Roland Zengerle

Roland Zengerle
University of Freiburg | Albert-Ludwigs-Universität Freiburg · Department of Microsystems Engineering (IMTEK)

PhD in engineering

About

797
Publications
186,135
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
18,063
Citations
Introduction
Prof. Dr. Roland Zengerle is professor at the IMTEK - Department of Microsystems Engineering and one of three directors at Hahn-Schickard, a non-profit research organisation supporting industry in developing new products based on MEMS technology. He is also principle investigator at the following centers at the University of Freiburg: - Center on Biological Signalling Studies - Centre for Interactive Materials and Bioinspired Technologies - Institute for Machine-Brain Interfacing Technology
Additional affiliations
May 2015 - present
Hahn-Schickard
Position
  • Executive Board
Description
  • Executive board member at Hahn-Schickard, a non profit research organisation supporting industry in developing new products based on MEMS technology.
May 2005 - April 2015
Hahn-Schickard-Gesellschaft - Institut für Mikro- und Informationstechnik
Position
  • Executive Board
April 1999 - present
University of Freiburg
Position
  • Professor (Full)

Publications

Publications (797)
Preprint
Spheroids, organoids, or highly-dense cell-laden droplets are often used as building blocks for bioprinting, but so far little is known about the spatio-temporal cellular interactions post printing. We present a drop-on-demand approach to study the biological interactions of such building blocks in micrometer dimensions. Droplets (containing approx...
Article
Full-text available
In this paper, we present the ImmunoDisk, a fully automated sample-to-answer centrifugal microfluidic cartridge, integrating a heterogeneous, wash-free, magnetic- and fluorescent bead-based immunoassay (bound-free phase detection immunoassay/BFPD-IA). The BFPD-IA allows the implementation of a simple fluidic structure, where the assay incubation, b...
Preprint
Single-cell RNA sequencing (scRNA-seq) can unmask transcriptional heterogeneity facilitating the detection of rare subpopulations at unprecedented resolution. In response to challenges related to coverage and quantity of transcriptome analysis, the lack of unbiased and quantitative validation methods hampers further improvements. Digital PCR (dPCR)...
Preprint
Highly specific and efficient drugs have been developed during the last two decades to treat non-communicable chronic inflammatory skin diseases (ncISD). Due to their specificity, these drugs are asking for precise diagnostic measures to attribute the most efficient treatment to each patient. Diagnosis, however, is complicated by the complex pathog...
Article
Full-text available
We used arrays of bioprinted renal epithelial cell spheroids for toxicity testing with cisplatin. The concentration-dependent cell death rate was determined using a lactate dehydrogenase assay. Bioprinted spheroids showed enhanced sensitivity to the treatment in comparison to monolayers of the same cell type. The measured dose-response curves revea...
Article
Full-text available
We demonstrate detection and quantification of bacterial load with a novel microfluidic one-pot wash-free fluorescence in situ hybridization (FISH) assay in droplets. The method offers minimal manual workload by only requiring mixing of the sample with reagents and loading it into a microfluidic cartridge. By centrifugal microfluidic step emulsific...
Article
Full-text available
The generation of artificial human tissue by 3D-bioprinting has expanded significantly as a clinically relevant research topic in recent years. However, to produce a complex and viable tissue, in-depth biological understanding and advanced printing techniques are required with a high number of process parameters. Here, we systematically evaluate th...
Article
Protein electrophoresis and immunoblotting are indispensable analytical tools for the characterization of proteins and posttranslational modifications in complex sample matrices. Owing to the lack of automation, commonly employed slab‐gel systems suffer from high time demand, significant sample/antibody consumption and limited reproducibility. To o...
Article
Full-text available
There is an increasing demand for optimization-free multiplex assays to rapidly establish comprehensive target panels for cancer monitoring by liquid biopsy. We present the mediator probe (MP) PCR for the quantification of the seven most frequent point mutations and corresponding wild types (KRAS and BRAF) in colorectal carcinoma. Standardized para...
Article
Full-text available
Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in childhood. Minimal residual disease (MRD) monitoring is an important prognostic factor for treatment response and patient stratification. It uses personalized real-time PCR to measure the amount of cancer cells among normal cells. Due to clonal tumor evolution or secondary rearra...
Article
Full-text available
Circulating tumor cells (CTCs) that enter the bloodstream play an important role in the formation of metastases. The prognostic significance of CTCs as biomarkers obtained from liquid biopsies is intensively investigated and requires accurate methods for quantification. The purpose of this study was the capture of CTCs on an optically accessible su...
Article
Full-text available
Despite the widespread application of point-of-care lateral flow tests, the viscosity dependence of these assay results remains a significant challenge. Here, we employ centrifugal microfluidic flow control through the nitrocellulose membrane of the strip to eliminate the viscosity bias. The key feature is the balancing of the sample flow into the...
Article
Full-text available
3D-bioprinting is a promising technology applicable in areas such as regenerative medicine or in vitro organ model development. Various 3D-bioprinting technologies and systems have been developed and are partly commercially available. Here, we present the construction and characterization of an open-source low-cost 3D-bioprinter that allows the alt...
Article
Next generation sequencing is evolving from a research tool into a method applied in diagnostic routine. The complete sequencing workflow includes sample pre-processing, library preparation, sequencing and bioinformatics. High quality in each of these steps is necessary to obtain excellent sequencing results. The tedious and error-prone library pre...
Article
Multiplexing of analyses is essential to reduce sample and reagent consumption in applications with large target panels. In applications such as cancer diagnostics, the required degree of multiplexing often exceeds the number of available fluorescence channels in polymerase chain reaction (PCR) devices. The combination of photobleaching-sensitive a...
Article
Microfluidics allows the miniaturization of biochemical analyses. Small dimensions reduce sample and reagent consumption and enhance reaction rates. A downside is that high surface-to-volume ratios increase the unspecific binding of proteins to the substrate material. The resulting sample loss and reagent depletion decrease the sensitivity and spec...
Article
For large-scale analysis of complex protein mixtures, liquid chromatography – tandem mass spectrometry (LC-MS/MS) has been proven to be one of the most versatile tools due to its high sensitivity...
Article
Full-text available
The homogeneity of the genetically modified single-cells is a necessity for many applications such as cell line development, gene therapy, and tissue engineering and in particular for regenerative medical applications. The lack of tools to effectively isolate and characterize CRISPR/Cas9 engineered cells is considered as a significant bottleneck in...
Article
Full-text available
Background In this work, a platform was developed and tested to allow to detect a variety of candidate viral, bacterial and parasitic pathogens, for acute fever of unknown origin. The platform is based on a centrifugal microfluidic cartridge, the LabDisk (“FeverDisk” for the specific application), which integrates all necessary reagents for sample-...
Article
We present a novel centrifugal microfluidic approach for fast and accurate Tuberculosis (TB) diagnosis based on the use of standard laboratory equipment. The herein presented workflow can directly be integrated into laboratories with standard equipment and automates compex sample preparation. The system consists of a microfluidic cartridge, a labor...
Article
A centrifugal microfluidic system for automated, highly sensitive and multiplexed qPCR analyses, demonstrated for minimal residual disease monitoring in acute lymphoblastic leukaemia.
Article
Full-text available
This paper presents a universal point-of-care system for fully automated quantification of human T-cell lymphotropic virus type 1 (HTLV-1) proviral load, including genomic RNA, based on digital reverse RNA transcription and c-DNA amplification by MD LAMP (mediator displacement loop-mediated isothermal amplification). A disposable microfluidic LabDi...
Article
Full-text available
We present a simple and fast one-step heterogeneous immunoassay, with performance characteristics that can enable easy and versatile adaptation to miniaturized, automated point-of-care systems. This novel analytical method uses magnetic and fluorescent beads as capture and detection agents respectively. Its main feature is the measurement of the fl...
Article
Full-text available
Scalable fabrication concepts of 3D kidney tissue models are required to enable their application in pharmaceutical high-throughput screenings. Yet the reconstruction of complex tissue structures remains technologically challenging. We present a novel concept reducing the fabrication demands, by using controlled cellular self-assembly to achieve hi...
Article
We implement dual-volume centrifugal step emulsification on a single chip to extend the dynamic range of digital assays. Compared to published single-volume approaches, the range between the lower detection limit (LDL) and the upper limit of quantification (ULQ) increases by two orders of magnitude. In comparison to existing multivolume approaches,...
Article
Full-text available
We present the centrifugal microfluidic implementation of a four-plex digital droplet polymerase chain reaction (ddPCR). The platform features 12 identical ddPCR units on a LabDisk cartridge, each capable of generating droplets with a diameter of 82.7 ± 9 µm. By investigating different oil–surfactant concentrations, we identified a robust process f...
Article
Periodontitis and dental caries are two major bacterially induced, non-communicable diseases that cause the deterioration of oral health, with implications in patients’ general health. Early, precise diagnosis and personalized monitoring are essential for the efficient prevention and management of these diseases. Here, we present a disk-shaped micr...
Article
Full-text available
The generation of artificial human tissue by 3D-bioprinting has expanded significantly as a clinically relevant research topic in recent years. However, to produce a complex and viable tissue, in-depth biological understanding and advanced printing techniques are required with a high number of process parameters. Here, we systematically evaluate th...
Article
Full-text available
In this paper, we report on a detailed experimental study carried out with the StarJet technology to investigate the mechanical adhesion properties of directly printed solder bumps on electroless nickel immersion gold (ENIG) plated PCB boards. The aim of this study is to determine the maximum bond strength achievable by this method and to find suit...
Article
Full-text available
We report on the development of a microfluidic multiplexing technology for highly parallelized sample analysis via quantitative polymerase chain reaction (PCR) in an array of 96 nanoliter-scale microcavities made from silicon. This PCR array technology features fully automatable aliquoting microfluidics, a robust sample compartmentalization up to t...
Article
Respiratory Tract Infections (RTIs) are among the top reasons for visiting a General Practitioner (GP) and the main cause of unnecessary antibiotic prescriptions. Reducing inappropriate use is essential to decrease antibiotic resistance and adverse events. The goal of the Eurostars project "Respiotic" is to develop a new point-of-care (POC) platfor...
Article
We present the RespiDisk enabling the fully automated and multiplex point-of-care (POC) detection of (currently) up to 19 respiratory tract infection (RTI) pathogens from a single sample based on reverse transcriptase polymerase chain reaction (RT-PCR). RespiDisk comprises a RTI-specific implementation of the centrifugal microfluidic LabDisk platfo...
Article
Full-text available
Next generation sequencing has become a mainstream method in bioanalysis. Improvements in sequencing and bioinformatics turned the complex and cumbersome library preparation to the bottle neck in terms of reproducibility and costs in the complete NGS workflow. Here, we introduce an automated library preparation approach based on a generic centrifug...
Preprint
Full-text available
The homogeneity of the genetically modified single-cells is a necessity for many applications such as cell line development, gene therapy, and tissue engineering and in particular for regenerative medical applications. The lack of tools to effectively isolate and characterize CRISPR/Cas9 engineered cells is considered as a significant bottleneck in...
Article
Full-text available
Bioprinting can be considered as a progression of the classical tissue engineering approach, in which cells are randomly seeded into scaffolds. Bioprinting offers the advantage that cells can be placed with high spatial fidelity within three‐dimensional tissue constructs. A decisive factor to be addressed for bioprinting approaches of artificial ti...
Article
Over the last decade, bioprinting of artificial tissues has been developed into a significant field of research. With an increasing number of printing technologies and bioinks used in bioprinting, its complexity increases as both the printing technology and the properties of the bioink influence the cell biological functionality and printing accura...
Article
Mass spectrometry has become an important analytical tool for protein research studies to identify, characterise and quantify proteins with unmatched sensitivity in a highly parallel manner. When transferred into clinical routine, the cumbersome and error-prone sample preparation workflows present a major bottleneck. In this work, we demonstrate tr...
Article
Full-text available
We present an automated point-of-care testing (POCT) system for rapid detection of species- and resistance markers in methicillin-resistant Staphylococcus aureus (MRSA) at the level of single cells, directly from nasal swab samples. Our novel system allows clear differentiation between MRSA, methicillin-sensitive S. aureus (MSSA) and methicillin-re...
Article
Full-text available
We present a versatile tool for the generation of monodisperse water-in-fluorinated-oil droplets in standard reaction tubes by centrifugal step emulsification. The microfluidic cartridge is designed as an insert into a standard 2 mL reaction tube and can be processed in standard laboratory centrifuges. It allows for droplet generation and subsequen...
Article
Full-text available
Next generation sequencing is in the process of evolving from a technology used for research purposes to one which is applied in clinical diagnostics. Recently introduced high throughput and benchtop instruments offer fully automated sequencing runs at a lower cost per base and faster assay times. In turn, the complex and cumbersome library prepara...
Article
Full-text available
Thin ionomer membranes are considered key to achieve high performances in anion exchange membrane fuel cells. However, the handling of unsupported anion exchange membranes with thicknesses below 15 μm is challenging. Typical pre-treatments of KOH-soaking, DI-water rinsing and/or wet assembly with sub-15 μm thin films are particularly problematic. I...
Article
Full-text available
The present work deals with the microfluidic evolution of capillary surfaces that are formed during the priming of microcavity structures with a non-wetting liquid. Due to the large contact angle of the priming liquid, a trapping of air within the microcavities poses a major impediment to a complete filling. We tackle this issue by developing a two...
Article
Full-text available
Single-cell dispensing for automated cell isolation of individual cells has gained increased attention in the biopharmaceutical industry, mainly for production of clonal cell lines. Here, machine learning for classification of cell images is applied for ‘real-time’ cell viability sorting on a single-cell printer. We show that an extremely shallow c...
Article
Full-text available
This comprehensive review provides a systematic classification and a comparative evaluation of current sequence-specific detection methods for LAMP.
Article
Full-text available
The alarming dynamics of antibiotic-resistant infections calls for the development of rapid and point-of-care (POC) antibiotic susceptibility testing (AST) methods. Here, we demonstrated the first completely stand-alone microfluidic system that allowed the execution of digital enumeration of bacteria and digital antibiograms without any specialized...
Article
Effective mosquito monitoring relies on the accurate identification and characterization of the target population. Since this process requires specialist knowledge and equipment that is not widely available, automated field-deployable systems are highly desirable. We present a centrifugal microfluidic cartridge, the VectorDisk, which integrates Taq...
Article
Full-text available
Saliva offers many advantages for point-of-care (PoC) diagnostic applications due to non-invasive, easy, and cost-effective methods of collection. However, the complex matrix with its non-Newtonian behavior and high viscosity poses handling challenges. Several tedious and long pre-analytic steps, incompatible with PoC use, are required to liquefy a...
Article
Centrifugal microfluidics allows for miniaturization, automation and parallelization of laboratory workflows. The fact that centrifugal forces are always directed radially outwards has been considered a main drawback for the implementation of complex workflows leading to the requirement of additional actuation forces for pumping, valving and switch...
Article
Full-text available
Introduction Mesenchymal stem cells (MSCs) represent a very important cell source in the field of regenerative medicine and for bone and cartilage tissue engineering applications. Three-dimensional (3D) bioprinting has the potential to improve the classical tissue engineering concept as this technique allows the printing of cells with high spatial...
Article
Full-text available
Corrosion of the carbon support leads to a severe decay in the performance of PEM fuel cells, mainly due to an increase in the oxygen transport resistance. To investigate the effect of degradation on oxygen transport, we cycled MEAs between 1−1.5 V and analyzed the electrode structure with FIB-SEM tomography at various ageing states. The tomography...
Article
Full-text available
Active nutrient supply and waste product removal are key requirements for the fabrication of long term viable and functional tissue constructs of considerable size. This work aims to contribute to the fabrication of artificial perfusable networks with a bioprinting process, based on drop‐on‐demand (DoD) printing of primary endothelial cell (EC) sus...
Article
We demonstrate that buoyancy in centrifugal step emulsification enables substantially higher generation rates of monodis-perse droplets compared to pressure driven set-ups. Step emulsification in general can produce droplets in comparatively simple systems (only one moving liquid) with a low CV of < 5% in droplet diameter and a minimum dead volume....
Article
Lateral flow strips (LFSs) are broadly applied for clinical diagnostics. For the development of quantitative and highly sensitive LFSs, the restriction on flow control is one challenge of its current design. Here, we present a total flow control for LFSs using centrifugal microfluidics. In contrast to previously presented implementations of lateral...
Conference Paper
We present three concepts for centrifugal microfluidics reducing ethanol carry-over in magnetic bead-based nucleic acid (NA) extraction. Ethanol carry-over is critical regarding inhibition of downstream NA amplification. We identified two possible carry-over pathways: Liquid co-transport within bead-clusters and vapor diffusion. For the first time,...
Conference Paper
We present a novel combination of microsystems for drop on demand (DoD) and extrusion-based bioprinting with a method for fast process development. To limit the multitude of process parameters, the printing temperature, flow rate and nozzle size were determined with regard to the biological and mechanical requirements from basic rheological measure...