Romain Rollin

Romain Rollin
  • PhD in Physics
  • Institut Curie

Postdoctoral fellow

About

6
Publications
505
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
70
Citations
Current institution
Institut Curie

Publications

Publications (6)
Article
Full-text available
Cellular growth is the result of passive physical constraints and active biological processes. Their interplay leads to the appearance of robust and ubiquitous scaling laws relating linearly cell size, dry mass, and nuclear size. Despite accumulating experimental evidence, their origin is still unclear. Here, we show that these laws can be explaine...
Article
Cellular growth is the result of passive physical constraints and active biological processes. Their interplay leads to the appearance of robust and ubiquitous scaling laws relating linearly cell size, dry mass, and nuclear size. Despite accumulating experimental evidence, their origin is still unclear. Here, we show that these laws can be explaine...
Article
Full-text available
Cellular growth is the result of passive physical constraints and active biological processes. Their interplay leads to the appearance of robust and ubiquitous scaling laws relating linearly cell size, dry mass, and nuclear size. Despite accumulating experimental evidence, their origin is still unclear. Here, we show that these laws can be explaine...
Article
Full-text available
Cellular growth is the result of passive physical constraints and active biological processes. Their interplay leads to the appearance of robust and ubiquitous scaling laws relating linearly cell size, dry mass, and nuclear size. Despite accumulating experimental evidence, their origin is still unclear. Here, we show that these laws can be explaine...
Preprint
Full-text available
The dimensions and compositions of cells are tightly regulated by active processes. This exquisite control is embodied in the robust scaling laws relating cell size, dry mass, and nuclear size. Despite accumulating experimental evidence, a unified theoretical framework is still lacking. Here, we show that these laws and their breakdown can be expla...
Article
Although textbook pictures depict the cell nucleus as a simple ovoid object, it is now clear that it adopts a large variety of shapes in tissues. When cells deform, because of cell crowding or migration through dense matrices, the nucleus is subjected to large constraints that alter its shape. In this review, we discuss recent studies related to nu...

Network

Cited By