., same keywords were in450

the opposite type of sentence).
Bilger et al. (1984) studied the SPIN test on 128 listeners

(aged 19 to 69) with sensorineural hearing loss and proposed
a revision (R-SPIN) such that different sets produce equivalent
results. Particularly, 31 sentences and their complements were455

1A copy of AV-SPIN is available in: http://www.mohammadmahoor.com/

databases-codes/

eliminated, 19 sentence pairs were arbitrarily removed, and the
remaining sentences were redistributed to create 200 HP sen-
tences and their complementary 200 LP sentences. These 400
sentences were divided into eight sets each containing 50 sen-
tences (25 HP and 25 LP sentences), where odd-numbered sets460

were complementary of even-numbered sets. Traditionally the
R-SPIN is presented with ambient noise at a Signal-to-Noise
Ratio (SNR) of 8 dB.

Since R-SPIN is strictly auditory, audio-visual perceptibil-
ity cannot be examined with the original R-SPIN materials.465

Therefore, we created an AV-SPIN corpus by capturing a na-
tive English speaker’s face as she produced R-SPIN sentences.
Similar to the R-SPIN test, the quality of the audio signal was
degraded by babble noise. Since the subjects were not hearing-
impaired, the audio signal was presented at a high signal-to-470

noise ratio of -9 dB (i.e., the power of the noise was signifi-
cantly higher than the auditory speech signal).

In all conditions (VA, CR, TR, GT, and audio only), subjects
were seated in front of the agent at a distance of 60 cm. To
maintain voice consistency between the conditions, the audio475

signals were extracted from the videos and force-aligned using
Bavieca speech recognizer (Bolanos, 2012). Twenty sentences
(10 HP and 10 LP sentences) were randomly assigned to each
condition for each subject. A different set of sentences was used
to train the subjects at the beginning of the experiment.480

Each subject participated in all five conditions (audio-only,
VA, CR, TR, and GT) in a random order. The LP and HP sen-
tences in each condition were shuffled and were selected such
that each condition did not share any sentences. The sentences
were played only once, and at the end of each sentence, the485

subject had 30 seconds to write down the keyword (last word
in each sentence). The subjects could adjust the sound volume
at their convenience during the training period, but the same
audio volume was used in all conditions of the remaining ex-
periments. A set of headphones with the same audio volume490

was used in all the conditions. Since headphones were used,
the direction of the voice did not play a role in the perception of
speech. In addition, this allowed us to eliminate other roles, and

6

http://mohammadmahoor.com/databases-codes/
http://mohammadmahoor.com/databases-codes/


0

20

40

60

80

100

120

140

160

Audio VA TR CR GT

M
ea

n 
A

cc
ur

ac
y 

%

High Predictability Low Predictability

Figure 3: The average accuracy of audio-visual speech perception in different
conditions.

only study the psychological effect of presence/embodiment of
the robot. Each subject performed the experiment only once,495

since hearing a keyword in HP could have helped the subject to
identify it in an LP sentence.

4.4. Visual Speech Results

We performed a 2 (Predictability; HP, LP) × 5 (Condition;
VA, CR, TR, GT, and Audio-Only conditions) ANOVA with500

both predictability and agent as the within-subject factors. The
test showed a significant main effect of agent [F(4, 64) = 30.48,
p <.0001] and a significant main effect of predictability [F(1, 16)
= 134.55, p <.0001]. The interaction between agent condi-
tion and sentence predictability, however, was not significant505

[F(4, 64) = 1.44, n.s.].
Figure 3 shows the mean accuracy for each condition. To

measure whether the differences between different agent con-
ditions was significant, we performed a post-hoc Least Signifi-
cant Difference (LSD) analysis. Table 2 shows the significance510

of different comparisons using a post-hoc LSD analysis. All
other combinations not included in the table were significantly
different from each other. As Table 2 shows, VA (and all other
conditions) produced significantly better audio-visual percepti-
bility than the audio-only condition (p < .001). This confirms515

that visual information can affect speech perception, and shows
the efficacy of the visual speech algorithm. The ground-truth
(video of the human) had significantly higher audio-visual per-
ceptibility than the other conditions (p < .001), which indi-
cates that the proposed visual speech algorithm has room for520

improvement.
In order to measure the effect of predictability of the sen-

tence in only VA, TR and CR conditions, we performed a sep-
arate 2 (Predictability; HP, LP) × 3 (Condition; VA, CR, TR)
ANOVA with both predictability and agent condition as the525

within-subject factors. The analysis showed that the main effect
of predictability was still significant [F(1, 16) = 82.03, p <.0001],
however the main effect of agent was not significant [F(2, 32) =

.381, n.s.] nor was the interaction between agent condition and
predictability [F(2, 32) = 1.44, n.s.]. In other words, embodi-530

ment and presence did not improve the perception of visual sp-
eech regardless of syntactic and semantic cues in the sentences.

Our results indicated that physical embodiment (Research
Question 1), physical presence (Research Question 2), and the
joint effect of physical embodiment and presence (Research535

Question 3) did not differ in the extent to which they improved

Table 2: Post-hoc LSD statistical significance of the
different conditions in audio-visual speech perception.

Condition1 Condition2 p-value
Audio Other Conditions <.0001
Virtual Agent Tele-present Robot 0.949
Co-present Robot Virtual Agent 0.606
Co-present Robot Tele-present Robot 0.652
Ground-Truth Other Conditions <.0001

the perception of visual speech regardless of syntactic or se-
mantic cues in the sentences. This could be because the mask
was static and the jaw and lip movement were only optical in the
retro-projected robotic platform. Other types of embodiment,540

such as Android robots, may express different behaviors. How-
ever, since controlling natural lip movement on Android robots
necessitates several actuators and a very elastic skin, existing
Android robotic faces may even perform worse than computer
graphics animations.545

This finding is consistent with our earlier study (Mollahos-
seini et al., 2014), but inconsistent with the study by Al Mo-
ubayed et al. (2013), though similar retro-projection technol-
ogy with a static mask was used in both studies. It is unlikely
that the results were influenced by different visual speech al-550

gorithms. It is more likely that the difference between Al Mo-
ubayed et al. (2013) and our finding is due to different audio-
visual corpus and the perception criteria. The audio-visual cor-
pus used in the present study was a standard set considering the
syntactic and semantic cues in the sentences, while Al Mouba-555

yed et al. (2013) used a collection of short, everyday sentences
with the number of correctly recognized words divided by the
number of words in each sentence as the criterion of percep-
tion. Additionally, the sample size may also have affected the
results, as the study performed by Al Moubayed et al. (2013)560

was evaluated with ten subjects, compared to this study that 17
subjects participated in.

5. Facial Expressions

Facial expression is one of the most critical nonverbal chan-
nels used by human beings to convey emotion. Emotion is not565

only critical in creating more sensitive and effective intelligent
agents but also impacts how people respond to the agent (Beer
et al., 2011). Hence, facial expression is a vital component in
natural social interaction and Human-Robot Interaction (HRI)
systems, and has been employed in a variety of robots such570

as Kismet (Breazeal, 2003), the Philips iCat (Van-Breemen,
2004), Geminoid F (Becker-Asano and Ishiguro, 2011), and on-
screen agents (Cassell, 2000; Bruce et al., 2002).

Mechanical and Android robotic platforms control face move-
ment using actuators in their faces. However, due to cost and575

space constraints, the number of actuators in robotic faces are
often limited. Moreover, because facial actions involved in fa-
cial expression can be very subtle and quick, mechanical actua-
tors often fail to mimic them. Computer-graphic animations, on
the other hand, have a greater capability for controlling facial580
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movement, but their lack of physical embodiment and physi-
cal presence may constrain the perception of facial expression
in virtual agents. Retro-projected robotic heads add physical
embodiment to computer animation agents, but since the mask
is static, some of the facial movements such as nose wrinkling585

in the expression of disgust cannot be portrayed on a robotic
face. Therefore, it is important to investigate the role of em-
bodiment and presence to find out whether physical embodi-
ment and presence can improve the perception of an agent’s
facial expressions. A few studies have compared the role of590

embodiment and presence in the perception of robotic agents’
facial expressions, and to the best of our knowledge perception
of facial expression on retro-projected robotic heads has not yet
been investigated.

5.1. Related Work595

A few studies have compared the role of embodiment and
presence in the perception of robotic agents’ facial expressions.
Bartneck et al. (2004) studied the role of presence in perception
of intensity and recognition accuracy of facial expression using
the robotic character iCat (Van-Breemen, 2004) and its telep-600

resence condition (movie on a screen). Subjects were asked
to categorize each emotion and rate its intensity. The study
found a non-linear relationship between the geometrical inten-
sity (robot’s expression intensity) and the intensity of emotions
perceived by the user. The results also indicated that emotions605

depicted by the robot were judged as having greater intensity,
but there was no significant difference in the perceived intensity
and recognition accuracy between the presence of the robotic
character and its telepresence.

Kätsyri and Sams (2008) investigated the effect of dynamics610

on identifying basic emotions between a virtual agent (Talking
Head) and a video of a human. Dynamic and static depictions
of six basic emotions from a human face and a virtual agent
were shown to 54 subjects. Subjects identified expressions on
the human face much better than on the virtual agent. There615

was no significant difference in the identification of static and
dynamic expressions of the human face. Identification of some
expressions such as anger and disgust on the virtual agent failed
to exceed chance level in the static condition, while dynamics
improved it notably in lower intensities.620

Mollahosseini et al. (2014) studied the extent to which em-
bodiment and physical presence improved the perception facial
expression. The study evaluated how accurately subjects were
able to interpret the facial expressions of a virtual 2D agent and
its projection on a retro-projected robotic platform. Six basic625

emotions at their maximum intensity level were displayed in
random order, and subjects were then asked to associate each
with one of these six categories or to indicate that none were
appropriate. They found similar recognition rates for happi-
ness, sadness, surprise, disgust and fear in both a virtual agent630

and a copresent robot, and superior performance for anger when
portrayed by the robot.

Lazzeri et al. (2015) studied the role of embodiment in con-
junction with presence on a humanoid Android robot (Robot
FACE). Fifteen subjects identified six basic emotions displayed635

on the robot, in 2D photos of the robot, 3D virtual animation

(a) (b) (c) (d)

(e) (f)

Figure 4: Six basic facial expressions at their maximum intensity: a) Anger, b)
Disgust, c) Fear, d) Happiness, e) Sadness, and f) Surprise.

models, as well as a set of 2D photos and 3D models of a human
taken from Bosphorus Database (Savran et al., 2008). Prelim-
inary results showed that facial expressions were better identi-
fied on the robot than its virtual animation, and the recognition640

rates of facial expressions performed by the robot were similar
to those achieved with human stimuli.

Table 3 summarizes studies of facial expression perception
with robots and their relevant findings. As shown, none of these
studies compared all three conditions of CR, TR, and VA to dis-645

tinguish the role of the embodiment from the presence of the
robot. In this paper, we studied all three different conditions
of emotional agents (i.e. VA, TR, CR) as well as human fa-
cial expressions (as the optimal case) in the same experimental
setup. We also investigated emotion perception at different in-650

tensity levels to study the effect of intensity level on perception
of different agents’ facial expression.

5.2. Methodology

In order to design realistic and standard facial expressions in
our animation system, we used the Facial Action Coding Sys-655

tem (FACS) (Ekman and Friesen, 1978). The FACS model is
a well-known approach for quantifying affective facial behav-
iors, and describes all possible facial actions in terms of Action
Units (AUs). The FACS explains facial movements and does
not describe affective state directly. Friesen and Ekman (1983)660

proposed EMFACS to convert AUs to affect space. For exam-
ple, EMFACS states that happiness involves raising of the cheek
(AU 6) and pulling of the corner of the lip (AU 12), whereas
sadness involves raising of the inner brow (AU 1), lowering of
the outer brow (AU 4) and depression of the corner of the lip665

(AU 15). For the current experiment, a graphic artist designed
3D models of six basic expressions (i.e., anger, disgust, fear,
happiness, sadness and surprise) in Maya based on EMFACS.
Figure 4, demonstrates six basic facial expressions at their max-
imum intensity used in our animation system.670

In order to show facial expressions at different intensities
and blend them with visual speech, we used the same algorithm
presented in (Mollahosseini et al., 2014). In particular, our ani-
mation used the following formula to generate the morph target
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Table 3: Summary and overview of literature comparing perception of emotion in different conditions

Work Agent Condition* Emotion� Description Results**CR TR VA GT No. In

Bartneck et al.
(2004) iCat X X 5 X

• Ten geometrical intensities were displayed
• Participants recognized the emotion and
its intensity

• The relationship between the geometrical
and perceived intensity was not linear
• No significant difference between CR and
TR in the intensity and recognition accuracy

Kätsyri and Sams
(2008) Talking Head X X 6 • Dynamic and static facial expressions

were studied

• GT perceived better than VA
• Dynamics did not improve GT
• Dynamics improved recognition of subtle
emotions, notably anger and disgust of VA.

Mollahosseini
et al. (2014) Expressionbot X X 6 • Participants selected six categories as well

as “none”

• Superior recognition performance for
anger in CR
• Similar recognition rates for other
emotions in both CR and VA

Lazzeri et al.
(2015)

The Robot
FACE X X X 6

• The robot, its 2D&3D models, and
2D&3D models of human were shown
• Physiological signals of subjects were
recorded

• CR was better perceived than 2D photos or
3D models (VA and GT)
• No significant differences in the subjects’
psychophysiological states

This Work Ryan X X X X 6 X • Section 5.2 • Section 5.4
* CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot, Virtual Agent, and
Ground Truth (human) respectively.
�No. is the number of studied emotions and In stands for whether different Intensity levels are studied.
** Only the relevant finding from the original papers are reported in this summary.

(a) 0% (b) 15% (c) 30% (d) 45%

(e) 60% (f) 75% (g) 90% (h) 100%

Figure 5: Different intensity level of surprised emotion on the virtual agent

based on the current viseme and emotion morph targets:

F j = Fc + λ j(Fmax
j − F0) (1)

where Fc represents the current viseme, Fmax
j is the desired ex-

pression model at the maximum intensity, F0 is the Neutral
model. The parameter λ j ∈ [0, 1] is the intensity of the jth

expression model F j.

5.3. Facial Expressions Experiment675

We evaluated the perception of facial expressions of emo-
tion performed by different agents with 48 subjects, 23 female
and 25 males, with age range of 18-35 years (Mean= 24.6,
SD=5.2). Six basic facial expressions (anger, disgust, fear, hap-
piness, sadness, surprise) were displayed in four conditions cor-680

responding to the types of agents (VA, CR, TR, and GT) at
seven intensity levels (15%, 30%, 45%, 60%, 75%, 90% and
100%). Each emotion was displayed with an animation/movie
starting from neutral until the face’s expression reached one of
seven intensities. The animations took one second from neutral685

to the desired intensity and then remained static until the sub-
ject responded. Subjects were asked to categorize the emotion

of the face as belonging to one of the six basic emotional cate-
gories (listed above) or to report “none” if they were unable to
assign the facial expression to any of the six categories.690

To evaluate the GT condition, subjects were presented with
the video recordings of an actress portraying the facial expres-
sions randomly selected from the extended CK+ dataset (Lucey
et al., 2010). In order to pair the intensity of GT with the an-
imation, two experts annotated the intensity of emotions be-695

tween 0 to 100%, frame by frame. The intensity of each frame
was considered as the average intensity of the two annotators.
Each video in the GT condition took one second, started with
a neutral expression, and ended at the desired emotional inten-
sity level. Since the animation uses a weighted blend shape700

technique defined in (1), the intensity of emotion on the ani-
mation was easily defined by changing the parameter λ j from
zero to the desired intensity level over one second. Figure 5
shows different intensity levels of a sample emotion (surprise)
on the virtual agent. Clearly, more subtle emotion intensities705

are more difficult to discriminate and could easily be confused
with a different emotion.

Subjects were seated in front of the agent at a distance of
60 cm. Each combination of emotion and intensity was dis-
played twice in each block of trials, one with each intensity710

level, where the lowest intensity faces were shown first, then
the second lowest, etc. In other words, subjects categorized
84 emotions (2 trials × 6 emotions × 7 intensities) where the
first 12 videos/animations portrayed six emotions at intensity
level 15% each played twice randomly, the second 12 videos/715

animations portrayed six emotions at intensity level 30%, and
so on. The reason for sorting the trials by intensity level was
that the subjects could have recognized the facial movement
of an emotion at higher intensity levels and generalized the fa-
cial movements for recognition at lower intensity levels. In ad-720

dition, each subject participated in only one agent condition,
since VA, TR, and CR share the same animation and seeing an
emotion at a higher intensity level of one condition could have
helped the subject to recognize that same emotion at a lower
intensity in another condition, on a different agent.725
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Figure 6: The average accuracy of emotion perception in different conditions.

Each subject participated only in one agent condition (i.e.,
12 subjects rated the facial expressions displayed by one partic-
ular agent). In each condition, subjects saw facial expressions
on an agent, and they were asked to select one of the six basic
facial expressions (Anger, Disgust, Fear, Happiness, Sad and730

Surprise) or None.

5.4. Facial Expression Results

A mixed 6 (emotions) × 7 (intensities) × 4 (agent condi-
tions: CR, TR, VA and GT) ANOVA with emotion and intensity
as the within-subject factors and embodiment as the between-735

subjects factor was conducted. The dependent variable was
recognition accuracy. The recognition accuracy differed sig-
nificantly between emotions [F(5, 220) = 10.86, p <.0001] and
between intensity levels [F(6, 264) = 129.27, p <.001]. Not
surprisingly, faces with higher intensity received higher recog-740

nition accuracy. This analysis also revealed a significant in-
teraction between the emotion and agent condition [F(15, 220)
= 1.95, p <.020]. The interaction between agent and intensity
was also significant [F(18, 264) = 3.97, p <.001]. This suggests
that there is a difference among agents at low intensities, but not745

high intensities. In other words, the type of agent is particularly
important when recognizing subtle expressions. The three-way
interaction was also significant [F(90, 1320) = 1.55, p <.001].
This suggests that the dependency on intensity is only important
for certain emotions (the intensity × agency interaction was sig-750

nificant for anger, fear, sad, and surprise, all p’s <.05). Figure 6
shows the mean accuracy for each agent condition at different
intensity levels, collapsed across the different expressions. As
shown, the subjects discriminated emotion better on CR than
on VA or TR.755

There was also a significant main effect of agency on recog-
nition accuracy [F(3, 44) = 3.06, p = .038]. Post-hoc LSD
analysis on different agent conditions indicated that expression
recognition for TR was significantly worse than for human ground-
truth and CR (p-values of 0.010 and 0.014, respectively). All760

other agent conditions were not significantly different from each
other or ground-truth. In other words, both embodiment and
presence were important factors in improving the perception of
emotional expressions. Expression discrimination was better
for the ground-truth (video of the human) condition than the765

other conditions, which indicates that the facial expression of
the animation has room for improvement.

Table 4 shows the confusion matrices of the emotion recog-
nition rates for the different agent conditions of CR, TR, and
VA. The highest values are shown in bold. As shown, anger,770

happiness, and sadness were perceived better on CR, while dis-
gust, fear, and surprise were recognized better on the virtual
agent. To address whether this difference was significant be-
tween different emotions, separate post-hoc LSD analyses were
conducted for each emotion. Table 5 shows the result of pair-775

wise comparisons post-hoc LSD analyses and effect sizes of
different agent conditions for different emotions. Cohen’s d is
an effect size used to indicate the standardized difference be-
tween two groups defined as:

d =
M1 − M2√
(σ2

1 + σ2
2)/2

(2)

where Mi is the mean andσi is the standard deviation of group i.780

Generally, the effect size is considered small if d > 0.2, medium
if d > 0.5 and large if d > 0.8 (Cohen, 1977). As indicated in
Tables 5:

• Anger was recognized better on both CR and TR com-
pared to VA, with a medium effect size (effect of embod-785

iment, Research Question 1).

• Recognition of disgust, fear, and happiness was equiva-
lent across all the agent conditions.

• Sadness was recognized better on CR compared to TR
and VA, with a medium/large effect size (the join effect790

of embodiment and presence, Research Question 3).

• Surprise was recognized worse on TR comparing with
VA, with a medium effect size (effect of embodiment, Re-
search Question 1). However, Surprise was recognized
better on CR compared with TR, with a medium effect795

size (the effect of presence, Research Question 2).

We believe that the negative effect of physical embodiment
on the perception of an agent’s surprised expression could have
occurred because the jaw did not move in the static mask, mak-
ing subtly surprised faces difficult to perceive. This phenomenon800

(i.e., the effect of seeing a moving expression on a static mask)
was presumably less noticeable when the robot was present in
front of users (CR condition), as the difference between CR and
VA was not significant for the expression of surprise. Since the
only varying factor between TR and CR was the “presence”805

of the robot, we believe that presence could potentially com-
pensate for the negative effect of seeing facial movements on a
static mask.

These results are consistent with our previous study (Mol-
lahosseini et al., 2014), indicating that subjects perceived the810

facial expression of anger (and sadness in the present study)
with greater accuracy in the robotic face than that of the vir-
tual agent. Our finding is also consistent with (Bartneck et al.,
2004). We also found a significant difference between the robot

10



Table 4: Confusion matrix of the emotion recognition rates (in percentage) of CR, TR and VA with presented facial expression (columns) against subjects’ judgments
(rows).

Copresent Robot (CR) Telepresent Robot (TR) Virtual Agent (VA)

AN* DI FE HA SA SU AN DI FE HA SA SU AN DI FE HA SA SU

Anger 95.2 2.4 0.6 0.0 0.6 0.0 91.1 5.4 0.0 0.0 1.8 0.0 81.5 4.8 0.0 0.0 0.6 0.6
Disgust 0.0 87.5 1.2 1.2 0.0 0.6 3.0 77.4 1.2 0.0 0.0 0.0 3.0 90.5 3.0 0.6 0.6 0.0
Fear 0.0 0.6 78.6 0.0 0.0 3.0 1.2 1.2 76.8 0.0 3.6 5.4 1.8 3.6 81.5 0.0 3.6 3.0
Happiness 0.0 0.0 0.0 89.9 0.0 1.2 0.0 0.6 0.6 83.9 0.0 0.6 0.0 0.0 0.0 89.3 0.0 0.6
Sadness 1.2 3.0 14.3 0.0 98.2 1.8 2.4 1.8 14.9 0.0 88.7 3.0 6.5 0.6 10.7 0.0 89.3 1.2
Surprise 0.0 1.2 2.4 7.7 0.0 91.1 1.2 4.2 3.6 10.7 0.0 81.5 0.6 0.6 4.2 10.1 0.0 94.6
None 3.6 5.4 3.0 1.2 1.2 2.4 1.2 9.5 3.0 5.4 6.0 9.5 6.5 0.0 0.6 0.0 6.0 0.0

Total Accuracy 90.08 83.23 87.80
*AN, DI, FE, HA, SA, and SU stand for Anger, Disgust, Fear, Happiness, Sadness, and Surprise, respectively.

Table 5: Pairwise comparison (LSD p-value) and Cohen’s d effect size of users’
perception of facial expressions on different agent conditions.

TR vs CR VA vs CR VA vs TR
p d p d p d

Anger .405 .271 .004 .652 .031 .419
Disgust .121 .347 .642 .155 .050 .493
Fear .447 .139 .913 .002 .386 .135
Happiness .340 .023 .784 .230 .222 .218
Sadness .034 .789 .046 .727 .891 .008
Surprise .010 .421 .426 .237 .001 .658

and telepresence of the robot for perception of the facial ex-815

pressions of sadness, similar to Bartneck et al., who found a
significant difference between CR and TR for recognizing sad-
ness at intensities lower than 30%.

This finding is inconsistent with a study by Lazzeri et al.
(2015) in which all emotions were better perceived on a robotic820

agent than on a virtual agent. Perhaps, the difference between
(Lazzeri et al., 2015) and our finding is mainly due to the differ-
ence between the embodiments (i.e., Android vs retro-projected
robotic heads). The masks in retro-projected robotic heads are
static, thus jaw and the lip movements are only optical and some825

facial movements such as nose wrinkling in the expression of
disgust cannot be shown, whereas Android robotic heads can be
more flexible in controlling the skin if enough actuators are pro-
vided. In addition, Lazzeri et al. (2015) created a synthesized
virtual agent from a set of pictures of a physical robot acquired830

from various angles and used Unity 3D software to animate the
3D models. Our virtual agent featured an accurate 3D model
which was projected on the robotic face. Hence, the same an-
imation and expression dynamics were used in both our robot
and virtual agent conditions.835

6. Eye Gaze

Eye gaze is one of the most basic and important features
of the human face for nonverbal communication. Humans in-
corporate gaze both consciously and unconsciously into vari-
ous human-human interaction schemes (Chen and Yeh, 2012).840

For example, neurons in the primate visual cortex can respond

selectively to eye gaze, head orientation, or even the combi-
nation of both (Perrett et al., 1985). Eye gaze serves several
different functions such as capturing attention, maintaining en-
gagement (Cassell, 2000), conveying information about emo-845

tional and mental state (Ruhland et al., 2014), augmenting ver-
bal communication (Emery, 2000), orchestrating turn-taking,
and deictic reference (Kendon, 1967).

Considering the importance of eye gaze in social interac-
tion, it is not surprising that social gaze behavior has been stud-850

ied in many robotic platforms (Imai et al., 2002; Yoshikawa
et al., 2006; Mutlu et al., 2009). Mechanical and Android robotic
platforms control eye gaze by using actuators in the eyeballs.
These actuators, however, may not be fast or accurate enough
to replicate movement of the human eyes. The movement of855

the human eye is controlled by three pairs of muscles and it
can reach an angular speed of about 400◦/sec with 200ms time
to initiate (Pateromichelakis et al., 2014). Computer graphics
animations, on the other hand, have a greater capability for pro-
ducing natural-looking eye gaze (Cassell, 2000; Ruhland et al.,860

2014). However, it is known that the perception of 3D objects
that are displayed on 2D surfaces is influenced by the Mona
Lisa effect (Todorović, 2006). Hence, the lack of physical em-
bodiment and physical presence may constrain the perception
of virtual agents’ eye gaze.865

6.1. Related Work

Many studies in vision science have evaluated head-eye gaze,
but only on telepresent faces (Baron-Cohen et al., 1995; Allison
et al., 2000; Itier and Batty, 2009; Sweeny et al., 2012b). Al-
though embodiment and presence have been studied individu-870

ally, there is not a comprehensive study that distinguishes the
role of embodiment and presence in gaze perception. Gaze
perception of a physically present human agent and his video
was studied on a TV set by Anstis et al. (1969). In this classic
study, subjects were asked to report the point on a glass screen875

at which the agent (TV or a human) was looking. To simulate
head rotation in the telepresent condition, the TV set was ro-
tated. The agent’s head was rotated to -30◦, 0◦ and 30◦ angles.
The study found that eye gaze was much better perceived on a
physically present human agent than on its telepresent counter-880
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Table 6: Summary and overview of literature comparing perception of eye gaze in different conditions

Work Agent Condition* EG� Description Results**CR TR VA GT

Anstis et al.
(1969) TV X X X

• A horizontal scale (ruler) was used
• Video of a human used for TR
• The agent’s head was rotated with -30◦,0◦ and
30◦ angles

• Errors were greatest when head rotation and eye
rotation were incongruent.

Delaunay et al.
(2010) LightHead X X X X

• A grid with 100 cells was used
• Video of a human used for TR
• Instead of head rotation, subjects viewed the
Agent with 0◦ and 45◦ angles

• CR performed better than TR
• GT performed significantly better than other
conditions, in both frontal and side view situations

Al Moubayed and
Skantze (2012) Furhat X X

• A grid with nine cells was used
• Vergence, parallel eyes, static and dynamic
eyelids

• Perception of gaze was significantly worse
when the head was moving compared with eye
movement alone.
• No significant difference between gaze with and
without vergence.

Al-Moubayed
et al. (2012) Furhat X X

•Mona Lisa effect studied on five subjects sitting
around a circle.
• Only eye rotation studied

• Gaze was perceived more accurately on CR

Misawa et al.
(2012) LiveMask X X

• Photos of a person looking from -30◦ to 30◦
• Instead of rotating the head, subjects’ view
angle was changed

• CR was significantly better than VA
• The Mona Lisa effect occurred in VR

Mollahosseini
et al. (2014) Expressionbot X X

•Mona Lisa effect studied on five subjects sitting
around a circle • Discrimination of eye gaze was better on CR

This work Ryan X X X X X
* CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot, Virtual Agent, and
Ground Truth (human) respectively.
�EG stands for Emergent Gaze which is defined as simultaneous movement of head and eye-gaze.
** Only the relevant finding from the original papers are reported in this summary.

part, and the perception of gaze was distorted with the rotation
of the TV.

Delaunay et al. (2010) studied gaze perception on the Light-
Head robotic face, its telepresence, and the gaze of a human
agent. A vertical glass screen with a 10x10 grid was placed885

between the agents and the subjects, and subjects were asked
to report the gaze point when viewed from a frontal and 45◦

angle. Since asking a human to hold his/her head steady in a
45◦ position was not possible and chin/forehead rests did not
allow horizontal rotations, to study the effect of head rotation,890

subjects were instead moved to a position with a 45◦ angle with
respect to the agent. Under these conditions, subjects judged
gaze from the video and the robot in both frontal and 45◦ view
situations with equal sensitivity.

Al Moubayed and Skantze (2012) compared the perception895

of eye gaze on Furhat robotic face with a human agent in differ-
ent conditions (i.e., presence of vergence, static/dynamic eye-
lids, etc.). They took a different approach by asking the agents
to look at nine points on a table between the agent and the sub-
jects. In this case, there was no significant difference between900

gaze with vergence and without vergence. Furthermore, head
movement appeared to be more effective for influencing judg-
ments along the horizontal axis while eye movement dominated
judgments along the vertical axis. Regardless of conditions,
gaze from the human agent was perceived better than gaze from905

the robot.
Studies show that virtual agents suffer from the Mona Lisa

effect (Misawa et al., 2012; Al-Moubayed et al., 2012; Molla-
hosseini et al., 2014), in which the eyes in a picture appear to
be looking at the viewer regardless of their location in front of910

the picture. For example, Al-Moubayed et al. (2012) studied
the Mona Lisa effect on a virtual agent and its 3D projection on
Furhat robotic face. Five subjects were simultaneously seated
around the agent, each of whom was asked to report their per-

ception of the agents’ eye gaze direction. The results showed a915

clear Mona Lisa effect in the virtual agent since many subjects
perceived a mutual gaze at the same time.

Table 6 summarizes several studies on eye gaze perception
and their most relevant findings. The majority of these studies
report that physical presence plays a greater role in perception920

of an agent’s eye gaze than physical embodiment. Presumably,
having a 3D view of the nose direction, the eye position and
their composition help viewers to perceive eye gaze direction
more accurately. Additionally, few studies have explored emer-
gent gaze. Emergent gaze occurs when the visual system in-925

tegrates global information about the rotation of the head with
local information about the rotation of the eyes, to compute a
distinct metric of gaze present in neither feature alone (Wollas-
ton, 1824; Cline, 1967; Kinya and Mitsuo, 1984; Langton et al.,
2004; Kluttz et al., 2009; Otsuka et al., 2014; Sweeny and Whit-930

ney, 2017). This approach to measuring gaze perception has
been surprisingly underutilized in robotics work.

The present study evaluates the perception of emergent gaze,
while at the same time comparing the roles of embodiment and
presence of the robot. One of the reasons that emergent gaze935

has not been studied extensively both with humans and robots
is the difficulty inherent in controlling the movements of a hu-
man agent. Rotating a human’s head and eyes to an exact po-
sition requires special apparatuses, and it complicates the ex-
periment process. Hence, most studies of gaze either do not940

include a condition with a human agent, or they use a typical
chin/forehead rest to fix the human’s head in place, which pre-
cludes examination of emergent gaze.

6.2. Methodology

To evaluate the accuracy of agents’ eye gaze in the current945

investigation, the agent looked at a particular point on a glass di-
vider located between the agent and the subjects. A horizontal
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(a) Head facing forward (b) Head rotated by γ

Figure 7: Schema and the variables used in the calculating eye gaze angle
(Drawing not to scale).

line with fifty-one equidistant points was drawn on the glass.
The agent looked at a point on the glass screen and subjects
were asked to report their perception of the agent’s gaze direc-950

tion.
In order to precisely set eye gaze toward a target point, we

needed to rotate the agents’ eyeballs such that the pupils were
directed towards the target point. In this study, the target points
were at agent’s eye level, hence we only needed to change the
yaw angle for the eyes. Assuming the face is frontal (rotated
zero degrees), the yaw angle for right and left eyes (αr and αl,
respectively) is calculated as:

αr =
π

2
− arctan

x + Er

Dr
(3)

αl =
π

2
− arctan

x − El

Dl
(4)

where x ∈ [−75cm, 75cm] is the target point on the glass screen.
Er and El are the distance of right and left eye from the center
of the glass screen in the x-Axis, and Dr and Dl are the distance
of the right and left eyes from the glass screen in the y-Axis,
calculated as:

Er = El = H × sin(θ) (5)
Dr = Dl = D + H × cos(θ) (6)

where H is the distance of the head pivot point (C) to the cen-
ter of the eyes, θ is the angle between the eyes and the head
pivot point, D is the distance of the head pivot point to the glass
screen. Figure 7a shows the schema and the variables used in955

these calculations.
When the head is straight and not rotated, Dl = Dr and

Er = El. If the head is rotated by γ◦ (Figure 7b), the values of
Er and Dr in Equations (3) and (4) are changed as follows:

Er = H × sin(θ + γ) (7)
El = H × sin(θ − γ) (8)

Dr = D − H × cos(θ + γ) (9)
Dl = D − H × cos(θ − γ) (10)

In the above equations, we assumed that the agent does not
have any facial curvature in the eye area (Figure 8-left). If the

face has an angle (ε) in the eye area (Figure 8-right), Equa-
tions (3) and (4) will change as follows:

αr =
π

2
− arctan

x + Er

Dr
− ε (11)

αl =
π

2
− arctan

x − El

Dl
+ ε (12)

Figure 8: Mask with flat eye region (left) and with angled eye region (right)

6.3. Eye Gaze Experiment

We examined the perception of eye gaze with 23 subjects
7 female and 16 males, with age range of 21-40 years (Mean=

28.4, SD=5.5), each of whom had normal or corrected to nor-960

mal vision. To evaluate the role of embodiment and presence in
perception of agents’ eye gaze, four conditions (VA, CR, TR,
and GT) were examined in this experiment. In each condition,
the agent looked at a particular point on a glass divider located
between the agent and the subjects. The subjects were then965

asked to report their perception of where the agent was look-
ing.

The subjects were seated in front of the glass screen, and
then asked to keep their head still on a chin-forehead rest and
look straight at the agent at a distance of 120cm. To simulate970

the most accurate head rotation and avoid a Mona Lisa effect,
which is common when viewing a face on a flat screen, in the
VA condition we presented rotations of the animated head itself
rather than rotations of the screen portraying the head. Figure 9
illustrates the eye gaze evaluation setup.975

Fifty-one points, three centimeters apart from each other,
were marked by letters and numbers on the glass. However,
the agents looked at only five points located at -39, -21, 0, 21
and 39 centimeters (with zero as the middle point of the glass
divider). Hereafter, these points are referred to as A, B, C, D980

and E, respectively (shown in Fig. 9). Subjects were not aware
of the agent’s restricted gaze targets, and they were instructed
that the agent may look at any points on the glass. Figure. 10
shows photos of different conditions viewed from the subject’s
position.985

We examined the emergent perception of eye gaze (i.e., the
integration of head rotation information with eye position). In
particular, there were five possible head rotations (-30◦, -16◦,
0◦, 16◦, and 30◦), and in each head position, the eyes were
shifted toward the five points on the glass screen. An exam-990

ple of this condition is shown in Fig. 9, where the agent’s head
is rotated toward +16◦ and the eyes are directed at point B.
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Figure 9: Perception of eye-gaze setup. Fifty-one points with three centimeters
distance from each other were marked on the glass. The agents looked at only
A, B, C, D, and E points located at -39, -21, 0, 21 and 39 centimeters from the
center respectively.

(a) Copresent Robot (b) Telepresent Robot

(c) Virtual Agent (d) Ground-Truth

Figure 10: Eye gaze different conditions

The method described in Section 6.2 was used to calculate
the angle for the agent’s eyes in CR and TR scenarios. The
dimensions of the robot head for CR and the 3D model for VA995

were measured, and depending on the target point on the glass
screen, the eyes of the robot/3D model were rotated toward the
target point. The measurement used in CR was: D = 73cm,
H = 13.35cm, θ = 13◦, and the measurement used in VA was:
D = 70cm, H = 10.45cm, θ = 17◦. Since a mask with a flat1000

eye region was used in CR and a flat screen was used in VA, the
value of ε was set to 0◦.

A Canon EOS 80D DSLR camera was used to take pictures
of the robot from the point of view of the subject. The captured
pictures were calibrated to the size of the robot head. Using this1005

method, from the point of view of the subject, the agent in both

CR and TR had the same size and proportions, and in theory,
the same direction of eye gaze (if we took a picture from the
subject’s point of view, it would look the same). The difference
was that the TR condition featured a 2D representation of the1010

CR condition.
To keep the human agent’s head in an exact head rotation

angle consistently during the GT experiments, we modified a
chin/forehead rest to rotate and then stabilize in 1◦ increments.
In the GT condition, a human was seated in the place of the1015

agent and looked at the points on the glass, while keeping his
head still on this chin forehead rest and his shoulders facing
directly forward.

In all four conditions, first, the agent’s head was rotated to
one of the five angles (-30◦, -16◦, 0◦, 16◦, and 30◦) randomly.1020

Then at each of these head angles the eyes were rotated to gaze
at one of the 10 points on the board (two trials for the five tar-
gets A, B, C, D and E) randomly. The subject was asked to
close his/her eyes between each trial to eliminate any effect of
seeing the agent adjust his head and eyes. In total, each subject1025

reported 50 gaze directions (5 angles × 5 points × 2 trials) for
each condition. Each condition was run in a block lasting five
minutes and the subjects were asked to leave the room for two
minutes until the room was setup for the next condition.

Four different agent conditions (VA, TR, CR and GT) were1030

presented in random order to the subjects, and subjects were
asked to report their perception of the point at which the agent
was looking. Accuracy was calculated by measuring the error
in each subject’s reports of eye gaze. Gaze perception error
was defined as the absolute distance between the point that the1035

subjects reported and the actual target point at which the agent
was looking.

6.4. Eye Gaze Results
We performed a 5 (head rotation) × 5 (eye gaze) × 4 (agent

conditions: CR, TR, VA and GT) ANOVA with agent condition,1040

head rotation and target point as within-subject factors. The de-
pendent variable was gaze perception error. This analysis re-
vealed a significant main effect of agent condition [F(3, 66) =

134.55, p <.0001]. We also found main effects of head ro-
tation [F(4, 88) = 70.25, p <.0001] and eye gaze [F(4, 88) =1045

31.39, p <.0001]. This analysis also revealed an interaction be-
tween agent condition and head rotation [F(12, 264) = 11.17,
p <.0001], but the interaction between the agent condition and
eye gaze was not significant [F(12, 264) = 95.16, n.s]. Fig-
ure 12 shows the estimated marginal means of gaze perception1050

error for different agents, head rotation angle and target points.
As shown, differences between the agent conditions depended
on head rotation, but not eye gaze.

Table 7 shows the average and standard deviation of error
for each condition and proportional error with respect to hu-1055

man ground-truth. The results indicate that eye gaze was better
perceived on CR than TR and VA, with 13.21% and 32.23%
lower proportional error, respectively. Figure 11 shows the av-
erage error (cm) in the perception of different agents’ eye gaze
for different head rotation and target points. As Fig. 11-(a)1060

shows, when the eye gaze was directly toward the subject’s face
(point C), the perception of eye gaze had a relatively negligible

14



H
ea

d
 r

o
ta

ti
o
n

(a) Ground-Truth (b) Copresent Robot (c) Telepresent Robot (d) Virtual Agent

-30 10.37 11.41 2.41 11.87 5.93 -30 14.28 14.41 8.22 13.04 12.59 -30 16.24 13.24 10.43 13.70 12.98 -30 21.46 21.65 16.24 20.87 24.07

-16 7.04 6.52 1.37 12.46 8.80 -16 8.02 6.26 6.65 11.48 8.67 -16 9.13 9.46 5.28 11.74 9.65 -16 10.24 14.15 6.26 9.72 8.80

0 7.57 6.98 0.46 8.67 9.39 0 10.43 10.37 3.13 7.70 8.87 0 12.20 11.41 1.50 7.83 6.91 0 8.41 9.26 2.28 8.28 7.24

16 8.87 13.04 1.96 9.20 8.54 16 13.30 10.17 6.65 10.70 9.52 16 11.15 12.39 6.65 13.50 9.65 16 7.76 7.89 5.09 12.39 7.83

30 7.70 15.65 2.15 10.63 8.02 30 18.91 15.52 9.07 15.59 13.43 30 20.41 17.02 12.78 18.20 15.85 30 23.74 17.67 12.98 22.76 19.17

A B C D E A B C D E A B C D E A B C D E

Gaze direction

Figure 11: Average absolute error of gaze perception in different conditions [best viewed in color].

Table 7: Average and proportional error with respect to human ground-truth for
different agent conditions.

Average Error ± STD (cm) Proportional Error to GT
GT 7.88 ± 2.90 -
CR 10.50 ± 3.11 33.26%
TR 11.04 ± 3.16 46.47%
VA 13.04 ± 2.88 65.57%
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Figure 12: Estimated marginal means of gaze perception error for different
agents and (a) head rotation angles and (b) different gaze target points. The
target points A, B, C, D corresponds to -39, -21, 0, 21 and 39cm from the
center, respectively.

amount of error. In other words, subjects were able to recognize
mutual eye contact with high precision on the human agent. The
same pattern emerged in the CR and TR conditions. Interest-1065

ingly, subjects discriminated mutual eye gaze poorly in the VA
condition, especially with incongruent head and eye rotations.

Notably, when the head was rotated to its extremes (-30◦

and 30◦), perception of gazes directed toward points B and D
had higher error than gazes directed toward points A and E. This1070

suggests that subjects had difficulty recognizing gaze direction
accurately when the rotation of the head was incongruent with
that of the eyes. Hence, subjects may have guessed a point at
the far end of the glass screen, which gave them more room for
error at points B and D.1075

As shown in Fig. 11, eye gaze of the virtual agent was seen
with a notable amount of error (∼24cm) when combined with
a strong head rotation. This could be because the animation
lacked binocular depth cues by virtue of being present on a flat
screen. This could have made the perception of head rotation1080

more difficult, while the embodiment of the robot helped sub-
jects to recognize the head angle better.

In order to more directly measure the effect of agents’ em-
bodiment and presence, we removed human GT from the anal-
ysis and performed a 5 (head rotation) × 5 (eye gaze) × 3 (agent1085

conditions: CR, TR, VA) ANOVA with agent condition, head
rotation and eye gaze as within-subject factors. This analysis re-
vealed main effects of agent [F(2, 44) = 8.740, p = .001], head
rotation [F(4, 88) = 64.95, p <.001] and eye gaze [F(4, 88) =

16.39, p <.0001]. Similar to previous analysis, and as shown in1090

Figure 12, there was a significant interaction between the agent
condition and head rotation [F(8, 176) = 8.75, p <.0001], but
the interaction between the agent condition and eye gaze was
not significant [F(8, 176) = 23.98, n.s].

Since there was an interaction between the agent condi-1095

tion and head rotation, we performed pairwise two-tailed t-test
comparisons between agent conditions at different head rota-
tions. Table 8 shows pairwise p-value and Cohen’s d effect-
size between agent conditions. As shown, embodiment (Re-
search Question 1) improved the perception of eye gaze at -30◦1100

and 30◦, as indexed by significant differences between TR and
VA conditions (p < .001 and p = .023 with large effect sizes
d = 1.22 and d = 0.69 respectively). Physical presence did
not improve the perception of eye gaze (Research Question 2),
as the differences between TR and CR conditions were not sig-1105

nificant at any head angle. There were also significant differ-
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Table 8: Pairwise comparison (LSD p-value) and Cohen’s d effect size of users’
perception of eye gaze at different head rotations. Significant pairs are shown
in bold.

TR vs CR VA vs CR VA vs TR
Head Angle p d p d p d

-30◦ .660 0.13 <.001 1.49 <.001 1.22
-16◦ .479 0.21 .190 0.39 .5484 0.17
0◦ .890 0.04 .278 0.32 .269 0.32

16◦ .599 0.15 .116 0.47 .158 0.42
30◦ .217 0.36 .004 0.89 .023 0.69

ences between CR and VA at -30◦ and 30◦, both p < .001 with
large effect sizes d = 1.49 and d = 0.89 respectively (Research
Question 3). Because TR and VA were both significantly dif-
ferent at these head angles, we conclude that improvement in1110

the perception of eye gaze compared with CR is mainly due to
embodiment rather than presence of the robot. And in partic-
ular, embodiment of the robot highly affected the precision of
the gaze perception combined with extreme head rotations in a
frontal situated setting.1115

These findings are congruent with previous studies showing
that the perception of a robot’s eye gaze is more accurate than
that of a virtual agent (Al-Moubayed et al., 2012; Misawa et al.,
2012; Mollahosseini et al., 2014). There was no difference in
perception of gaze when seen on a robotic agent or its telepres-1120

ence, which is consistent with a study performed by Delaunay
et al. (2010). We also did not observe a significant difference
between gaze perception on the telepresent robot and virtual
agents—a comparison which has not been addressed in previ-
ous studies.1125

7. Conclusion

This work examines the role of social robots’ embodiment
and presence in users’ perception of facial cues using a quanti-
tative approach. Understanding how people respond to physical
and virtual agents is an important factor in designing successful1130

social agents. Three research questions as the effect of phys-
ical embodiment (Q1), physical presence (Q2), and the joint
effect of physical embodiment and presence (Q3), on human
perception of agents’ facial cues (visual speech, facial expres-
sions and eye gaze) were studied in this research. To study these1135

effects, we leveraged three different agent conditions (i.e., co-
present robot, telepresent robot, and virtual agent) as well as
human ground truth to evaluate the optimal case in our settings.
The results of this study indicate that:

1. There was no evidence that embodiment or presence im-1140

proves the perception of visual speech, regardless of syn-
tactic or semantic cues in sentences.

2. Both embodiment and physical presence improve the per-
ception of certain facial expressions in emotive agents.

3. The combination of embodiment and presence (and mainly1145

embodiment) highly affects the precision of eye gaze per-
ception in a frontal situated setting.

Comparison of our findings with previous studies also in-
dicates that the type of embodiment is important. We used a

retro-projected robotic head in this study, which has some lim-1150

itations (e.g., the mask is static, the jaw and lip movements are
only optical). We believe that the limitations of embodiment
can highly affect the perception of social cues. For example,
the static jaw and optical lip movement may affect the percep-
tion of visual speech on the retro-projected robotic, and hence1155

there was no significant effect of embodiment or presence in vi-
sual speech. Also, since the jaw does not move, the perception
of a surprised expression on the video of the robot was signifi-
cantly lower than the virtual agent. In addition, the eye move-
ment on the retro-projected robotic head is also optical and the1160

eyeballs do not rotate on the static mask. Our results showed
a significant interaction between the agent condition and the
head rotation, while the interaction of the agent condition and
the eye gaze was not significant. This might be again due to
the limitation on embodiment, which can be validated by com-1165

paring two different embodiments (e.g., an Android robot v.s. a
retro-projected robot) in future studies.

Naturally, each type of embodiment has its own limitations.
For instance, mechanical or Android robotic heads are limited
by the number of actuators used in their face preventing them1170

from showing accurate visual speech or certain facial expres-
sions. Therefore, the findings of any investigations on the role
of embodiment and presence cannot necessarily be generalized
to other types of robotic embodiments, without considering the
characteristics of the embodied agents.1175
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