Roland Séférian

Roland Séférian
Centre National de Recherches Météorologiques | CNRM · GMGEC

PhD

About

127
Publications
67,744
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,638
Citations
Additional affiliations
September 2013 - present
Centre National de Recherches Météorologiques
Position
  • Researcher
Description
  • Earth System modelling; carbon cycle modelling
July 2013 - present
Laboratoire des Sciences du Climat et l'Environnement
Position
  • visiting scientist
September 2010 - July 2013
Laboratoire des Sciences du Climat et l'Environnement
Position
  • PhD
Description
  • Impacts of climate change on air-sea carbon fluxes; contribution of the decadal variability
Education
September 2009 - August 2010
Paul Sabatier University - Toulouse III
Field of study
  • Oceanography, Marine biogeochemistry, Climatology
September 2008 - August 2010
Ecole Nationale de la Météorologie
Ecole Nationale de la Météorologie
Field of study
  • Meteorology, oceanography

Publications

Publications (127)
Article
Full-text available
The El Niño-Southern Oscillation (ENSO) widely modulates the global carbon cycle. More specifically , it alters the net uptake of carbon in the tropical ocean. Indeed, over the tropical Pacific less carbon is released by oceans during El Niño, while the opposite is the case for La Niña. Here, the skill of Earth system models (ESMs) from the latest...
Preprint
The northern high-latitude permafrost contains almost twice the carbon content of the atmosphere, and it is widely considered as a non-linear and tipping element in the Earth's climate system under global warming. Solar geoengineering is a means of mitigating temperature rise and reduce some of the associated climate impacts by increasing the plane...
Preprint
Full-text available
The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in-situ observations in remote areas prevents deciphering the processes that force the CO2 flux variability. Here, examining atmospheric CO2 measurements from satellites in the period 2009-...
Article
Full-text available
Future climate projections from Earth system models (ESMs) typically focus on the timescale of this century. We use a set of five ESMs and one Earth system model of intermediate complexity (EMIC) to explore the dynamics of the Earth's climate and carbon cycles under contrasting emissions trajectories beyond this century to the year 2300. The trajec...
Article
Full-text available
Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the global carbon cycle, controlling both long-term trends and interannual variation. These insights originate from land surface models (LSMs) that have not been extensively calibrated and evaluated for water-limited ecosystems. We need to learn more about dryla...
Article
Full-text available
Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative CO2 emissions. This bioenergy with CCS (BECCS) technology facilitates the achievement of the long-term temperature goal of the Paris Agreement. Here, we use five state-of-the-art Earth system mo...
Article
Full-text available
This study assesses the impacts of stratospheric aerosol intervention (SAI) and solar dimming on stratospheric ozone based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) experiments, called G6sulfur and G6solar. For G6sulfur, an enhanced stratospheric sulfate aerosol burden reflects some of the incoming solar radiation back into sp...
Preprint
Full-text available
The El Niño Southern Oscillation (ENSO) widely modulates the global carbon cycle, in particular, by altering the net uptake of carbon in the tropical ocean. Indeed, over the tropics less carbon is released by oceans during El Niño while it is the opposite for La Niña. Here, the skill of Earth System Models (ESM) from the latest Coupled Model Interc...
Article
Full-text available
Significance Record-setting fires in the western United States over the last decade caused severe air pollution, loss of human life, and property damage. Enhanced drought and increased biomass in a warmer climate may fuel larger and more frequent wildfires in the coming decades. Applying an empirical statistical model to fires projected by Earth Sy...
Article
Full-text available
As part of the Geoengineering Model Intercomparison Project a numerical experiment known as G6sulfur has been designed in which temperatures under a high-forcing future scenario (SSP5-8.5) are reduced to those under a medium-forcing scenario (SSP2-4.5) using the proposed geoengineering technique of stratospheric aerosol intervention (SAI). G6sulfur...
Article
Full-text available
p>Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets...
Preprint
Full-text available
This study assesses the impacts of sulfate aerosol intervention (SAI) and solar dimming on stratospheric ozone based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) experiments, called G6sulfur and G6solar. For G6sulfur the stratospheric sulfate aerosol burden is increased to reflect some of the incoming solar radiation back into sp...
Preprint
Full-text available
The impact of anthropogenic climate change on marine net primary production (NPP) is a reason for concern because changing NPP will have widespread consequences for marine ecosystems and their associated services. Projections by the current generation of Earth System Models have suggested decreases in global NPP in response to future climate change...
Preprint
As part of the Geoengineering Model Intercomparison Project a numerical experiment known as G6sulfur has been designed in which temperatures under a high-forcing future scenario (SSP5-8.5) are reduced to those under a medium-forcing scenario (SSP2-4.5) using the proposed geoengineering technique of stratospheric aerosol intervention (SAI). G6sulfur...
Preprint
Full-text available
Temperature is one of the most important drivers of global ocean patterns of biodiversity 1,2,3 shaping thermal niches through thresholds of physiological thermal tolerance ⁴ ⁠. Because of anthropogenic global warming, lower and upper thermal niche bounds are predicted to change affecting the future distribution of marine species 5,6⁠ . Current wor...
Preprint
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets...
Preprint
Full-text available
Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with Carbon Capture and Storage (CCS) to generate negative CO2 emissions. This Bioenergy with CCS (BECCS) technology facilitates the achievement of the long-term temperature goal of the Paris Agreement. Here, we use five state-of-the-art Earth System mo...
Article
Full-text available
We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared...
Article
Full-text available
The Greenland Ice Sheet (GrIS) will be losing mass at an accelerating pace throughout the 21st century, with a direct link between anthropogenic greenhouse gas emissions and the magnitude of Greenland mass loss. Currently, approximately 60 % of the mass loss contribution comes from surface melt and subsequent meltwater runoff, while 40 % are due to...
Article
Full-text available
Characteristics and trends of surface ocean dimethylsulfide (DMS) concentrations and fluxes into the atmosphere of four Earth system models (ESMs: CNRM-ESM2-1, MIROC-ES2L, NorESM2-LM, and UKESM1-0-LL) are analysed over the recent past (1980-2009) and into the future, using Coupled Model Intercomparison Project 6 (CMIP6) simulations. The DMS concent...
Article
Full-text available
Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations...
Article
Full-text available
Solar geoengineering has been receiving increased attention in recent years as a potential temporary solution to offset global warming. One method of approximating global-scale solar geoengineering in climate models is via solar reduction experiments. Two generations of models in the Geoengineering Model Intercomparison Project (GeoMIP) have now si...
Preprint
Full-text available
We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiment G6sulfur and G6solar for six Earth System Models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming from that resulting from a high-tier emission scenario (...
Article
Full-text available
The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the main set of future climate projections, based on concentration-driven simulations, within the Coupled Model Intercomparison Project phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth syst...
Article
Full-text available
Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of fee...
Preprint
Full-text available
Characteristics and trends of surface ocean dimethylsulfide (DMS) concentrations and fluxes into the atmosphere of four Earth System Models (ESMs: CNRM-ESM2-1, MIROC-ES2L, NorESM2-LM and UKESM1-0-LL) are analysed over the recent past (1980–2009) and into the future, using Coupled Model Intercomparison Project 6 (CMIP6) simulations. The DMS concentr...
Article
Full-text available
Inter-annual to decadal variability in the strength of the land and ocean carbon sinks impede accurate predictions of year-to-year atmospheric carbon dioxide (CO2) growth rate. Such information is crucial to verify the effectiveness of fossil fuel emissions reduction measures. Using a multi-model framework comprising prediction systems initialized...
Article
We present the compatible CO 2 emissions from fossil fuel burning and industry, calculated from the historical and Shared Socioeconomic Pathway (SSP) experiments of nine Earth System Models (ESMs) participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The multi-model mean FF emissions match the historical record well...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we de...
Preprint
Full-text available
The Greenland Ice Sheet (GrIS) will be losing mass at an accelerating pace throughout the 21st century, with a direct link between anthropogenic greenhouse gas emissions and the magnitude of Greenland mass loss. Currently, approximately 60 % of the mass loss contribution comes from surface melt and subsequent meltwater runoff, while 40 % are due to...
Article
The remaining carbon budget represents the total amount of CO2 that can still be emitted in the future while limiting global warming to a given temperature target. Remaining carbon budget estimates range widely, however, and this uncertainty can be used to either trivialize the most ambitious mitigation targets by characterizing them as impossible,...
Article
Full-text available
Plain Language Summary Sea‐air CO2 fluxes undergo substantial regional and interannual fluctuations. These fluctuations are mostly forced by changes in large‐scale atmospheric patterns, but ocean internal dynamics could also contribute to them. This study quantifies these two sources of variability and their contributions to fluctuations of sea‐air...
Article
Full-text available
Changes in forest cover have a strong effect on climate through the alteration of surface biogeophysical and biogeochemical properties that affect energy, water and carbon exchange with the atmosphere. To quantify biogeophysical and biogeochemical effects of deforestation in a consistent setup, nine Earth system models (ESMs) carried out an idealiz...
Article
Full-text available
Based on the 2019 assessment of the Global Carbon Project, the ocean took up on average, 2.5 ± 0.6 PgC yr −1 or 23 ± 5% of the total anthropogenic CO 2 emissions over the decade 2009-2018. This sink estimate is based on simulation results from global ocean biogeochemical models (GOBMs) and is compared to data-products based on observations of surfa...
Article
Full-text available
Remaining carbon budget specifies the cap on global cumulative CO2 emissions from the present-day onwards that would be in line with limiting global warming to a specific maximum level. In the context of the Paris Agreement, global warming is usually interpreted as the externally-forced response to anthropogenic activities and emissions, but it exc...
Preprint
Full-text available
The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the primary future climate projections within the Coupled Model Intercomparison Project Phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth system models for concentration driven simulations....
Article
Full-text available
Abstract We present the latest version of the ISBA‐CTRIP land surface system, focusing on the representation of the land carbon cycle. We review the main improvements since the year 2012, mainly added modules for wild fires, carbon leaching through soil and transport of dissolved organic carbon to the ocean, and land cover changes but also improved...
Article
Full-text available
Purpose of review: The changes or updates in ocean biogeochemistry component have been mapped between CMIP5 and CMIP6 model versions, and an assessment made of how far these have led to improvements in the simulated mean state of marine biogeochemical models within the current generation of Earth system models (ESMs). Recent findings: The repres...
Preprint
Full-text available
Solar geoengineering has been receiving increased attention in recent years as a potential temporary solution to offset global warming. One method of approximating global-scale solar geoengineering in climate models is via solar reduction experiments. Two generations of models in the Geoengineering Model Intercomparison Project (GeoMIP) have now si...
Article
Full-text available
Results from the fully and biogeochemically coupled simulations in which CO2 increases at a rate of 1 % yr−1 (1pctCO2) from its preindustrial value are analyzed to quantify the magnitude of carbon–concentration and carbon–climate feedback parameters which measure the response of ocean and terrestrial carbon pools to changes in atmospheric CO2 conce...
Preprint
Full-text available
Changes in forest cover have a strong effect on climate through the alteration of surface biogeophysical and biogeochemical properties that affect energy, water, and carbon exchange with the atmosphere. To quantify biogeophysical and biogeochemical effects of deforestation in a consistent setup, nine Earth System models carried out an idealized exp...
Article
Full-text available
Anthropogenic climate change is projected to lead to ocean warming, acidification, deoxygenation, reductions in near-surface nutrients, and changes to primary production, all of which are expected to affect marine ecosystems. Here we assess projections of these drivers of environmental change over the twenty-first century from Earth system models (...
Article
Full-text available
Abstract The present study describes the atmospheric component of the sixth‐generation climate models of the Centre National de Recherches Météorologiques (CNRM), namely, ARPEGE‐Climat 6.3. It builds up on more than a decade of model development and tuning efforts, which led to major updates of its moist physics. The vertical resolution has also be...
Article
Full-text available
The Zero Emissions Commitment (ZEC) is the change in global mean temperature expected to occur following the cessation of net CO2 emissions and as such is a critical parameter for calculating the remaining carbon budget. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) was established to gain a better understanding of the potent...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Preprint
Full-text available
Abstract. Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models include aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex w...
Preprint
Full-text available
Abstract. Anthropogenic climate change leads to ocean warming, acidification, deoxygenation and reductions in near-surface nutrient concentrations, all of which are expected to affect marine ecosystems. Here we assess projections of these drivers of environmental change over the twenty-first century from Earth system models (ESMs) participating in...
Preprint
Full-text available
Abstract. The Zero Emissions Commitment (ZEC) is the change in global mean temperature expected to occur following the cessation of net CO<sub>2</sub> emissions, and as such is a critical parameter for calculating the remaining carbon budget. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) was established to gain a better under...
Article
Full-text available
Abstract Characteristics and radiative forcing of the aerosol and ozone fields of two configurations of the Centre National de Recherches Météoroglogiques (CNRM) and Cerfacs climate model are analyzed over the historical period (1850–2014), using several Coupled Model Intercomparison Project 6 (CMIP6) simulations. CNRM‐CM6‐1 is the atmosphere‐ocean...
Preprint
Full-text available
Abstract. Results from the fully-, biogeochemically-, and radiatively-coupled simulations in which CO<sub>2</sub> increases at a rate of 1 % per year (1pctCO2) from its pre-industrial value are analyzed to quantify the magnitude of two feedback parameters which characterize the coupled carbon-climate system. These feedback parameters quantify the r...