About
337
Publications
279,845
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,037
Citations
Introduction
Additional affiliations
January 2012 - present
January 2011 - present
Education
September 1989 - May 1993
Publications
Publications (337)
Variation in animal abundance is shaped by scale‐dependent habitat, competition, and anthropogenic influences. Coyotes Canis latrans have dramatically increased in abundance while expanding their range over the past 100 years. Management goals typically seek to lower coyote populations to reduce their threats to humans, pets, livestock and sensitiv...
Over the past five decades, a large number of wild animals have been individually identified by various observation systems and/or temporary tracking methods, providing unparalleled insights into their lives over both time and space. However, so far there is no comprehensive record of uniquely individually identified animals nor where their data an...
Aim
The assembly of species into communities and ecoregions is the result of interacting factors that affect plant and animal distribution and abundance at biogeographic scales. Here, we empirically derive ecoregions for mammals to test whether human disturbance has become more important than climate and habitat resources in structuring communities...
Predator–prey interactions are important for regulating populations and structuring communities but are affected by many dynamic, complex factors across large scales, making them difficult to study. Integrated population models (IPMs) offer a potential solution to understanding predator–prey relationships by providing a framework for leveraging man...
Human disturbance has the potential to alter competitive interactions, favoring species better able to adapt to areas used by humans. One such species is the spotted hyena (Crocuta crocuta), which has been successful in human‐dominated areas throughout Africa. In addition, hyenas are frequently successful in kleptoparasiting prey brought down by ot...
Aim
Synthesize literature on genetic structure within species to understand how geographic features and species traits influence past responses to climate change.
Location
North America.
Time Period
We synthesized phylogeographic studies from 1978 to 2023, which describe genetic lineages that diverged during the Pleistocene (≥11,700 years ago)....
Site occupancy models (SOMs) are a common tool for studying the spatial ecology of wildlife. When observational data are collected using passive monitoring field methods, including camera traps or autonomous recorders, detections of animals may be temporally autocorrelated, leading to biased estimates and incorrectly quantified uncertainty. We pres...
A leading hypothesis for the evolution of large brains in humans and other species is that a feedback loop exists whereby intelligent animals forage more efficiently, which results in increased energy intake that fuels the growth and maintenance of large brains. We test this hypothesis for the first time with high-resolution tracking data from four...
Context
Shifts in climate and land use have dramatically reshaped ecosystems, impacting the distribution and status of wildlife populations. For many species, data gaps limit inference regarding population trends and links to environmental change. This deficiency hinders our ability to enact meaningful conservation measures to protect at risk speci...
SNAPSHOT USA is a multicontributor, long‐term camera trap survey designed to survey mammals across the United States. Participants are recruited through community networks and directly through a website application (https://www.snapshot-usa.org/). The growing Snapshot dataset is useful, for example, for tracking wildlife population responses to lan...
Conservation areas encompassing elevation gradients are biodiversity hotspots because they contain a wide range of habitat types in a relatively small space. Studies of biodiversity patterns along elevation gradients, mostly on small mammal or bird species, have documented a peak in diversity at mid elevations. Here, we report on a field study of m...
Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species’ geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) map...
Context: Shifts in climate and land use have dramatically reshaped ecosystems, impacting the distribution and status of wildlife populations. For many species, data gaps limit inference regarding population trends and links to environmental change. This deficiency hinders our ability to enact meaningful conservation measures to protect at risk spec...
Weasels (genus Mustela and Neogale ) are of management concern as declining native species in some regions and invasive species in others. Regardless of the need to conserve or remove weasels, there is increasingly a need to use non‐invasive monitoring methods to assess population trends.
We conducted a literature review and held the first ever Int...
Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap‐derived Big Data are becoming increasingly solvable with the help of scalable cyber‐infrastructures, harmonizati...
Addressing the ongoing biodiversity crisis requires identifying the winners and losers of global change. Species are often categorized based on how they respond to habitat loss; for example, species restricted to natural environments, those that most often occur in anthropogenic habitats, and generalists that do well in both. However, species might...
Urbanization often results in biodiversity loss and homogenization, but this result is not universal and there is substantial variability in the spatiotemporal effects of urbanization on wildlife across cities and taxa. Areas with lower population and housing density are some of the fastest-growing regions in the western United States; thus, more r...
Ungulate neonates—individuals less than four weeks old—typically experience the greatest predation rates, and variation in their survival can influence ungulate population dynamics. Typical methods to measure neonate survival involve capture and radio-tracking of adults and neonates to discover mortality events. This type of fieldwork is invasive a...
Background
Animal movement is a behavioral trait shaped by the need to find food and suitable habitat, avoid predators, and reproduce. Using high-resolution tracking data, it is possible to describe movement in greater detail than ever before, which has led to many discoveries about the behavioral strategies of particular species. Recently, enough...
As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales....
Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap-derived Big Data are becoming increasingly solvable with the help of scalable cyber-infrastructures, harmonizati...
Estimating animal populations is essential for conservation. Censusing large congregations is especially important since these are priorities for protection, but efficiently counting hundreds of thousands of moving animals remains a challenge. We developed a deep learning-based system using consumer cameras that not only counts but also records beh...
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no c...
Growing threats to biodiversity demand timely, detailed information on species occurrence, diversity and abundance at large scales. Camera traps (CTs), combined with computer vision models, provide an efficient method to survey species of certain taxa with high spatio-temporal resolution. We test the potential of CTs to close biodiversity knowledge...
Bio-telemetry from small tags attached to animals is one of the principal methods for studying the ecology and behaviour of wildlife. The field has constantly evolved over the last 80 years as technological improvement enabled a diversity of sensors to be integrated into the tags (e.g., GPS, accelerometers, etc.). However, retrieving data from tags...
Animals moving through landscapes need to strike a balance between finding sufficient resources to grow and reproduce while minimizing encounters with predators. Because encounter rates are determined by the average distance over which directed motion persists, this trade-off should be apparent in individuals’ movement. Using GPS data from 1,396 in...
Small mammals are important to the functioning of ecological communities with changes to their abundances used to track impacts of environmental change. While capture–recapture estimates of absolute abundance are preferred, indices of abundance continue to be used in cases of limited sampling, rare species with little data, or unmarked individuals....
Resource selection functions (RSFs) are among the most commonly used statistical tools in both basic and applied animal ecology. They are typically parameterized using animal tracking data, and advances in animal tracking technology have led to increasing levels of autocorrelation between locations in such data sets. Because RSFs assume that data a...
Bio-telemetry from small tags attached to animals is one of the principal methods for studying the ecology and behaviour of wildlife. The eld has constantly evolved over the last 80 years as technological improvement enabled a diversity of sensors to be integrated into the tags (e.g., GPS, accelerometers, etc.). However, retrieving data from tags o...
Wildlife alter their behaviors in a trade-off between consuming food and fear of becoming food themselves. The risk allocation hypothesis posits that variation in the scale, intensity and longevity of predation threats can influence the magnitude of antipredator behavioral responses. Hunting by humans represents a threat thought to be perceived by...
Broad‐scale ecological research on species distributions commonly presumes that the correlative relationships discovered are stationary over space. This is an assumption of most species distribution models (SDMs) that combine observations of species occurrence with environmental characteristics to understand current ecological correlates and to pre...
Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved...
Background
Bio-logging and animal tracking datasets continuously grow in volume and complexity, documenting animal behaviour and ecology in unprecedented extent and detail, but greatly increasing the challenge of extracting knowledge from the data obtained. A large variety of analysis methods are being developed, many of which in effect are inacces...
For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high‐resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrati...
Aim
Decades of research on species distributions has revealed geographic variation in species‐environment relationships for a given species. That is, the way a species uses the local environment varies across geographic space. However, the drivers underlying this variation are contested and still largely unexplored. Niche traits that are conserved...
The complex, interconnected, and non-contiguous nature of canopy environments present unique cognitive, locomotor, and sensory challenges to their animal inhabitants. Animal movement through forest canopies is constrained; unlike most aquatic or aerial habitats, the three-dimensional space of a forest canopy is not fully realized or available to th...
While museum voucher specimens continue to be the standard for species identifications, biodiversity data are increasingly represented by photographic records from camera traps and amateur naturalists. Some species are easily recognized in these pictures, others are impossible to distinguish. Here we quantify the extent to which 335 terrestrial non...
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250‐fold increase in seed abundance from cold‐dry to warm‐wet climates, driven primarily by...
Resource selection functions are among the most commonly used statistical tools in both basic and applied animal ecology. They are typically parameterized using animal tracking data, and advances in animal tracking technology have led to increasing levels of autocorrelation between locations in such data sets. Because resource selection functions a...
In an effort to quantify the value of wetland habitats, GPS technology was used to document the movement patterns of 16 Great Egrets (Ardea alba) in North America. Patterns in daily flight distances and utilization distributions (UD; estimates of area occupied on the ground) were documented throughout the annual cycle. Maximum Daily Displacement (M...
Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmental change.
Interactions between species can influence their distribution and fitness, with potential cascading ecosystem effects. Human disturbance can affect these competitive dynamics but is difficult to measure due to potential simultaneous spatial and temporal responses. We used camera traps with a multispecies occupancy model incorporating a continuous‐t...
Aim:
Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroeco...
Background
Bio-logging and animal tracking datasets continuously grow in volume and complexity, documenting animal behaviour and ecology in unprecedented extent and detail, but greatly increasing the challenge of extracting knowledge from the data obtained. A large variety of analysis methods are being developed, many of which in effect are inacces...
Home‐range estimates are a common product of animal tracking data, as each range represents the area needed by a given individual. Population‐level inference of home‐range areas—where multiple individual home ranges are considered to be sampled from a population—is also important to evaluate changes over time, space or covariates such as habitat qu...
Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets genera...
The establishment of protected areas (PAs) is a central strategy for global biodi- versity conservation. While the role of PAs in protecting habitat has been high- lighted, their effectiveness at protecting mammal communities remains unclear. We analyzed a global dataset from over 8671 camera traps in 23 countries on four continents that detected 3...
Detection/non-detection data are increasingly collected in continuous time, e.g., via camera traps or acoustic sensors. Application of occupancy modeling approaches to these datasets typically requires discretizing the dataset to detections over individual days or weeks, which precludes analysis of temporal interactions between species or covariate...
Animal movement along repeatedly used, “habitual” routes could emerge from a variety of cognitive mechanisms, as well as in response to a diverse set of environmental features. Because of the high conservation value of identifying wildlife movement corridors, there has been extensive work focusing on environmental factors that contribute to the eme...
Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the locations across 103 array...
Although quality control for accuracy is increasingly common in citizen science projects, there is still a risk that spatial biases of opportunistic data could affect results, especially if sample size is low. Here we evaluate how well the sampling locations of North Carolina’s Candid Critters citizen science camera trapping project represented ava...
Quantifying movement and demographic events of free‐ranging animals is fundamental to studying their ecology, evolution and conservation. Technological advances have led to an explosion in sensor‐based methods for remotely observing these phenomena. This transition to big data creates new challenges for data management, analysis and collaboration....
Data acquisition in animal ecology is rapidly accelerating due to inexpensive and accessible sensors such as smartphones, drones, satellites, audio recorders and bio-logging devices. These new technologies and the data they generate hold great potential for large-scale environmental monitoring and understanding, but are limited by current data proc...
Movebank, a global platform for animal tracking and other animal-borne sensor data, is used by over 3,000 researchers globally to harmonize, archive and share nearly 3 billion animal occurrence records and more than 3 billion other animal-borne sensor measurements that document the movements and behavior of over 1,000 species. Movebank’s publicly d...
Camera traps use a motion sensor to capture images of passing animals, representing verifiable and non-invasive records of the presence of a given species at a specified place and time. These simple records provide fundamental data on biodiversity that have proven invaluable to conservation. Thanks to the improved (better, smaller, and less expensi...
Terrestrial animals feed on fruit dropped by arboreal frugivores in tropical forests around the world, but it remains unknown whether the resulting spatial associations of these animals are coincidental or intentionally maintained. On Barro Colorado Island, Panama, we used a combination of acoustic playback experiments, remote camera monitoring, an...
This study reports movement patterns and home range estimates of an Andean fox ( Lycalopex culpaeus ) in Cotopaxi National Park in Ecuador, representing the first GPS-tagging of the species. The GPS functioned well during the 197-day tracking period. Home range sizes ranged between 4.9 and 8.1 km ² , depending on the estimation method. Movement spe...
Background
Camera traps present a valuable tool for monitoring animals but detect species imperfectly. Occupancy models are frequently used to address this, but it is unclear what spatial scale the data represent. Although individual cameras monitor animal activity within a small target window in front of the device, many practitioners use these da...