
Ronald Meyer Caplan- Ph.D.
- Researcher at Predictive Science Inc.
Ronald Meyer Caplan
- Ph.D.
- Researcher at Predictive Science Inc.
About
79
Publications
8,818
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,564
Citations
Introduction
Ronald Meyer Caplan currently works at Predictive Science Inc.. Ronald does research in Computing in Mathematics, Natural Science, Distributed Computing and Parallel Computing. Their most recent publication is 'Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes.'
Current institution

Predictive Science Inc.
Current position
- Researcher
Additional affiliations
September 2009 - May 2012
Education
September 2009 - August 2012
September 2005 - May 2007
December 2003 - August 2005

Ohr Somayach Tanenbaum Educational Center
Field of study
- Judaic theology and philosophy
Publications
Publications (79)
Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While su...
Quasi-separatrix layers (QSLs) at the Sun are created from regions where channels of open magnetic flux have footpoints near regions of large-scale closed magnetic flux. These regions are particularly prone to magnetic reconnection at the Sun. In recent simulations of coronal mass ejections (CMEs) with the Magnetohydrodynamic Algorithm outside a Sp...
There is a continuing interest in using standard language constructs for accelerated computing in order to avoid (sometimes vendor-specific) external APIs. For Fortran codes, the {\tt do concurrent} (DC) loop has been successfully demonstrated on the NVIDIA platform. However, support for DC on other platforms has taken longer to implement. Recently...
A plethora of coronal models, from empirical to more complex magnetohydrodynamic (MHD) ones, are being used for reconstructing the coronal magnetic field topology and estimating the open magnetic flux. However, no individual solution fully agrees with coronal hole observations and in situ measurements of open flux at 1 au, as there is a strong defi...
The Wang–Sheeley–Arge (WSA) model has been in use for decades and remains a popular, economical approach to modeling the solar coronal magnetic field and forecasting conditions in the inner heliosphere. Given its usefulness, it is unsurprising that a number of WSA implementations have been developed by various groups with different computational ap...
Coronal holes are recognized as the primary sources of heliospheric open magnetic flux (OMF). However, a noticeable gap exists between in situ measured OMF and that derived from remote-sensing observations of the Sun. In this study, we investigate the OMF evolution and its connection to solar structures throughout 2014, with special emphasis on the...
Coronal Mass Ejections (CMEs) are immense eruptions of plasma and magnetic fields that are propelled outward from the Sun, sometimes with velocities greater than 2000 km/s. They are responsible for some of the most severe space weather at Earth, including geomagnetic storms and solar energetic particle (SEP) events. We have developed CORHEL-CME, an...
Unconditionally stable time stepping schemes are useful and often practically necessary for advancing parabolic operators in multi-scale systems. However, serious accuracy problems may emerge when taking time steps that far exceed the explicit stability limits. In our previous work, we compared the accuracy and performance of advancing parabolic op...
To address Objective II of the National Space Weather Strategy and Action Plan “Develop and Disseminate Accurate and Timely Space Weather Characterization and Forecasts” and US Congress PROSWIFT Act 116–181, our team is developing a new set of open-source software that would ensure substantial improvements of Space Weather (SWx) predictions. On the...
Multi-spacecraft observations of solar energetic particle (SEP) events enable not only a for deeper understanding and development of particle acceleration and transport theories, but also provide important constraints for model validation efforts. However, because of computational limitations, a given physics-based SEP model is usually best-suited...
To understand its evolution and the effects of its eruptive events, the Sun is permanently monitored by multiple satellite missions. The optically thin emission of the solar plasma and the limited number of viewpoints make it challenging to reconstruct the geometry and structure of the solar atmosphere; however, this information is the missing link...
We describe, test, and apply a technique to incorporate full-Sun, surface flux evolution into an MHD model of the global solar corona. Requiring only maps of the evolving surface flux, our method is similar to that of Lionello et al., but we introduce two ways to correct the electric field at the lower boundary to mitigate spurious currents. We ver...
We present in this Letter the first global comparison between traditional line-tied steady-state magnetohydrodynamic models and a new, fully time-dependent thermodynamic magnetohydrodynamic simulation of the global corona. To approximate surface magnetic field distributions and magnitudes around solar minimum, we use the Lockheed Evolving Surface-F...
Solar Energetic Particles (SEP) events are interesting from a scientific perspective as they are the product of a broad set of physical processes from the corona out through the extent of the heliosphere, and provide insight into processes of particle acceleration and transport that are widely applicable in astrophysics. From the operations perspec...
One systematic limitation of solar coronal hole (CH) detection at extreme ultraviolet (EUV) wavelengths is the obscuration of dark regions of the corona by brighter structures along the line of sight. Another problem arises when using CHs to compute the Sun’s open magnetic flux, where surface measurements of the radial magnetic field, B r ⊙ , are s...
The trajectories of coronal mass ejections (CMEs) are often seen to deviate substantially from a purely radial propagation direction. Such deviations occur predominantly in the corona and have been attributed to “channeling” or deflection of the eruptive flux by asymmetric ambient magnetic fields. Here, we investigate an additional mechanism that d...
We describe, test, and apply a technique to incorporate full-sun, surface flux evolution into an MHD model of the global solar corona. Requiring only maps of the evolving surface flux, our method is similar to that of Lionello et al. (2013), but we introduce two ways to correct the electric field at the lower boundary to mitigate spurious currents....
We present in this Letter the first global comparison between traditional line-tied steady state magnetohydrodynamic models and a new, fully time-dependent thermodynamic magnetohydrodynamic simulation of the global corona. The maps are scaled to the approximate field distributions and magnitudes around solar minimum using the Lockheed Evolving Surf...
To understand the solar evolution and effects of solar eruptive events, the Sun is permanently observed by multiple satellite missions. The optically-thin emission of the solar plasma and the limited number of viewpoints make it challenging to reconstruct the geometry and structure of the solar atmosphere; however, this information is the missing l...
There is growing interest in using standard language constructs for accelerated computing, avoiding the need for (often vendor-specific) external APIs. These constructs hold the potential to be more portable and much more `future-proof'. For Fortran codes, the current focus is on the {\tt do concurrent} (DC) loop. While there have been some success...
Extreme Ultraviolet (EUV) light emitted by the Sun impacts satellite operations and communications and affects the habitability of planets. Currently, EUV-observing instruments are constrained to viewing the Sun from its equator (i.e., ecliptic), limiting our ability to forecast EUV emission for other viewpoints (e.g. solar poles), and to generaliz...
The previous three solar cycles have ended in progressively more quiescent conditions, suggesting a continual slide into an ever deeper minimum state. Although the Sun's magnetic field is undoubtedly responsible for this quiescence, it is not clear how changes in its structure and strength modulate the properties of the solar wind. In this study, w...
Recently, there has been growing interest in using standard language constructs (e.g. C++’s Parallel Algorithms and Fortran’s do concurrent) for accelerated computing as an alternative to directive-based APIs (e.g. OpenMP and OpenACC). These constructs have the potential to be more portable, and some compilers already (or have plans to) support suc...
Recently, there has been growing interest in using standard language constructs (e.g. C++'s Parallel Algorithms and Fortran's do concurrent) for accelerated computing as an alternative to directive-based APIs (e.g. OpenMP and OpenACC). These constructs have the potential to be more portable, and some compilers already (or have plans to) support suc...
Many scientists use coronal hole (CH) detections to infer open magnetic flux. Detection techniques differ in the areas that they assign as open, and may obtain different values for the open magnetic flux. We characterize the uncertainties of these methods, by applying six different detection methods to deduce the area and open flux of a near-disk c...
The potential field (PF) solution of the solar corona is a vital modeling tool for a wide range of applications, including minimum energy estimates, coronal magnetic field modeling, and empirical solar wind solutions. Given its popularity, it is important to understand how choices made in computing a PF may influence key properties of the solution....
The so-called regularized Biot–Savart laws ( R BS L s) provide an efficient and flexible method for modeling pre-eruptive magnetic configurations of coronal mass ejections (CMEs) whose characteristics are constrained by observational images and magnetic field data. This method allows one to calculate the field of magnetic flux ropes (MFRs) with sma...
The so-called regularized Biot-Savart laws (RBSLs) provide an efficient and flexible method for modeling pre-eruptive magnetic configurations of coronal mass ejections (CMEs) whose characteristics are constrained by observational images and magnetic-field data. This method allows one to calculate the field of magnetic flux ropes (MFRs) with small c...
Many scientists use coronal hole (CH) detections to infer open magnetic flux. Detection techniques differ in the areas that they assign as open, and may obtain different values for the open magnetic flux. We characterize the uncertainties of these methods, by applying six different detection methods to deduce the area and open flux of a near-disk c...
This work presents results from simulations of the 2000 July 14 ("Bastille Day") solar proton event. We used the Energetic Particle Radiation Environment Model (EPREM) and the CORona-HELiosphere (CORHEL) software suite within the SPE Threat Assessment Tool (STAT) framework to model proton acceleration to GeV energies due to the passage of a CME thr...
The potential field (PF) solution of the solar corona is a vital modeling tool for a wide range of applications, including minimum energy estimates, coronal magnetic field modeling, and empirical solar wind solutions. Given its popularity, it is important to understand how choices made in computing a PF may influence key properties of the solution....
Parker Solar Probe (PSP) is providing an unprecedented view of the Sun's corona as it progressively dips closer into the solar atmosphere with each solar encounter. Each set of observations provides a unique opportunity to test and constrain global models of the solar corona and inner heliosphere and, in turn, use the model results to provide a glo...
Context. Parker Solar Probe (PSP) is providing an unprecedented view of the Sun’s corona as it progressively dips closer into the solar atmosphere with each solar encounter. Each set of observations provides a unique opportunity to test and constrain global models of the solar corona and inner heliosphere and, in turn, use the model results to prov...
This work presents results from simulations of the 14 July 2000 ("Bastille Day") solar proton event. We used the Energetic Particle Radiation Environment Model (EPREM) and the CORona-HELiosphere (CORHEL) software suite within the SPE Threat Assessment Tool (STAT) framework to model proton acceleration to GeV energies due to the passage of a CME thr...
Global models of the extended solar corona, driven by observed photospheric magnetic fields, generally cannot reproduce the amplitude of the measured interplanetary magnetic field at 1 au (or elsewhere in the heliosphere), often underestimating it by a factor of two or more. Some modelers have attempted to resolve this “open flux” problem by adjust...
We observed the 2 July 2019 total solar eclipse with a variety of imaging and spectroscopic instruments recording from three sites in mainland Chile: on the centerline at La Higuera, from the Cerro Tololo Inter-American Observatory, and from La Serena, as well as from a chartered flight at peak totality in mid-Pacific. Our spectroscopy monitored Fe...
We describe the initial version of the Solar Particle Event (SPE) Threat Assessment Tool or STAT. STAT relies on elements of Corona-Heliosphere (CORHEL) and the Earth-Moon-Mars Radiation Environment Module (EMMREM), and allows users to investigate coronal mass ejection (CME) driven SPEs using coupled magnetohydrodynamic (MHD) and focused transport...
GPU accelerators have had a notable impact on high-performance computing across many disciplines. They provide high performance with low cost/power, and therefore have become a primary compute resource on many of the largest supercomputers. Here, we implement multi-GPU acceleration into our Solar MHD code (MAS) using OpenACC in a fully portable, si...
We describe the initial version of the Solar Particle Event (SPE) Threat Assessment Tool or STAT. STAT relies on elements of Corona-Heliosphere (CORHEL) and the Earth-Moon-Mars Radiation Environment Module (EMMREM), and allows users to investigate coronal mass ejection (CME) driven SPEs using coupled magnetohydrodynamic (MHD) and focused transport...
NASA's Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by t...
NASA's Parker Solar Probe (Parker) spacecraft reached its first perihelion of 35.7 solar radii on November 5th, 2018. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, drive...
GPU accelerators have had a notable impact on high-performance computing across many disciplines. They provide high performance with low cost/power, and therefore have become a primary compute resource on many of the largest supercomputers. Here, we implement multi-GPU acceleration into our Solar MHD code (MAS) using OpenACC in a fully portable, si...
The total solar eclipse that occurred on 21 August 2017 across the United States provided an opportunity to test a magnetohydrodynamic model of the solar corona driven by measured magnetic fields. We used a new heating model based on the dissipation of Alfvén waves, and a new energization mechanism to twist the magnetic field in filament channels....
Solar eruptions are the main driver of space-weather disturbances at the Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 14 July 2000 Bastille Day eruption, which produced...
Solar eruptions are the main driver of space-weather disturbances at the Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 14 July 2000 Bastille Day eruption, which produced...
Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and imp...
Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and imp...
A real-world example of adding OpenACC to a legacy MPI FORTRAN Preconditioned Conjugate Gradient code is described, and timing results for multi-node multi-GPU runs are shown. The code is used to obtain three-dimensional spherical solutions to the Laplace equation. Its application is finding potential field solutions of the solar corona, a useful t...
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun's photosphere, where it has been observed from ground- and space-based observatories for over four decades. Global maps of the solar magnetic field based on full disk magnetograms are commonly used as boundary conditions for coronal a...
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun's photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational co...
We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with t...
We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with t...
We describe the development and application of a time-dependent model of the solar wind. The model is empirically driven, starting from magnetic maps created with the Air Force Data Assimilative Photospheric flux Transport (ADAPT) model at a daily cadence. Potential field solutions are used to model the coronal magnetic field, and an empirical spec...
We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection
(CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event a...
Late on July 23, 2012, the STEREO-A spacecraft encountered a fast forward
shock driven by a coronal mass ejection launched from the Sun earlier that same
day. The estimated travel time of the disturbance ($\sim 20$ hrs), together
with the massive magnetic field strengths measured within the ejecta ($>
100$nT), made it one of the most extreme events...
A method for the automatic mapping of coronal holes (CH) using simultaneous
multi-instrument EUV imaging data is described. Synchronized EUV images from
STEREO/EUVI A\&B 195\AA\ and SDO/AIA 193\AA\ undergo preprocessing steps that
include PSF-deconvolution and the application of data-derived intensity
corrections that account for center-to-limb var...
We describe a method for the automatic mapping of coronal holes (CH) using simultaneous multi-instrument EUV imaging data. Synchronized EUV images from STEREO/EUVI A&B 195A and SDO/AIA 193A are preprocessed, including PSF deconvolution and the application of data-derived intensity corrections that account for center-to-limb variations (limb brighte...
The dynamics of vortex ring pairs in the homogeneous nonlinear Schr\"odinger
equation is studied. The generation of numerically-exact solutions of traveling
vortex rings is described and their translational velocity compared to revised
analytic approximations. The scattering behavior of co-axial vortex rings with
opposite charge undergoing collisio...
An easy to implement modulus-squared Dirichlet (MSD) bound
ary condition is formulated for numerical simulations of
time-dependent complex partial differential equations in
multidimensional settings.
The MSD boundary condition approximates a constant
modulus-square value of the solution at the boundaries
and is defined as
(dPSI/dt)_b = i Im[...
We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than th...
We present a simple to use, yet powerful code package called NLSEmagic to
numerically integrate the nonlinear Schr\"odinger equation in one, two, and
three dimensions. NLSEmagic is a high-order finite-difference code package
which utilizes graphic processing unit (GPU) parallel architectures. The codes
running on the GPU are many times faster than...
We revisit the topic of the existence and azimuthal modulational stability of
solitary vortices (alias vortex solitons) in the two-dimensional (2D)
cubic-quintic nonlinear Schr{\"o}dinger equation. We develop a semi-analytical
approach, assuming that the vortex soliton is relatively narrow, and thus
splitting the full 2D equation into radial and az...
We numerically study the dynamics and interactions of vortex rings in
the nonlinear Schrodinger equation (NLSE). Single ring dynamics for
both bright and dark vortex rings are explored including their traverse
velocity, stability, and perturbations resulting in quadrupole
oscillations. Multi-ring dynamics of dark vortex rings are investigated,
incl...
We describe and test an easy-to-implement two-step high-order compact (2SHOC)
scheme for the Laplacian operator and its implementation into an explicit
finite-difference scheme for simulating the nonlinear Schr\"odinger equation
(NLSE). Our method relies on a compact `double-differencing' which is shown to
be computationally equivalent to standard...
Linearized numerical stability bounds for solving the nonlinear
time-dependent Schr\"odinger equation (NLSE) using explicit finite-differencing
are shown. The bounds are computed for the fourth-order Runge-Kutta scheme in
time and both second-order and fourth-order central differencing in space.
Results are given for Dirichlet, modulus-squared Diri...
Linearized numerical stability bounds for solving the nonlinear time-dependent Schrödinger equation (NLSE) using explicit finite-differencing are shown. The bounds are computed for the fourth-order Runge–Kutta scheme in time and both second-order and fourth-order central differencing in space. Results are given for Dirichlet, modulus-squared Dirich...
We revisit the topic of the existence and azimuthal modulational stability of solitary vortices (alias vortex solitons) in the two-dimensional (2D) cubic-quintic nonlinear Schr{\"o}dinger equation. We develop a semi-analytical approach, assuming that the vortex soliton is relatively narrow, and thus splitting the full 2D equation into radial and az...
We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional nonlinear Schrödinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in the Lagrangian functional of the NLS in order to form a quasi-one-dimensional azimuthal equation of moti...
We seek vortex solutions to the Cubic-Quintic Nonlinear Schrodinger Equa- tion both analytically and numerically. Our analytical approach is based on the one- dimensional exact solution of a steady-state prole solution, combined with a variational approach. Our numerical solutions are formed by using our analytical results as an initial guess for a...
We study the existence and azimuthal modulational stability of vortices in the two-dimensional Cubic-Quintic Nonlinear Schrödinger Equation (CQNLS). Our method to find the vortex solutions is to use an asymptotically derived trial function in a variational approach and seeding the resulting ansatz as an initial condition to a numerical nonlinear op...