Roman Jerala

Roman Jerala
National Institute of Chemistry · Department of Synthetic Biology and Immunology

PhD

About

315
Publications
35,054
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,640
Citations
Additional affiliations
January 2010 - present
EN-FIST Centre of Excellence
EN-FIST Centre of Excellence
Position
  • Director of synthetic biology
January 2010 - present
EN-FIST Centre of Excellence
EN-FIST Centre of Excellence
Position
  • Director of synthetic biology area
November 1996 - present
National Institute of Chemistry
Position
  • Head of Department

Publications

Publications (315)
Article
Highly regulated intracellular calcium entry affects numerous cellular physiological events. External regulation of intracellular calcium signaling presents a great opportunity for the artificial regulation of cellular activity. Calcium entry can be mediated by STIM proteins interacting with Orai calcium channels; therefore, the STIM1-Orai1 pair ha...
Article
Full-text available
The CRISPR/Cas system has emerged as a powerful and versatile genome engineering tool, revolutionizing biological and biomedical sciences, where an improvement of efficiency could have a strong impact. Here we present a strategy to enhance gene editing based on the concerted action of Cas9 and an exonuclease. Non-covalent recruitment of exonuclease...
Article
Coiled-coil (CC) dimers are versatile, customizable building modules for the design of diverse protein architectures unknown in nature. Incorporation of dynamic self-assembly, regulated by a selected chemical signal, represents an important challenge in the construction of functional polypeptide nanostructures. Here, we engineered metal binding sit...
Article
Full-text available
DNA transcription is regulated by a range of diverse mechanisms and primarily by transcription factors that recruit the RNA polymerase complex to the promoter region on the DNA. Protein binding to DNA at nearby or distant sites can synergistically affect this process in a variety of ways, but mainly through direct interactions between DNA-binding p...
Preprint
Regulation of the activity of proteins enables control of complex cellular processes. Allosteric regulation has been introduced individually into few natural proteins. Here, we present a generally applicable regulation of diverse proteins called INSRTR (inserted peptide structure regulator), based on inserting a short unstructured peptide into a so...
Article
Regulated proteolysis is a pivotal regulatory mechanism in all living organisms from bacteria to mammalian cells and viruses. The ability to design proteases to sense, transmit, or trigger a signal opens up the possibility of construction of sophisticated proteolysis-regulated signaling networks. Cleavage of the polypeptide chain can either activat...
Article
Full-text available
Alongside physiochemical properties (PCP), it has been suggested that the protein corona of nanoparticles (NPs) plays a crucial role in the response of immune cells to NPs. However, due to the great variety of NPs, target cells, and exposure protocols, there is still no clear relationship between PCP, protein corona composition, and the immunotoxic...
Article
Full-text available
Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Response of protein secretion based on transcriptional control is rather slow, as it requires transcription, translation and transport from the endoplasmic reticulum (ER) to the plasma membrane via the conventional protein secretion (CPS) pathway. An alt...
Article
Full-text available
Coordination among multiple signaling pathways ensures an appropriate immune response, where a signaling pathway may impair or augment another signaling pathway. Here, we report a negative feedback regulation of signaling through the key innate immune mediator MyD88 by inflammasome-activated caspase-1. NLRP3 inflammasome activation impaired agonist...
Article
Full-text available
Early diagnosis with rapid detection of the virus plays a key role in preventing the spread of infection and in treating patients effectively. In order to address the need for a straightforward detection of SARS-CoV-2 infection and assessment of viral spread, we developed rapid, sensitive, extraction-free one-step reverse transcription-quantitative...
Preprint
Full-text available
Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Protein secretion based on transcriptional control is rather slow, as proteins requires transcription, translation, followed by the transport from the endoplasmic reticulum (ER) through the conventional protein secretion (CPS) pathway towards the plasma...
Article
Background CD19 CAR T- cells (Chimeric antigen receptor T cells that recognize CD19) present a therapeutic option for various malignant diseases based on their ability to specifically recognize the selected tumour surface markers, triggering immune cell activation and cytokine production that results in killing cancerous cell expressing specific su...
Article
Full-text available
The SARS‐CoV‐2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of sp...
Article
Full-text available
Coiled-coil (CC) dimer-forming peptides are attractive designable modules for mediating protein association. Highly stable CCs are desired for biological activity regulation and assay. Here, we report the design and versatile applications of orthogonal CC dimer-forming peptides with a dissociation constant in the low nanomolar range. In vitro stabi...
Article
Coiled-coil (CC) dimers are widely used in protein design because of their modularity and well-understood sequence-structure relationship. In CC protein origami design, a polypeptide chain is assembled from a defined sequence of CC building segments that determine the self-assembly of protein cages into polyhedral shapes, such as the tetrahedron, t...
Article
Full-text available
The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which ma...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-21969-9
Article
Full-text available
Pro-inflammatory signaling mediated by Toll-like receptor 4 (TLR4)/myeloid differentiation-2 (MD-2) complex plays a crucial role in the instantaneous protection against infectious challenge and largely contributes to recovery from Gram-negative infection. Activation of TLR4 also boosts the adaptive immunity which is implemented in the development o...
Article
Full-text available
Natural proteins are characterised by a complex folding pathway defined uniquely for each fold. Designed coiled-coil protein origami (CCPO) cages are distinct from natural compact proteins, since their fold is prescribed by discrete long-range interactions between orthogonal pairwise-interacting coiled-coil (CC) modules within a single polypeptide...
Article
Full-text available
Coiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. CCPO folds are defined by the sequential order of concatenated orthogonal coiled-coil (CC) dimer-forming peptides, where a single-chain protein is programmed to fold into a polyhedral cage. Self-assembly of CC-based nanostructures from sev...
Article
Coiled-coil protein origami (CCPO) polyhedra are designed self-assembling nanostructures constructed from coiled coil (CC)-forming modules connected into a single chain. For testing new CCPO building modules, simpler polyhedra could be used that should maintain most features relevant to larger scaffolds. We show the design and characterization of n...
Article
Full-text available
To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of b...
Article
Synthetic biology aims to harness natural and synthetic biological parts and engineering them in new combinations and systems, producing novel therapies, diagnostics, bioproduction systems and providing information on the mechanism of function of biological systems. Engineering cell function requires the rewiring or de-novo construction of cell inf...
Preprint
Coiled-coil (CC) dimer-forming peptides are attractive designable modules for mediating protein association. Highly stable CCs are desired for biological activity regulation and assay. Here, we report the design and versatile applications of orthogonal CC dimer-forming peptides with a dissociation constant in the low nanomolar range. In vitro stabi...
Preprint
Myriad biological functions require protein-protein interactions (PPIs), and engineered PPIs are crucial for applications ranging from drug design to synthetic cell circuits. Understanding and engineering specificity in PPIs is particularly challenging as subtle sequence changes can drastically alter specificity. Coiled-coils are small protein doma...
Article
Full-text available
Background: The cryopyrin-associated periodic syndromes (CAPS) are a group of inherited disorders associated with systemic auto-inflammation. CAPS result from gain-of-function mutations in NLRP3, which result in formation of an intracellular protein complex known as the NLRP3 inflammasome. This leads to overproduction of IL-1β and other pro-inflamm...
Article
Background Chronic myeloid leukemia (CML) is a myeloproliferative neoplastic disease, occurring in 1 to 2 cases per 100.000 adults, which accounts this type of cancer for approximately 15% of newly diagnosed leukemia in adult patients. The diagnosis is based upon the genetic translocation between the t(9;22)(q34;q11.2), resulting in formation of Ph...
Article
Damage-associated endogenous molecules induce innate immune response, thus making sterile inflammation medically relevant. Stress-derived extracellular vesicles (stressEVs) released during oxidative stress conditions were previously found to activate Toll-like receptor 4 (TLR4), resulting in expression of a different pattern of immune response prot...
Article
Full-text available
The underlying mechanisms of probiotics and postbiotics are not well understood, but it is known that both affect the adaptive and innate immune responses. In addition, there is a growing concept that some probiotic strains have common core mechanisms that provide certain health benefits. Here, we aimed to elucidate the signalization of the probiot...
Preprint
Full-text available
Effective and safe vaccines against SARS-CoV-2 are highly desirable to prevent casualties and societal cost caused by Covid-19 pandemic. The receptor binding domain (RBD) of the surface-exposed spike protein of SARS-CoV-2 represents a suitable target for the induction of neutralizing antibodies upon vaccination. Small protein antigens typically ind...
Conference Paper
Chronic myeloid leukemia (CML) is a myeloproliferative neoplastic disease, occurring in 1 to 2 cases per 100.000 adults, which accounts for ~ 15 % of newly diagnosed leukemias in adult patients. The diagnosis is based upon the genetic translocation between the t(9;22)(q34;q11.2), resulting in the formation of Philadelphia fusion chromosome, coding...
Article
Full-text available
We report the enhancement of the lipopolysaccharide-induced immune response by adamantane containing peptidoglycan fragments in vitro. The immune stimulation was detected by Il-6 (interleukine 6) and RANTES (regulated on activation, normal T cell expressed and secreted) chemokine expression using cell assays on immortalized mouse bone-marrow derive...
Article
Nature uses only a limited number of protein topologies and while several folds have evolved independently over time, there are clearly many possible topologies that have not been explored by evolution. With recent advances of protein design concepts, computational modeling tools, high resolution and high-throughput experimental methods it is now p...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
An important feature of synthetic biological circuits is their response to physico-chemical signals, which enables the external control of cellular processes. Calcium-dependent regulation is an attractive approach for achieving such control, as diverse stimuli induce calcium influx by activating membrane channel receptors. Most calcium-dependent ge...
Article
Full-text available
We call upon the research community to standardize efforts to use daily self-reported data about COVID-19 symptoms in the response to the pandemic and to form a collaborative consortium to maximize global gain while protecting participant privacy.
Article
Full-text available
Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric β -propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of p...
Article
Full-text available
The clustering of biosynthetic enzymes is used in nature to channel reaction products and increase the yield of compounds produced by multiple reaction steps. The coupling of multiple enzymes has been shown to increase the biosynthetic product yield. Different clustering strategies have particular advantages as the spatial organization of multiple...
Article
The considerable potential of engineered cells compels the development of strategies for the stringent control of gene expression. A promising approach is the introduction of a premature stop codon (PTC) into a selected gene that is expressed only in the presence of non‐canonical amino acids through nonsense suppression. Here, different strategies...
Article
Full-text available
Protein interactions guide most cellular processes. Orthogonal hetero-specific protein–protein interaction domains may facilitate better control of engineered biological systems. Here, we report a tunable de novo designed set of orthogonal coiled-coil (CC) peptide heterodimers (called the NICP set) and its application for the regulation of diverse...
Article
The topology of biological polymers such as proteins and nucleic acids is an important aspect of their 3D structure. Recently, two applications of topology to molecular chains have emerged as important theoretical developments that are beginning to find utility in heteropolymer characterization and design: namely, circuit topology (CT) and knot the...
Article
We present an in-depth investigation of the membrane interactions of peptidoglycan-based immune adjuvants designed for lipid-based delivery systems using NMR spectroscopy. The derivatives contain a cargo peptidoglycan (PGN) dipeptide fragment and an adamantyl group, which serves as an anchor to the lipid bilayer. Furthermore, derivatives with a man...
Preprint
Full-text available
The clustering of biosynthetic enzymes is used in nature to channel reaction products and increase the yield of compounds produced by multiple reaction steps. The coupling of multiple enzymes has been shown to increase the biosynthetic product yield. Different clustering strategies have particular advantages as the spatial organization of multiple...
Preprint
Full-text available
The clustering of biosynthetic enzymes is used in nature to channel reaction products and increase the yield of compounds produced by multiple reaction steps. The coupling of multiple enzymes has been shown to increase the biosynthetic product yield. Different clustering strategies have particular advantages as the spatial organization of multiple...
Preprint
Full-text available
Information is the most potent protective weapon we have to combat a pandemic, at both the individual and global level. For individuals, information can help us make personal decisions and provide a sense of security. For the global community, information can inform policy decisions and offer critical insights into the epidemic of COVID-19 disease....
Article
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which however represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of...
Article
Full-text available
Background: Forkhead box P3+ (FOXP3+) regulatory T cells (Tregs) are a subset of lymphocytes, critical for the maintenance of immune homeostasis. Loss-of-function mutations of the FOXP3 gene in animal models and humans results in loss of differentiation potential into Treg cells and are responsible for several immune-mediated inflammatory diseases...
Article
Nature is based on complex self-assembling systems that span from the nano- to the macroscale. We can already start to design biomimetic systems with properties that have not evolved in nature, based on designed molecular interactions and regulation of biological systems. Synthetic biology is based on the principle of modularity: repurposing divers...
Article
Full-text available
Several antibody-targeting cancer immunotherapies have been developed based on T cell activation at the target cells. One of the most potent activators of T cells are bacterial superantigens, which bind to MHC class II on antigen presenting cells and activate T cells through T cell receptor. Strong T cell activation is also one of the main weakness...
Article
Full-text available
Cellular signal transduction is predominantly based on protein interactions and their post-translational modifications, which enable a fast response to input signals. Owing to difficulties in designing new unique protein–protein interactions, designed cellular logic has focused on transcriptional regulation; however, that process has a substantiall...
Article
Full-text available
New monosaccharide-based lipid A analogues were rationally designed through MD-2 docking studies. A panel of compounds with two carboxylate groups as phosphates bioisosteres, was synthesized with the same glucosamine-bis-succinyl core linked to different unsaturated and saturated fatty acid chains. The binding of the synthetic compounds to purified...
Article
Full-text available
The interplay between DNA-binding proteins plays an important role in transcriptional regulation and could increase the precision and complexity of designed regulatory circuits. Here we show that a transcription activator-like effector (TALE) can displace another TALE protein from DNA in a highly polarized manner, displacing only the 3′- but not 5′...
Article
Full-text available
Novel mathematical models of three different repressilator topologies are introduced. As designable transcription factors have been shown to bind to DNA non-cooperatively, we have chosen models containing non-cooperative elements. The extended topologies involve three additional transcription regulatory elements—which can be easily implemented by s...
Article
Full-text available
NLRP3 is a cytosolic sensor triggered by different pathogen- and self-derived signals that plays a central role in a variety of pathological conditions, including sterile inflammation. The leucine-rich repeat domain is present in several innate immune receptors, where it is frequently responsible for sensing danger signals and regulation of activat...
Article
The CRISPR/Cas system has been developed as a potent tool for genome engineering and transcription regulation. However, the efficiency of its delivery into cells, particularly for therapeutic in vivo applications, remains a major bottleneck. Extracellular vesicles (EVs), released by eukaryotic cells, can mediate the transfer of different molecules,...
Article
Bacterial flagellin activates the innate immune system and ultimately the adaptive immune system through a Toll-like receptor 5 (TLR5)-dependent signaling mechanism. Given that TLR5 is widely distributed in epithelia, flagellin is currently being developed as a mucosal adjuvant. Flagellin FliC from Salmonella enterica has four domains: the conserve...
Article
Full-text available
The CRISPR/Cas9 genome editing system has already proved its efficiency, versatility and simplicity in numerous applications in human, animal, microbe and plant cells. Together with the vast amount of genome and transcriptome databases available, it represents an enormous potential for plant breeding and research. Although most changes produced wit...