About
122
Publications
45,970
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,710
Citations
Introduction
Ron Blonder is the Head of the Chemistry Group, Department of Science Teaching, Weizmann Institute of Science in Israel. Ron does research in Chemistry Education, Nanotechnology and Nanotechnology Education, integration Technology in Chemistry Education, and Science Teachers' Professional Development and Self-efficacy, Recently, Blonder coined the term Contemporary Content Knowledge (CCK) that she found to be a key component for science teacher knowledge continues learning.
Current institution
Additional affiliations
October 2019 - present
August 2016 - March 2020
Education
October 2009 - July 2010
October 1993 - July 1999
October 1990 - July 1993
Publications
Publications (122)
This paper describes the rationale and the implementation of five laboratory experiments; four of them, intended
for high-school students, are inquiry-based activities that explore the quality of water. The context of water provides students with
an opportunity to study the importance of analytical methods and how they influence our everyday lives....
The goal of this research was to examine the change in the skills, Technological Pedagogical Content Knowledge (TPACK) and self-efficacy beliefs of chemistry teachers regarding video editing and using YouTube videos in high-school chemistry lessons, as a result of a professional development program that focused on editing YouTube videos and the acc...
Nanoscience is an important new field in modern science. It deals with the ability to create materials, devices, and systems having fundamentally new properties and functions by working at the atomic, molecular, and macromolecular levels. Many teachers in the educational system have relatively limited knowledge related to nanochemistry and nanotech...
In this paper we describe the learning processes of a group of experienced chemistry teachers in a specially designed workshop on molecular symmetry and continuous symmetry. The topic of continuous symmetry is a new field of study that provides a quantitative description of the distance of a specific structure from perfect symmetry. Using online in...
Integrating generative artificial intelligence (GenAI) in pre-service teachers’ education programs offers a transformative opportunity to enhance the pedagogical development of future science educators. This conceptual paper suggests applying the GenAI tool to evaluate pedagogical content knowledge (PCK) among pre-service science teachers. By holdi...
Authentic science learning has a significant potential for contributing to students' self-efficacy (SE) and science career aspirations (SCA) by introducing contemporary science. However, the design of authentic learning remains challenging due to the elusive and subjective nature of experiencing authenticity and the interdisciplinarity and complexi...
This paper discusses the ethical considerations surrounding generative artificial intelligence (GenAI) in chemistry education, aiming to guide teachers toward responsible AI integration. GenAI, driven by advanced AI models like Large Language Models, has shown substantial potential in generating educational content. However, this technology’s rapid...
This study explored the impact of authentic out-of-school learning on students' beliefs about their science learning efficacy and career aspirations. The learning activity, designed following an authentic learning framework, was led by research scientists. We examined how students' emotions, induced in an authentic scientific activity, mediated the...
Under the SciCar project (scicar.eu), job shadowing and site visit activities were organised in science and science education research laboratories in order to support science teacher educators and PhD students in science education, having a background in science or science education research, to become aware about science careers and how they can...
Artificial intelligence (AI) has made remarkable strides in recent years, finding applications in various fields, including chemistry research and industry. Its integration into chemistry education has gained attention more recently, particularly with the advent of generative AI (GAI) tools. However, there is a need to understand how teachers’ know...
Successful integration of digital technologies in the education of young children still needs to be solved. Despite a growing body of research focusing on learning through digital technologies in childhood, there are areas of knowledge where the impact of digital technologies has yet to be explored. A prominent example is nanoscience and nanotechno...
Climate change is a pressing global challenge for humanity, which should be adequately represented in the educational system. However, teachers face a significant challenge due to the vast amount of data and information about climate change available in the media. We aimed to identify aspects that affect teachers’ acceptance of technology in genera...
The rise of digital technologies since the second half of the 20th century has transformed every aspect of our lives and has had an ongoing effect even on one of the most conservative fields, education, including chemistry education. During the Covid-19 pandemic, chemistry teachers around the world were forced to teach remotely. This situation prov...
Inclusion of a diverse group of students, both regular learners and learners with special needs in chemistry classrooms is an important goal of chemistry educators. However, alternative conceptions in chemistry among high-school students can be a barrier for completing the learning process in the classroom, especially in a heterogeneous class. This...
Computational chemistry (CC) is an important and essential area within chemical sciences. Over the years, CC has developed rapidly and played a significant role in chemistry research. In addition to the centrality of CC in the chemical sciences, teachers and students should be exposed to contemporary research for many reasons. These reasons include...
Education is always evolving, and most recently has shifted to increased online or remote learning. Digital Learning and Teaching in Chemistry compiles the established and emerging trends in this field, specifically within the context of learning and teaching in chemistry. This book shares insights about five major themes: best practices for teachi...
Diversity and differences between students are the reality that teachers deal with daily. To address this reality, developments in education aim to provide teachers with the knowledge and requisite skills needed for differentiated instruction (DI). DI is a pedagogical-didactic approach that enables teachers to systematically address students’ diver...
One of the primary objectives of an education system is to prepare students for their adult lives by imparting them with the requisite knowledge, qualifications, and skills that will enable them to confront future challenges effectively. A whitepaper published by the Israeli Ministry of Education titled “The Graduate’s Image” stresses the importanc...
This work details the ramifications of online learning using a novel, personalized learning system regarding high-school students’ experiences, attitudes, self-efficacy, and achievements during the 2020–2021 school year. Although research has explored the implications of remote and online learning on education worldwide, little attention was dedica...
This essay reviews the literature relating to the characteristics and learning outcomes of educational escape rooms (EsRms), in general, and presents the work of a research and development group devoted to the design, implementation, and research of chemistry escape rooms (ChEsRms), in particular. The administrative and pedagogical dimensions of re...
The setting of this study is a remote laboratory with a scanning electron microscope (SEM). The SEM is an advanced instrument used by scientists to characterize structures in the nanoscale. The remote SEM activity was structured to address different practices of laboratory inquiry. Secondary chemistry students were requested to prepare at home suit...
Professional development courses help teachers integrate new content knowledge into the high-school curriculum. Designing practical online courses for this purpose is challenging, particularly in emerging fields such as nanotechnology. In this study, we evaluated such a course in three complementary dimensions: (1) knowledge, (2) the complexity of...
The experience of graduate degree lecturers in the natural sciences when they switched to online teaching during the Covid-19 pandemic is described. The shift to online teaching throughout the pandemic provided an opportunity to evaluate how lecturers integrate technology into their teaching and what they need to improve their remote teaching. This...
Despite unprecedented global challenges to the environment, research show that many young people are pessimistic about their ability to address these challenges. This paper explores one approach designed to guide middle-school teachers and their students to develop and practice agency about sustainability issues: via a curriculum that challenges st...
Chemical escape rooms (ChEsRms) are educational games in which students use their brain, chemical knowledge, intuition, and a bit of luck to solve a mystery. At the Weizmann Institute, we have developed ChEsRms that are implemented by teachers in their classes. Since the COVID-19 pandemic stopped all the educational activities that took place in ph...
This study examined learning processes in undergraduate online general chemistry courses. The study aimed to characterize learners according to their learning patterns and to identify indicators that predict students' success in an online environment. Specifically, we focused on the role of a central factor affecting success in online courses: self...
Molecular animations can be beneficial as teaching tools for genomics education; however, barriers to their effective implementation remain. This article proposes informed design guidelines from the perspective of the animator that may assist others to effectively communicate scientific concepts to their respective audiences and communities.
Before March 2020, with the outbreak of the COVID-19 pandemic, remote instruction of science was only moderately developed compared with more traditional approaches for learning science. Since the outbreak, however, all formal education systems have been carried out in remote mode, and outreach activities that take place in a research or academic s...
In this paper, we describe the structure, development, and validation process of customized pedagogical kits (CPKs) for differentiated instruction (DI) in chemistry. The CPKs rely on the DI approach, comprising varied pedagogical activities (e.g., games, inquiry activities, puzzles, simulations, models) designed as treatments, to help chemistry tea...
Professional learning communities (PLCs) have been touted as an effective form of teacher professional development. Teachers’ PLCs support their professional development among their peers and usually include teachers at different levels of seniority. This chapter reviews literature on how PLCs address teacher needs at each stage of their careers an...
Owing to the COVID-19 pandemic, all teachers’ training courses scheduled for summer 2020 had to transition to online formats. For the arts-integrating course “Teaching Chemistry by a Creative Approach”, this shift jeopardized the course’s essence, since learning by this approach is based on creative, hands-on, and active learning. Here we describe...
Although understanding of scientific inquiry (SI) is included in science education reform documents around the world, virtually nothing is known about middle school students' unders-tandings of scientific inquiry. This is partially due to the lack of any valid assessment tool. However, a valid and reliable assessment has recently been developed and...
Dr. Rachel Mamlok-Naaman, from the Weizmann Institute of Science in Israel, is a distinguished researcher in chemistry education. This paper presents an interview that was conducted in light of her achievements and in recognition of her receiving the IUPAC 2021 award for Distinguished Women in Chemistry or Chemical Engineering.
Understandings of the nature of scientific inquiry (NO) is included in science education reform documents around theworld. However, little is known about what students have learnedabout NOSI during their pre-college school years. The purpose of this large-scale follow-up international project (i.e. 32 countries and regions, spanning six continents...
Research based on educational data mining conducted at academic institutions is often limited by the institutional policy with regard to the type of learning management system and the detail level of its activity reports. Often, researchers deal with only raw data. Such data normally contain numerous fictitious user activities that can create a bia...
Using three-dimensional models in chemistry is a common teaching practice aimed at elevating the level of understanding of abstract concepts. However, the experience of using chemical models is still quite passive in terms of students’ input, requiring the students to utilize mainly visual, auditory, and some tactile information processing pathways...
Understandings of the nature of scientific inquiry (NOSI), as opposed to engaging students in inquiry learning experiences, are included in science education reform documents around the world. However, little is known about what students have learned about NOSI during their pre-college school years. The purpose of this large-scale follow-up interna...
The authors analyze chemistry teachers' discourse in a WhatsApp group. This online communication platform is used for continually studying the communication behavior of leading chemistry teachers who are members of a professional learning community (PLC). They describe the network of chemistry teachers' PLC in Israel, which provides the context for...
Long service to the journal
In this Communication paper we describe how a research-based approach was applied in Israel to support high-school chemistry teachers, who continued to teach using technology during the COVID-19 pandemic. Within the TPACK (technological pedagogical content knowledge) framework for teachers' knowledge in technological environments, we developed a qu...
The Weizmann Institute of Science in Israel provides several programs, both for school students and teachers, to obtain insights and learn about modern research and analytical techniques. This chapter will provide an overview of three different programs and explore the approaches and their influence on the participating students (or teachers). The...
The goal of this research is to provide a rich set of connections between two fields: (i) Nanoscale science and technology (NST) and (ii) topics from a common middle school physics curriculum. NST is emerging as one of the most promising new fields of the 21st century, which is one of the many arguments for including NST topics in secondary science...
Motivation is the driving force by which humans achieve their goals. In this chapter we review the factors whic influence teachers motivation towards innovative curricula and teaching strategies.
A professional learning community (PLC) is one of the most promising means for promoting teachers’ professional development. For building a mature and strong community of educators, where members are more engaged, share practices, collaborate in their teaching, and make their teaching public, it is crucial to develop a real sense of community (SoC)...
A one-hour guided discourse was designed to support developing the outreach communication skills of physics experts with middle school students. The participants consisted of 12 physics researchers who conduct research in the field of nanoscale science and technology (NST). The guided discourse consisted of a professional development task for prepa...
Recent technological advances have allowed for the use of computerized and online systems to achieve personalized student-centered learning and teaching in the classroom. One such prominent example is the PeTeL system (Personalized Teaching and Learning), developed by the Science Teaching Department of the Weizmann Institute of Science. In the pres...
Nanoscience nowadays is one of the major research fields in science (NAP 2016) and many educational programs have been developed in the last decade to introduce the same into schools (Jones et al. 2013, Bryan, Magana, and Sederberg 2015). In this chapter, we present different nanoscale science and technology (NST) programs that were developed for h...
This year (2019) represents the 150th year
since the discovery of the periodic table of the elements
(PTOE). In honor of this important event, we designed a
PTOE chemical escape room (called ChEsRm) that is suitable
for middle and high school chemistry students. The main idea
behind this ChEsRm is that it is relatively easy and
inexpensive for teac...
The call for integrating systems thinking (ST) with chemistry education focuses on the growing role chemistry will play in meeting global challenges, such as those presented by the United Nations’ Sustainable Development Goals. In this essay, we address two questions: How might ST help chemistry education address these global challenges? How might...
This year (2019) represents the 150th year
since the discovery of the periodic table of the elements
(PTOE). In honor of this important event, we designed a
PTOE chemical escape room (called ChEsRm) that is suitable
for middle and high school chemistry students. The main idea
behind this ChEsRm is that it is relatively easy and
inexpensive for teac...
Two different approaches for chemistry education are presented in this paper: teaching and learning chemistry through contemporary research and using a historical approach. Essential dimensions in science education are used to study the differences between the two approaches. This includes the rationale of each approach, the scientific content, as...
The Maker movement has started to influence the field of science education. However, a tension exists between the movement’s informal grassroots learning emphasis on open-ended personalized projects and the requirements of the formal and standardized science education curriculum. This study explores how high school chemistry teachers in Israel expe...
Despite the advancements in the production and accessibility of videos and animations, a gap exists between their potential for science teaching and their actual use in the classroom. The aim...
Imagine being locked in a chemical lab with 4 "bombs" that will detonate within 60 min unless you neutralize them. You now must use your brain, chemical knowledge, intuition, and need a bit of luck to neutralize the bombs and escape unharmed... This is the concept behind "chemical escape", an activity for high-school students, which brings the extr...
Improving teaching and student learning in chemistry classrooms is an important goal that is constantly researched. Several comparative studies of science teaching have been carried out on different parameters, e. g. misconceptions which science teachers and students may have regarding the scientific concepts they learn and teach. Here we describe...
Although understandings of scientific inquiry (as opposed to conducting inquiry) are included in science education reform documents around the world, little is known about what stu- dents have learned about inquiry during their elementary school years. This is partially due to the lack of any assess- ment instrument to measure understandings about...
The authors analyze chemistry teachers' discourse in a WhatsApp group. This online communication platform is used for continually studying the communication behavior of leading chemistry teachers who are members of a professional learning community (PLC). They describe the network of chemistry teachers' PLC in Israel, which provides the context for...
The chemical sciences integrate numerous pieces of structural data into families of compounds, and countless experimental results of reactive processes into ground rules. Collecting these pieces of information, analyzing them, and making the relevant contextual connections between them is in the heart of chemistry education. Here we emphasize the c...
If we wish to integrate modern science such as nanotechnology into the school science curriculum, we need to find the natural insertion point of modern science with the science, technology, engineering and math curriculum. However, integrating nanoscale science and technology (NST) essential concepts into the middle school science curriculum is cha...
The chapter describes a reform in the Israeli education system that has significantly influenced chemistry teaching and learning. In this reform 30% of the final high-school chemistry grade was replaced by alternative assessment methods. These new standards of the nation-wide evaluation left the teachers with a great challenge, since they have neit...
The European Union (EU) encourages science education to be oriented towards the concept of Responsible Research and Innovation (RRI), i.e. socially and ethically sensitive and inclusive processes of science and technology. Connecting RRI to prevailing concepts in science education, such as the Nature of Science (NoS), may facilitate the incorporati...
Although understandings of scientific inquiry (as opposed to conducting inquiry) is included in science education reform documents around the world, little is known about what students have learned about inquiry during their primary school years. This is partially due to the lack of any assessment instrument to measure understandings about scientif...
The purpose of this article is to trace the development, validation and use of a questionnaire for evaluating
teacher and student attitudes regarding Responsible Research and Innovation (RRI). RRI is a framework,
developed by the European Union, which provides general standards to guide the development of trust and
confidence of the public regardin...
Regular high-school chemistry teachers view gifted students as one of several types of students in a regular (mixed-ability) classroom. Gifted students have a range of unique abilities that characterize their learning process: mostly they differ in three key learning aspects: their faster learning pace, increased depth of understanding, and special...
Recent efforts in the science education community have highlighted the need to integrate research and theory from science communication research into more general science education scholarship. These synthesized research perspectives are relatively novel but serve an important need to better understand the impacts that the advent of rapidly emergin...
The high-school chemistry curriculum is loaded with many important chemical concepts that are taught at the high-school level and it is therefore very difficult to add modern contents to the existing curriculum. However, many studies have underscored the importance of integrating modern chemistry contents such as nanotechnology into a high-school c...
Facebook is the most commonly used Social Network Site (SNS) in the world. In this paper we explore students' attitudes towards the use of SNSs as a platform for learning chemistry and provide recommendations based on students' preferences regarding what should be done in the Facebook groups and what the teachers should not do (Thou shall nots) in...
Chemistry is related to almost every material, question, and topic. Chemical reactions take place in every living organism, in the environment, and in the industrial production of all the different products we use. Still it has a negative connotation for many laypersons. Educational links between contexts and the multi-perspective facets of chemist...
Responsible research and innovation (RRI) stands at the center of several EU projects and represents a contemporary view of the connection between science and society. The goal of RRI is to create a shared understanding of the appropriate behaviors of governments, business and NGOs which are central to building trust and confidence of the public an...
One of the challenges, nanoscience and technology (NST) encounters is education. Dealing with this challenge resulted in many educational programs, curricula, and modules in the area of NST. However, in order to establish an adequate basis for developing the educational aspect of NST there is a need to determine the NST concepts that should be taug...
The internet has influenced all aspects of modern society, yet likely none more than education—opening new possibilities for how, where, and when we learn. Nanoscience and nanotechnology have developed over a similar time frame as the rapid growth of the internet and thus the use of the internet for nanoscience education serves as an interesting pa...
Intellectually gifted students think and learn differently from other students in the classroom. It is important to teach them appropriately because excellence does not emerge without appropriate help. However, the interactions between gifted students and their teachers in a regular classroom have not been extensively studied. The current study foc...
The goals of this study are to map applications of nanotechnology that are recommended to be taught in high-school science and to identify the ‘need-to-know’ essential nanoscale science and technology (NST) concepts for each of the selected nanotechnology applications. A Delphi study using a community of experts was used to address these goals. Fiv...
Responsible Research and Innovation has become a core concept in many of the Horizon 2020 programs. In this article the concept of RRI is discussed in context of secondary education, and the interpretation used within the project ‘Irresistible’ is introduced. In the article several ways in which RRI can be incorporated in science classrooms are dis...
The current study aims at better understanding the factors that promote and hinder chemistry teachers in teaching a gifted student in their regular chemistry class. In addition, it provides evidence of ways that teachers perceive a professional development course dealing with a gifted student in a mixed-abilities science classroom. Eighty-four phot...
We examined how social network (SN) groups contribute to the learning of chemistry. The main goal was to determine whether chemistry learning could occur in the group discourse. The emphasis was on groups of students in the 11th and 12th grades who learn chemistry in preparation for their final external examination. A total of 1118 discourse events...
Nanoscale science and technology (NST) is an important new field in modern science. In the current study, we seek to answer the question: ‘What are the essential concepts of NST that should be taught in high school'? A 3-round Delphi study methodology was applied based on 2 communities of experts in nanotechnology research and science education. Ei...
*Please contact the authors for full text of the article.
Understanding nanoscience and how nanotechnology works has proven challenging for high school students, especially if it is not one of the core concepts specified in the national science curriculum. Out-of-school activities can be adopted as a method for teaching the fundamentals of
nanotec...
The goal of this research was to examine how Israeli chemistry teachers at high school level use Facebook groups to facilitate learning. Two perspectives were used: Teachers’ TPACK (Technological Pedagogical Content Knowledge) and the self-efficacy beliefs of chemistry teachers for using CLFG (chemistry learning Facebook groups). Three different ca...
Abstract: Nanotechnology has been recognized in the 21st
century as a new and modern science field. It is therefore
necessary to update school science by integrating nanotechnology-
related concepts into curricula for students in order
to prepare an educated workforce and a responsible generation
that will make scientifically literate decisions. Th...
This study focused on teachers' transfer of a variety of teaching methods from a teaching module on nanotechnology, which is an example of a topic outside the science curriculum, to teaching topics that are part of the chemistry curriculum. Nanotechnology is outside the science curriculum, but it was used in this study as a means to carry out a cha...
In this chapter, we present four different professional development programmes for in- and pre-service teachers and the accompanying research in the area of nanoscience and technology. First, we will present a review of the literature to lay out the field of conditions and approaches introducing nanoscience and nanotechnology into programmes for in...
The 21st century presents many challenges for chemistry educators. Chemistry as
an evolving entity is not reflected in the existing high-school chemistry curriculum.
The goal of the current study is to examine teachers’ perceptions regarding introducing
advanced topics in chemistry for high-school students by using a poster
exhibition of contempora...
The present research is part of a longitude research study regarding the questioning behavior of students in the inquiry chemistry laboratory in Israel. We found that students who were involved in learning chemistry by the inquiry method ask more and higher-level questions. However, throughout the years, we have observed that differences between th...
Whether one examines teachers’ effectiveness from the perspective of a legislator, parent, principal, or student, the main goal is to prepare teachers who have a strong knowledge base related to science, knowledge of effective teaching strategies, the ability to teach, and a desire to make a difference in the lives of their students. The underlying...
Traditionally, most teachers, both during their pre-service training as well as during their in-service experience, are exposed to only the conceptual structure and processes of chemistry. However, teaching chemistry most effectively necessitates both content knowledge as well as pedagogical content knowledge. Regarding the content knowledge, it is...
Nanotechnology has been touted as the next ‘industrial revolution’ of our modern age. In order for successful research, development, and social discourses to take place in this field, education research is needed to inform the development of standards, course development, and workforce preparation. In addition, there is a growing need to educate ci...
This paper describes a nano-activity that was designed and evaluated for a science festival for
children between the ages of nine to ten years old. The nano-activity design was based on science
education research in order to select activities and teaching methods that will support children learning
and increase their motivation. It explicitly consi...
The first part of the chapter aims at offering some general background information about multiple meanings and models in chemistry and chemistry education. A number of students’ troubles with understanding these issues and factors that offer insight in their troubles are also given.
The second part of the chapter aims at providing three clusters of...
A nanotechnology module was developed for ninth grade students in the context of teaching chemistry. Two basic concepts in nanotechnology were chosen: (1) size and scale and (2) surface-area-to-volume ratio (SA/V). A wide spectrum of instructional methods (e.g., game-based learning, learning with multimedia, learning with models, project based lear...
Discussions held in the chemical education community have generated a variety of reports and recommendations for reforming the chemistry curriculum. The recommendations refer to teaching chemistry in the context of real-world issues. This has been suggested as a way to enhance students' motivation. It is suggested that real-world problems emphasize...