About
36
Publications
14,103
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,764
Citations
Introduction
Current institution
Additional affiliations
January 2012 - present
Publications
Publications (36)
Sleeping refuges—like other important, scarce and shareable resources—can serve as hotspots for animal interaction, shaping patterns of attraction and avoidance. Where sleeping sites are shared, individuals balance the opportunity for interaction with new social partners against their need for sleep. By expanding the network of connections within a...
Group-living animals sleep together, yet most research treats sleep as an individual process. Here, we argue that social interactions during the sleep period contribute in important, but largely overlooked, ways to animal groups' social dynamics, while patterns of social interaction and the structure of social connections within animal groups play...
Studying the mechanisms shaping age-related changes in behavior ("behavioral aging") is important for understanding population dynamics in our changing world. Yet, studies that capture within-individual behavioral changes in wild populations of long-lived animals are still scarce. Here, we used a 15-y GPS-tracking dataset of a social obligate scave...
Thermal soaring, a technique used by birds and gliders to utilize updrafts of hot air, is an appealing model-problem for studying motion control and how it is learned by animals and engineered autonomous systems. Thermal soaring has rich dynamics and nontrivial constraints, yet it uses few control parameters and is becoming experimentally accessibl...
The application of supervised machine learning methods to identify behavioural modes from inertial measurements of bio-loggers has become a standard tool in behavioural ecology. Several design choices can affect the accuracy of identifying the behavioural modes. One such choice is the inclusion or exclusion of segments consisting of more than a sin...
Using drones to track multiple individuals simultaneously in their natural environment is a powerful approach for better understanding group primate behavior. Previous studies have demonstrated that it is possible to automate the classification of primate behavior from video data, but these studies have been carried out in captivity or from ground-...
In environments with multiple predators, vulnerabilities associated with the spatial positions of group-living prey are non-uniform and depend on the hunting styles of the predators. Theoretically, coursing predators follow their prey over long distances and attack open areas, exposing individuals at the edge of the group to predation risk more tha...
Thermal soaring, a technique used by birds and gliders to utilize updrafts of hot air, presents an attractive model for developing biomimetic autonomous and unmanned aerial vehicles (UAVs) capable of long-endurance flight. Previous studies have employed machine- and deep-learning models to control gliding UAVs in simplified environments without hor...
In environments with multiple predators, the vulnerabilities attached to the spatial positions of group-living prey are not uniform and depend on the hunting styles of the predators. Coursing predators, mainly canids and hyenas, follow their prey over long distances and attack open areas, making individuals at the edge of the group more dangerous t...
The complex, interconnected, and non-contiguous nature of canopy environments present unique cognitive, locomotor, and sensory challenges to their animal inhabitants. Animal movement through forest canopies is constrained; unlike most aquatic or aerial habitats, the three-dimensional space of a forest canopy is not fully realized or available to th...
Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape‐scale planning and mitigation. The identification of high‐vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting t...
Sleep is fundamental to the health and fitness of all animals. The physiological importance of sleep is underscored by the central role of homeostasis in determining sleep investment - following periods of sleep deprivation, individuals experience longer and more intense sleep bouts. Yet, most sleep research has been conducted in highly controlled...
Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal “movement ecology” (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid,...
Animal-attached devices have transformed our understanding of vertebrate ecology. To minimize any associated harm, researchers have long advocated that tag masses should not exceed 3% of carrier body mass. However, this ignores tag forces resulting from animal movement. Using data from collar-attached accelerometers on 10 diverse free-ranging terre...
Biotelemetry requires animal captures to deploy collars. Capture raises ethical concerns, as field chemical immobilizations are complex procedures, during which respiratory and metabolic disturbances frequently occur, which can disrupt cardiovascular, neurologic, and respiratory function. The use of tools and techniques to maximize animal safety an...
Sleep is fundamental to the health and fitness of all animals. The physiological importance of sleep is underscored by the central role of homeostasis in determining sleep investment – following periods of sleep deprivation, individuals experience longer and more intense sleep bouts. Yet, most studies of sleep have been conducted in highly controll...
When members of a group differ in locomotor capacity, coordinating collective movement poses a challenge: some individuals may have to move faster (or slower) than their preferred speed to remain together. Such compromises have energetic repercussions, yet research in collective behaviour has largely neglected locomotor consensus costs. Here, we in...
Animal-attached devices have transformed our understanding of vertebrate ecology. To minimize tag-related harm for these studies, researchers have long advocated that tag masses should not exceed 3% of the animal’s body mass. However, this proposition ignores tag forces generated as a result of animal movement.
Using data from collar-attached accel...
Timing of activity can reveal an organism's efforts to optimize foraging either by minimizing energy loss through passive movement or by maximizing energetic gain through foraging. Here, we assess whether signals of either of these strategies are detectable in the timing of activity of daily, local movements by birds. We compare the similarities of...
Timing of activity can reveal an organism's efforts to optimize foraging either by minimizing energy loss through passive movement or by maximizing energetic gain through foraging. Here, we assess whether signals of either of these strategies are detectable in the timing of activity of daily, local movements by birds. We compare the similarities of...
Scavenging is a key process in the ecosystems. Studying foraging movements of obligate scavengers such as vultures can contribute to a better understanding of the scavenging-related patterns and processes. Here we review methods that can be used to track foraging vultures in the field. Yet, in order to track, vultures need to be trapped and tagged...
Aim
Animal movement is an important determinant of individual survival, population dynamics and ecosystem structure and function. Nonetheless, it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside the migratory period, we...
Animals typically adjust their behaviour to their changing environment throughout the annual cycle, modulating key processes such as the timing of breeding and the onset of migration. Such behavioural changes are commonly manifested in the movements and the energetic balance of individuals in relation to their species-specific physiological charact...
Animals are often required to make decisions about their use of current resources while minimising travel costs and risks due to uncertainty about the forthcoming resources. Passive soaring birds utilise warm rising‐air columns (thermals) to climb up and obtain potential energy for flying across large areas. However, the utilisation of such inconsi...
Uncertainties regarding food location and quality are among the greatest challenges faced by foragers and communal roosting may facilitate success through social foraging. The information centre hypothesis (ICH) suggests that uninformed individuals at shared roosts benefit from following informed individuals to previously visited resources. We test...
Natural selection theory suggests that mobile animals trade off time, energy and risk costs with food, safety and other pay-offs obtained by movement. We examined how birds make movement decisions by integrating aspects of flight biomechanics, movement ecology and behaviour in a hierarchical framework investigating flight track variation across sev...
Due to the potentially detrimental consequences of low performance in basic functional tasks, individuals are expected to improve performance with age and show the most marked changes during early stages of life. Soaring-gliding birds use rising-air columns (thermals) to reduce energy expenditure allocated to flight. We offer a framework to evaluat...
Animal movements exhibit an almost universal pattern of fat-tailed step-size distributions, mixing short and very long steps. The Lévy flight foraging hypothesis (LFFH) suggests a single optimal food search strategy to explain this pattern, yet mixed movement distributions are biologically more plausible and often convincingly fit movement data. To...
The study of animal movement is experiencing rapid progress in recent years, forcefully driven by technological advancement. Biologgers with Acceleration (ACC) recordings are becoming increasingly popular in the fields of animal behavior and movement ecology, for estimating energy expenditure and identifying behavior, with prospects for other poten...
The need to obtain food is a critical proximate driver of an organism's movement that shapes the foraging and survival of individual animals. Consequently, the relationship between hunger and foraging has received considerable attention, leading to the common conception that hunger primarily enhances a "food-intake maximization" (FIMax) strategy an...
Integrating biomechanics, behavior and ecology requires a mechanistic understanding of the processes producing the movement of animals. This calls for contemporaneous biomechanical, behavioral and environmental data along movement pathways. A recently formulated unifying movement ecology paradigm facilitates the integration of existing biomechanics...