Rolf Kümmerli

Rolf Kümmerli
University of Zurich | UZH · Department of Quantitative Biomedicine

Professor
Unravelling social interaction networks in microbial communities in the environment and the host.

About

112
Publications
15,081
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,584
Citations
Citations since 2016
74 Research Items
2705 Citations
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
Introduction
Bacteria are social organisms that cooperate and compete with each other in complex interaction networks. We apply concepts from ecology, evolutionary and molecular biology to understand the proximate (mechanistic) and ultimate (evolutionary) basis of bacterial social interactions. We use laboratory model systems involving human opportunistic pathogens and communities isolated from natural habitats to unravel the complexities of bacterial sociality.
Additional affiliations
November 2018 - present
University of Zurich
Position
  • Professor (Associate)
November 2012 - October 2018
University of Zurich
Position
  • Professor (Assistant)
November 2009 - October 2012
Eawag: Das Wasserforschungs-Institut des ETH-Bereichs
Position
  • Group Leader
Description
  • Junior group leader

Publications

Publications (112)
Article
Full-text available
Pseudomonas aeruginosa uses quorum sensing (QS), a three-unit multilayered network, to coordinate expression of traits required for growth and virulence in the context of infections. Despite its importance for bacterial fitness, the QS regulon appears to be a common mutational target during long-term adaptation of P. aeruginosa in the host, natural...
Article
Full-text available
There has been great progress in understanding how bacterial groups coordinate social actions, such as biofilm formation and public-goods secretion. Less clear is whether the seemingly coordinated group-level responses actually mirror what individual cells do. Here, we use a microscopy approach to simultaneously quantify the investment of individua...
Article
Full-text available
A common way for bacteria to cooperate is via the secretion of beneficial public goods (proteases, siderophores, biosurfactants) that can be shared amongst individuals in a group. Bacteria often simultaneously deploy multiple public goods with complementary functions. This raises the question whether natural selection could favour division of labou...
Article
Full-text available
Microbial secondary metabolites represent a rich source for drug discovery, plant protective agents, and biotechnologically relevant compounds. Among them are siderophores, iron-chelating molecules, that show a great influence on bacterial community assembly and the potential to control pathogen invasions. One of such a siderophore is pyoverdine th...
Article
Full-text available
Microbial invasions can compromise ecosystem services and spur dysbiosis and disease in hosts. Nevertheless, the mechanisms determining invasion outcomes often remain unclear. Here, we examine the role of iron-scavenging siderophores in driving invasions of Pseudomonas aeruginosa into resident communities of environmental pseudomonads. Siderophores...
Article
Full-text available
Siderophores are iron-chelating molecules produced by bacteria and other microbes. They are involved with virulence in infections and play key roles in bacterial community assembly and as plant protectants due to their pathogen control properties. Although assays exist to screen whether newly isolated bacteria can produce siderophores, the chemical...
Preprint
Full-text available
Bacterial infections are often polymicrobial, leading to intricate pathogen-pathogen and pathogen-host interactions. There is increasing interest in studying the molecular basis of pathogen interactions and how such mechanisms impact host morbidity. However, much less is known about the ecological dynamics between pathogens and how they affect viru...
Preprint
Full-text available
Pseudomonas aeruginosa populations evolving in cystic fibrosis (CF) lungs, animal infection models, natural environments or in vitro undergo extensive genetic adaption and diversification. A common mutational target is the quorum sensing (QS) regulon, a three-unit regulatory system that controls the expression of a suite of virulence factors and se...
Article
Full-text available
In The Wealth of Nations, political economist Adam Smith stated that division of labour is favoured if specialisation leads to an “increase of dexterity in every particular workman” so that the same number of people show a “great increase of the quantity of work". Simply speaking, individuals divide tasks between them when specialisation leads to a...
Article
Full-text available
A recent workshop titled "Developing Models to Study Polymicrobial Infections," sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored the development of new models to study the polymicrobial infections associated with the airways of persons with cystic fibrosis (CF). The workshop gathered 35+ investigators over two virtual sessions....
Preprint
Full-text available
Pseudomonas aeruginosa and Staphylococcus aureus frequently occur together in polymicrobial infections, and there is evidence that their interactions negatively affect disease outcome in patients. At the molecular level, interactions between the two bacterial taxa are well-described, with P. aeruginosa usually being the dominant species suppressing...
Article
Pseudomonas aeruginosa and Staphylococcus aureus frequently occur together in polymicrobial infections, and there is evidence that their interactions negatively affect disease outcome in patients. At the molecular level, interactions between the two bacterial taxa are well-described, with P. aeruginosa usually being the dominant species suppressing...
Article
Full-text available
Bacteria often cooperate by secreting molecules that can be shared as public goods between cells. Because the production of public goods is subject to cheating by mutants that exploit the good without contributing to it, there has been great interest in elucidating the evolutionary forces that maintain cooperation. However, little is known on how b...
Article
Full-text available
Pseudomonas aeruginosa and Staphylococcus aureus frequently occur together in polymicrobial infections, and their interactions can complicate disease progression and treatment options. While interactions between P. aeruginosa and S. aureus have been extensively described using planktonic batch cultures, little is known about whether and how individ...
Preprint
Full-text available
Pseudomonas aeruginosa and Staphylococcus aureus frequently occur together in polymicrobial infections, and their interactions can complicate disease progression as well as treatment options. While interactions between P. aeruginosa and S. aureus have been extensively described using planktonic batch cultures, little is known about whether and how...
Preprint
Full-text available
A common way for bacteria to cooperate is via the secretion of beneficial public goods (proteases, siderophores, biosurfactants) that can be shared among individuals in a group. Bacteria often simultaneously deploy multiple public goods with complementary functions. This raises the question whether natural selection could favour division of labour...
Article
Full-text available
In heterogenous, spatially structured habitats, individuals within populations can become adapted to the prevailing conditions in their local environment. Such local adaptation has been reported for animals and plants, and for pathogens adapting to hosts. There is increasing interest in applying the concept of local adaptation to microbial populati...
Preprint
Full-text available
Microbial invasions can compromise ecosystem services and spur dysbiosis and disease in hosts. Nevertheless, the mechanisms determining invasion outcomes often remain unclear. Here, we examine the role of iron-scavenging siderophores in driving invasions of Pseudomonas aeruginosa into resident communities of environmental pseudomonads. Siderophores...
Preprint
Full-text available
Bacteria engage in a cell-to-cell communication process called quorum sensing (QS) to coordinate expression of cooperative exoproducts at the group level. While population-level QS-responses are well studied, we know little about commitments of single cells to QS. Here, we use flow cytometry to track the investment of Pseudomonas aeruginosa individ...
Article
Bacteria engage in a cell-to-cell communication process called quorum sensing (QS) to coordinate expression of cooperative exoproducts at the group level. While population-level QS-responses are well studied, we know little about commitments of single cells to QS. Here, we use flow cytometry to track the investment of Pseudomonas aeruginosa individ...
Preprint
Full-text available
There has been great progress in understanding how bacterial groups coordinate social actions, such as biofilm formation, swarming and public-goods secretion. Less clear, however, is whether the seemingly coordinated responses observed at the group level actually mirror what individual cells do. Here, we use a microscopy approach to simultaneously...
Preprint
Full-text available
Bacteria often cooperate by secreting molecules that can be shared as public goods between cells. Because the production of public goods is subject to cheating by mutants that exploit the good without contributing to it, there has been great interest in elucidating the evolutionary forces that maintain cooperation. However, little is known on how b...
Article
The rapid emergence of antibiotic resistant bacterial pathogens constitutes a critical problem in healthcare and requires the development of novel treatments. Potential strategies include the exploitation of microbial social interactions based on public goods, which are produced at a fitness cost by cooperative microorganisms, but can be exploited...
Article
How might costly cooperation evolve from scratch? A new study using cross-feeding in a bacterial system suggests that spatial proximity between partners and reciprocal fitness feedbacks between them are essential drivers of stable cooperative partnerships.
Article
Full-text available
Antibiotics are losing efficacy due to the rapid evolution and spread of resistance. Treatments targeting bacterial virulence factors have been considered as alternatives because they target virulence instead of pathogen viability, and should therefore exert weaker selection for resistance than conventional antibiotics. However, antivirulence treat...
Article
Full-text available
Plant pathogenic bacteria cause high crop and economic losses to human societies1-3. Infections by such pathogens are challenging to control as they often arise through complex interactions between plants, pathogens and the plant microbiome4,5. This natural ecosystem is rarely studied experimentally at the microbiome-wide scale, and consequently we...
Article
Bacterial communities in the environment and in infections are typically diverse, yet we know little about the factors that determine interspecies interactions. Here, we apply concepts from ecological theory to understand how biotic and abiotic factors affect interaction patterns between the two opportunistic human pathogens Pseudomonas aeruginosa...
Article
Cooperation can be favored through the green‐beard mechanism, where a set of linked genes encodes both a cooperative trait and a phenotypic marker (green beard), which allows carriers of the trait to selectively direct cooperative acts to other carriers. In theory, the green‐beard mechanism should favor cooperation even when interacting partners ar...
Preprint
Full-text available
The rapid emergence of antibiotic resistant bacterial pathogens constitutes a critical problem in healthcare and requires the development of novel treatments. Potential strategies include the exploitation of microbial social interactions based on public goods, which are produced at a fitness cost by cooperative microorganisms, but can be exploited...
Preprint
Full-text available
Bacterial communities in the environment and in infections are typically diverse, yet we know little about the factors that determine interspecies interactions. Here, we apply concepts from ecological theory to understand how biotic and abiotic factors affect interaction patterns between the two opportunistic human pathogens Pseudomonas aeruginosa...
Preprint
Full-text available
Cooperation can be favored through the green-beard mechanism, where a set of linked genes encodes both a cooperative trait and a phenotypic marker (green beard), which allows carriers of the trait to selectively direct cooperative acts to other carriers. In theory, the green-beard mechanism should favor cooperation even when interacting partners ar...
Article
During infections, bacterial pathogens can engage in a variety of interactions with each other, ranging from the cooperative sharing of resources to deadly warfare. This is especially relevant in opportunistic infections, where different strains and species often co-infect the same patient and interact in the host. Here, we review the relevance of...
Preprint
Full-text available
Antibiotics are losing efficacy due to the rapid evolution and spread of resistance. Treatments targeting bacterial virulence factors have been considered as alternatives because they target virulence instead of pathogen viability, and should therefore exert weaker selection for resistance than conventional antibiotics. However, antivirulence treat...
Article
Bacteria frequently cooperate by sharing secreted metabolites such as enzymes and siderophores. The expression of such 'public good' traits can be interdependent, and studies on laboratory systems have shown that trait linkage affects eco-evolutionary dynamics within bacterial communities. Here, we examine whether linkage among social traits occurs...
Article
Iron is an essential trace element for most organisms. A common way for bacteria to acquire this nutrient is through the secretion of siderophores, which are secondary metabolites that scavenge iron from environmental stocks and deliver it to cells via specific receptors. While there has been tremendous interest in understanding the molecular basis...
Article
Full-text available
Transposable temperate phages randomly insert into bacterial genomes, providing increased supply and altered spectra of mutations available to selection, thus opening alternative evolutionary trajectories. Transposable phages accelerate bacterial adaptation to new environments, but their effect on adaptation to the social environment is unclear. Us...
Article
Full-text available
Explaining how cooperation can persist in the presence of cheaters, exploiting the cooperative acts, is a challenge for evolutionary biology. Microbial systems have proved extremely useful to test evolutionary theory and identify mechanisms maintaining cooperation. One of the most widely studied system is the secretion and sharing of iron‐scavengin...
Article
Full-text available
Pathogenic bacteria engage in social interactions to colonize hosts, which include quorum-sensing-mediated communication and the secretion of virulence factors that can be shared as “public goods” between individuals. While in-vitro studies demonstrated that cooperative individuals can be displaced by “cheating” mutants freeriding on social acts, w...
Preprint
Transposable temperate phages randomly insert into bacterial genomes, providing increased supply and altered spectra of mutations available to selection, thus opening alternative evolutionary trajectories. Transposable phages accelerate bacterial adaptation to new environments, but their effect on adaptation to the social environment is unclear. He...
Preprint
Full-text available
Explaining how cooperation can persist in the presence of cheaters, exploiting the cooperative acts, is a challenge for evolutionary biology. While microbial systems have proved extremely useful to test evolutionary theory and identify mechanisms maintaining cooperation, our knowledge is often limited to insights gained from a few model organisms....
Article
Full-text available
Policing occurs in insect, animal and human societies, where it evolved as a mechanism maintaining cooperation. Recently, it has been suggested that policing might even be relevant in enforcing cooperation in much simpler organisms such as bacteria. Here, we used individual‐based modelling to develop an evolutionary concept for policing in bacteria...
Article
Full-text available
How unicellular organisms optimize the production of compounds is a fundamental biological question. While it is typically thought that production is optimized at the individual‐cell level, secreted compounds could also allow for optimization at the group level, leading to a division of labor where a subset of cells produces and shares the compound...
Preprint
How unicellular organisms optimize the production of compounds is a fundamental biological question. While it is typically thought that production is optimized at the individual-cell level, secreted compounds could also allow for optimization at the group level, leading to a division of labor where a subset of cells produces and shares the compound...
Preprint
Full-text available
Pathogenic bacteria engage in social interactions to colonize hosts, which include quorum-sensing-mediated communication and the secretion of virulence factors that can be shared as "public goods" between individuals. While in-vitro studies demonstrated that cooperative individuals can be displaced by "cheating" mutants freeriding on social acts, w...
Preprint
Bacteria frequently cooperate by sharing secreted metabolites such as enzymes and siderophores. Many of these "public good" traits are linked at the regulatory level, and studies on laboratory systems have shown that trait linkage is a key determinant of strain dynamics and community composition. Here, we test to what extent regulatory linkage amon...
Article
Full-text available
Lay summary: We probed the evolutionary robustness of two antivirulence drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine in the opportunistic pathogen Pseudomonas aeruginosa. Using an experimental evolution approach in human serum, we showed that antivirulence treatments are not evolutionarily robust per se, but vary in the...
Preprint
Full-text available
Policing occurs in insect, animal and human societies, where it is used as a conditional strategy to prevent cheating and enforce cooperation. Recently, it has been suggested that policing might even be relevant in enforcing cooperation in much simpler organisms such as bacteria. Here, we used individual-based modelling to develop an evolutionary c...
Preprint
Full-text available
Background and objectives Treatments that inhibit the expression or functioning of bacterial virulence factors hold great promise to be both effective and exert weaker selection for resistance than conventional antibiotics. However, the evolutionary robustness argument, based on the idea that anti-virulence treatments disarm rather than kill pathog...
Article
Full-text available
Many bacteria rely on the secretion of siderophores to scavenge iron from the environment. Laboratory studies revealed that abiotic and biotic factors together determine how much siderophores bacteria make, and whether siderophores can be exploited by non‐producing cheaters or be deployed by producers to inhibit competitors. Here, we explore whethe...
Article
Full-text available
Bacterial opportunistic pathogens are feared for their difficult-to-treat nosocomial infections and for causing morbidity in immunocompromised patients. Here, we study how such a versatile opportunist, Pseudomonas aeruginosa, adapts to conditions inside and outside its model host Caenorhabditis elegans, and use phenotypic and genotypic screens to i...
Preprint
Full-text available
Bacterial opportunistic pathogens are feared for their difficult-to-treat nosocomial infections and for causing morbidity in immunocompromised patients. Here, we study how such a versatile opportunist, Pseudomonas aeruginosa , adapts to conditions inside and outside its model host Caenorhabditis elegans , and use phenotypic and genotypic screens to...
Article
Organisms as simple as bacteria can engage in complex collective actions, such as group motility and fruiting body formation. Some of these actions involve a division of labor, where phenotypically specialized clonal subpopulations or genetically distinct lineages cooperate with each other by performing complementary tasks. Here, we combine experim...
Preprint
Full-text available
Many bacteria rely on the secretion of siderophores to scavenge iron from the environment. Laboratory studies revealed that abiotic and biotic factors together determine how much siderophores bacteria make, and whether siderophores can be exploited by non-producing cheaters or be deployed by producers to inhibit competitors. Here, we explore whethe...
Article
Full-text available
Phenotypic plasticity in response to competition is a well‐described phenomenon in higher organisms. Here, we show that also bacteria have the ability to sense the presence of competitors and mount fine‐tuned responses to match prevailing levels of competition. In our experiments, we studied inter‐specific competition for iron between the bacterium...
Preprint
Full-text available
Organisms as simple as bacteria can engage in complex collective actions, such as group motility and fruiting body formation. Some of these actions involve a division of labor, where phenotypically specialized clonal subpopulations, or genetically distinct lineages cooperate with each other by performing complementary tasks. Here, we combine experi...
Article
Full-text available
Background: A common form of cooperation in bacteria is based on the secretion of beneficial metabolites, shareable as public good among cells within a group. Because cooperation can be exploited by “cheating” mutants, which contribute less or nothing to the public good, there has been great interest in understanding the conditions required for coo...
Article
Full-text available
All social organisms experience dilemmas between cooperators performing group-beneficial actions and cheats selfishly exploiting these actions. Although bacteria have become model organisms to study social dilemmas in laboratory systems, we know little about their relevance in natural communities. Here, we show that social interactions mediated by...
Article
Full-text available
Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. He...
Preprint
Full-text available
Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. He...