About
36
Publications
23,915
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,500
Citations
Introduction
Current institution
Additional affiliations
January 2023 - present
July 2022 - December 2023
November 2018 - May 2022
Publications
Publications (36)
Glaciers distinct from the Greenland and Antarctic ice sheets are shrinking rapidly, altering regional hydrology¹, raising global sea level² and elevating natural hazards³. Yet, owing to the scarcity of constrained mass loss observations, glacier evolution during the satellite era is known only partially, as a geographic and temporal patchwork4,5....
The monitoring of Earth’s and planetary surface elevations at larger and finer scales is rapidly progressing through the increasing availability and resolution of digital elevation models (DEMs). Surface elevation observations are being used across an expanding range of fields to study topographical attributes and their changes over time, notably i...
In the Northern Hemisphere, ~1500 glaciers, accounting for 28% of glacierized area outside the Greenland Ice Sheet, terminate in the ocean. Glacier mass loss at their ice-ocean interface, known as frontal ablation, has not yet been comprehensively quantified. Here, we estimate decadal frontal ablation from measurements of ice discharge and terminus...
Glacier mass loss affects sea level rise, water resources, and natural hazards. We present global glacier projections, excluding the ice sheets, for shared socioeconomic pathways calibrated with data for each glacier. Glaciers are projected to lose 26 ± 6% (+1.5°C) to 41 ± 11% (+4°C) of their mass by 2100, relative to 2015, for global temperature c...
Episodic failures of ice-dammed lakes have produced some of the largest floods in history, with disastrous consequences for communities in high mountains1–7. Yet, estimating changes in the activity of ice-dam failures through time remains controversial because of inconsistent regional flood databases. Here, by collating 1,569 ice-dam failures in si...
Glaciers, distinct from the Greenland and Antarctic ice sheets, play a crucial role in Earth's climate system by affecting global sea levels, regional freshwater availability, nutrient and energy budgets, and local geohazards. Past assessments of regional to global glacier mass changes were limited in spatial coverage, temporal resolution, and/or t...
Glaciers are indicators of ongoing anthropogenic climate change ¹ . Their melting leads to increased local geohazards ² , and impacts marine ³ and terrestrial 4,5 ecosystems, regional freshwater resources ⁶ , and both global water and energy cycles 7,8 . Together with the Greenland and Antarctic ice sheets, glaciers are essential drivers of present...
Glacier surges are spectacular events that lead to surface elevation changes of tens of meter in a period of a few months to a few years, with different patterns of mass transport. Existing methods of elevation change estimate of surges, and subsequent quantification of their mass transported, rely on differencing pairs of digital elevation models...
Projecting the global evolution of glaciers is crucial to quantify future sea-level rise and changes in glacier-fed rivers. Recent intercomparison efforts have shown that a large part of the uncertainties in the projected glacier evolution is driven by the glacier model itself and by the data used for initial conditions and calibration. Here, we qu...
Glaciers, distinct from the Greenland and Antarctic ice sheets, play a crucial role in Earth's climate system by affecting global sea levels, freshwater availability, nutrient and energy budgets and regional climate patterns. Accurate measurements of glacier mass changes are needed to understand and project glacier evolution and its related impacts...
Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global...
Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global...
Glaciers worldwide are retreating rapidly due to anthropogenic climate change. One consequence of glacier mass loss is the destabilization of valley walls as the support provided by the glacier changes and eventually vanishes, a process known as ''debuttressing.'' In this work, we examine the evolution of eight large, active instabilities in southe...
Projecting the global evolution of glaciers is crucial to quantify future sea-level rise and changes in glacier-fed rivers. Recent intercomparison efforts have shown that a large part of the uncertainties in the projected glacier evolution is driven by the glacier model itself and by the data used for initial conditions and calibration. Here, we qu...
Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea-level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global...
In Greenland, 87% of the glacierized area terminates in the ocean, but mass lost at the ice‐ocean interface, or frontal ablation, has not yet been fully quantified. Using measurements and models we calculate frontal ablation of Greenland's 213 outlet and 537 peripheral glaciers and find a total frontal ablation of 481.8 ± 24.0 for 2000–2010 and 510...
The South Col Glacier is a small body of ice and snow (approx. 0.2 km2) located at the very high elevation of 8000 m a.s.l. (above sea level) on the southern ridge of Mt. Everest. A recent study by proposed that South Col Glacier is rapidly losing mass. This is in contradiction to our comparison of two digital elevation models derived from aerial p...
Knowledge of frontal ablation from marine-terminating glaciers (i.e., mass lost at the calving face) is critical for constraining glacier mass balance, improving projections of mass change, and identifying the processes that govern frontal mass loss. Here, we discuss the challenges involved in computing frontal ablation and the unique issues pertai...
The mass balance of Mýrdalsjökull, the fourth largest Icelandic ice cap (520 km² in 2019), has received less attention so far than the mass balance of the three largest ice caps, Vatnajökull, Hofsjökull and Langjökull. Here, we used digital elevation models (DEMs) derived from the untapped SPOT5 archive (2003−2014), lidar data (2010), Pléiades imag...
Glaciers distinct from the Greenland and Antarctic ice sheets are currently losing mass rapidly with direct and severe impacts on the habitability of some regions on Earth as glacier meltwater contributes to sea-level rise and alters regional water resources in arid regions. In this review, we present the different techniques developed during the l...
Cet article présente notre capacité actuelle à élaborer, à partir de données satellitaires, des produits relatifs aux glaciers à l'échelle globale afin de documenter leur réponse au changement climatique. Notre atlas cartographie, d'une part, les vitesses d'écoulement en surface pour caractériser la dynamique glaciaire et quantifier la répartition...
Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been...
The monitoring of glaciers in Switzerland has a long tradition, yet glacier changes during the 20th century are only known through sparse observations. Here, we estimate a halving of Swiss glacier volumes between 1931 and 2016 by mapping historical glacier elevation changes at high resolution. Our analysis relies on a terrestrial image archive know...
The world's glaciers are shrinking rapidly, with impacts ranging from global sea-level rise and changes in freshwater availability to the alteration of cryospheric hazards. Despite significant advances during the satellite era, the monitoring of the mass changes of glaciers is still hampered by a fragmented coverage of remote sensing estimations an...
Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been...
The monitoring of glaciers in Switzerland has a long tradition, yet glacier changes during the 20th century are only known through sparse observations. Here, we estimate a halving of Swiss glacier volumes between 1931 and 2016 by mapping historical glacier elevation changes at high resolution. Our analysis relies on a terrestrial image archive know...
Declines in terrestrial water storage (TWS) exacerbate regional water scarcity and global sea level rise. Increasing evidence has shown that recent TWS declines are substantial in ecologically fragile drylands, but the mechanism remains unclear. Here, by synergizing satellite observations and model simulations, we quantitatively attribute TWS trend...
Observing changes in Earth surface topography is crucial for many Earth science disciplines. Documenting these changes over several decades at regional to global scale remains a challenge due to the limited availability of suitable satellite data before the year 2000. Declassified analog satellite images from the American reconnaissance program Hex...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Studying glacier mass changes at regional scale provides critical insights into the impact of climate change on glacierized regions, but is impractical using in situ estimates alone due to logistical and human constraints. We present annual mass-balance time series for 239 glaciers in the European Alps, using optical satellite images for the period...
Andean glaciers are among the fastest shrinking and largest contributors to sea level rise on Earth. They also represent crucial water resources in many tropical and semi-arid mountain catchments. Yet the magnitude of the recent ice loss is still debated. Here we present Andean glacier mass changes (from 10° N to 56° S) between 2000 and 2018 using...
Western North American (WNA) glaciers outside of Alaska cover 14,384 km² of mountainous terrain. No comprehensive analysis of recent mass change exists for this region. We generated over 15,000 multisensor digital elevation models from spaceborne optical imagery to provide an assessment of mass change for WNA over the period 2000–2018. These glacie...