Romain Cartoni

Romain Cartoni
Duke University | DU

PhD

About

26
Publications
4,259
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,931
Citations
Introduction
Additional affiliations
May 2005 - December 2009
University of Geneva
Position
  • PhD Student

Publications

Publications (26)
Article
Armadillo repeat‐containing X‐linked protein‐1 (Armcx1) is a poorly characterized transmembrane protein that regulates mitochondrial transport in neurons. Its overexpression has been shown to induce neurite outgrowth in embryonic neurons and to promote retinal ganglion cell (RGC) survival and axonal regrowth in a mouse optic nerve crush model. In o...
Preprint
Full-text available
Among neurons, retinal ganglion cells (RGCs) are uniquely sensitive to mitochondrial dysfunction. The RGC is highly polarized, with a somatodendritic compartment in the inner retina and an axonal compartment projecting to targets in the brain. The drastically dissimilar functions of these compartments implies that mitochondria face different bioene...
Article
PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is a...
Preprint
PTEN-induced kinase 1 (PINK1) is a very short-lived protein that is required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 tr...
Article
Full-text available
Mitochondria are essential for neurons and must be optimally distributed along their axon to fulfill local functions. A high density of mitochondria has been observed in retinal ganglion cell (RGC) axons of an unmyelinated region of the optic nerve, called the glial lamina (GL) in mouse (lamina cribrosa in human). In glaucoma, the world's leading c...
Preprint
Full-text available
Mitochondria are essential for neurons and must be optimally distributed along their axon to fulfil local functions. A high density of mitochondria has been observed in retinal ganglion cell (RGC) axons of an unmyelinated region of the optic nerve, called the glial lamina (GL) in mouse (lamina cribrosa in human). In glaucoma, the world leading caus...
Article
Full-text available
Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insu...
Data
PTEN and SOCS3 co-deletion increased mitochondrial transport 20h post injury. (MOV)
Data
PTEN and SOCS3 co-deletion does not increase the transport of synaptophysin-positive synaptic vesicles 20h post injury. (MOV)
Data
Co-localization between MitoDsRed transfected neurons and Mitotracker dye. (TIF)
Data
Mitochondrial transport parameters. (TIF)
Data
PTEN and SOCS3 co-deletion does not increase the transport of late endosomes 20h post injury. (MOV)
Article
Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized p...
Article
After axotomy, neuronal survival and growth cone re-formation are required for axon regeneration. We discovered that doublecortin-like kinases (DCLKs), members of the doublecortin (DCX) family expressed in adult retinal ganglion cells (RGCs), play critical roles in both processes, through distinct mechanisms. Overexpression of DCLK2 accelerated gro...
Article
Full-text available
Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT...
Article
Full-text available
Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities, and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CM...
Article
Full-text available
Skeletal muscle mitochondrial dysfunction is believed to play a role in the progression and severity of amyotrophic lateral sclerosis (ALS). The regulation of transcriptional co-activators involved in mitochondrial biogenesis and function in ALS is not well known. When compared with healthy control subjects, patients with ALS, but not neurogenic di...
Article
Loss of retinal ganglion cells (RGCs) accounts for visual function deficits after optic nerve injury, but how axonal insults lead to neuronal death remains elusive. By using an optic nerve crush model that results in the death of the majority of RGCs, we demonstrate that axotomy induces differential activation of distinct pathways of the unfolded p...
Article
Full-text available
Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochondrial outer membrane protein that promotes mitochondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To exami...
Article
Full-text available
Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiol...
Article
Charcot-Marie-Tooth disease (CMT) is the most common form of hereditary peripheral neuropathy. The main axonal form of CMT, CMT2A, preferentially affects peripheral neurons with the longest neurites. CMT2A has been recently linked to mutations in the mitofusin 2 (Mfn2) gene. Mfn2 participates in mitochondrial fusion a process that together with mit...
Article
Skeletal muscle size is tightly regulated by the synergy between anabolic and catabolic signalling pathways which, in humans, have not been well characterized. Akt has been suggested to play a pivotal role in the regulation of skeletal muscle hypertrophy and atrophy in rodents and cells. Here we measured the amount of phospho-Akt and several of its...
Article
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle...

Network

Cited By