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ABSTRACT

Dye-specific bias effects, commonly observed in the two-color microarrayplatform, are nor-
mally corrected using the dye swap design. This design, however, is relatively expensive and
labor-intensive. We propose a self-self hybridization designas an alternative to the dye swap
design. In this design, the treated and control samples are labeled with Cy5 and Cy3 (or Cy3
and Cy5), respectively, without dye swap, along with a set of self-self hybridizations on the
control sample. We compare this design with the dye swap design through investigation of
mouse primary hepatocytes treated with three peroxisome proliferator–activated receptor-
alpha (PPAR�) agonists at three dose levels. Using Agilent’s Whole Mouse Genome mi-
croarray, differentially expressed genes (DEG) were determined for both the self-self hy-
bridization and dye swap designs. The DEG concordance between the two designs was over
80% across each dose treatment and chemical. Furthermore, 90% of DEG-associated bio-
logical pathways were in common between the designs, indicating that biological interpre-
tations would be consistent. The reduced labor and expense for the self-self hybridization
design make it an efficient substitute for the dye swap design. For example, in larger toxi-
cogenomic studies, only about half the chips are required for the self-self hybridization de-
sign compared to that needed in the dye swap design.

INTRODUCTION

DNA MICROARRAYS have been widely used for the discovery of the altered profiles of gene expression
associated with toxicity and disease (Lander et al., 2001; Shultz et al., 2001; Yeoh et al., 2002), in-

cluding many cancers (Khan et al., 2001; Perou et al., 2000; Shi et al., 2005c; Sorlie et al., 2001; Tothill
et al., 2005; van ‘t Veer et al., 2002; Yeoh et al., 2002). Microarrays are commonly employed for identi-
fying genes with expression differences in transcript concentrations between the sample classes (e.g., from
diseased versus healthy tissue). A list of the most differentially expressed genes (DEG) is used for exper-
iment interpretation. In particular, the list of DEGs, the proteins they encode, and the biological pathways
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involving the genes and proteins provide relevant information on the biological phenomena and associated
mechanisms distinguishing the classes. A list of DEGs may also provide a profile or pattern of altered gene
expression with predictive value to place an unknown sample within a class.

There are two major types of DNA microarrays—single color and two color—both of which predomi-
nately use florescence to measure transcript concentration. With single-color arrays, each sample is hy-
bridized on a separate array containing probe sequences of known mRNA, and thus gives estimations of
the absolute value of each gene’s expression for each sample. In two-color arrays, each array is typically
hybridized with mRNA from both samples to be compared, where each sample is labeled with a different
fluorescent dye label. The two-color array thus directly estimates transcript concentration ratios (i.e., each
gene’s up- or down-regulation).

Two-color arrays for most experiments would require only half the number of arrays of one-color arrays
were it not for the need to modify experiment designs to correct for so-called dye bias. Dye bias is a con-
sequence of dyes (usually green [Cy3] and red [Cy5] dyes) having different signal versus transcript con-
centration dependencies. Importantly, dye bias is gene-specific, sensitive to florescent intensity, and signal
versus transcript concentration calibration curves can be nonlinear, especially at lower and higher signal in-
tensities (Cox et al., 2004; Shi et al., 2005b). While identification of DEGs with large differential fold
change might not be hindered by dye bias, bias can result in an unacceptable increase in DEG false posi-
tives and negatives, especially among genes with lower intensity or smaller fold change.

Dobbins et al. (2003) reviewed design issues for two-color microarray experiments, including design ap-
proaches to mitigate dye bias effects. The most prevalent approaches to correct dye bias are the dye swap
design and the reference design.

In the dye swap design, two RNA samples, usually control and treatment, are labeled with Cy3 and Cy5,
respectively, and then cohybridized on a chip. The process is repeated by switching the dyes of the two
samples in a second cohybridization. To minimize the dye effects, the results of the two hybridizations are
averaged prior to identifying DEGs (Fig. 1). In the reference design, both treated and control samples are
labeled with one dye (usually Cy5), while a reference sample is labeled with the other dye (usually Cy3)
and cohybridized. The commonly used reference samples are the mixed RNA from different tissues or cell
lines that are commercially available. The DEGs are determined by directly comparing two classes of sam-
ples to correct for dye bias on a gene-by-gene basis.

Importantly, both the dye swap and reference designs require twice the number of two-color arrays, and
thus the same number of arrays, as one color microarray experiments. Additionally, for the dye swap de-
sign, doubling the needed RNA could be problematic, particularly in some clinical applications. The refer-
ence design is advantageous when RNA is limited, but could confound DEG selection because of greater
difficulties in data normalization. The reference design has biological and reference samples that are
markedly different, such that the preponderance of genes appear differentially expressed and mostly up- or
down-regulated, in violation of fundamental assumptions of some normalization methods.

Self-self hybridization (SSH) is an experiment where the same RNA sample is labeled separately with
Cy3 and Cy5 and cohybridized to the same array. The SSH experiment has been used by a number of re-
searchers, but its advantages have yet to be fully exploited. Previous SSH-based studies have either devel-
oped error models and/or estimated false positives using SSH in order to quantify dye bias errors or to de-
rive and apply correction factors to biased expression ratios. (Blangiardo et al., 2006; Liang et al., 2003;
Martin-Magniette et al., 2005; Rosenzweig et al., 2004; t Hoen et al., 2004; Yang et al., 2002).

In this paper, we propose a SSH design that utilizes the SSH experiment as a direct alternative to the dye
swap design. The SSH design provides the ability to correct for dye bias while avoiding the increased num-
ber of needed arrays and amount of RNA required by the dye swap design. The SSH design also avoids
the normalization issues that confounds gene selection in the reference design.

The SSH design is somewhat similar to the reference design, but uses true control samples instead of a
reference sample. In this design, the treated and control group samples are labeled with Cy5 and Cy3 (or
Cy3 and Cy5), respectively, without dye swap. In a separate hybridization, the control group samples are
separately labeled with Cy3 and Cy5 and then cohybridized to the same array (Fig. 1). The DEGs are de-
termined by comparing the array experiments of the treated samples with the SSH controls. Since the de-
sign uses real biological controls, it avoids the difficulties in the reference design that occurs when the ma-
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jority of genes are changed between sample classes. Standard normalization methods can be directly ap-
plied in the SSH design.

In this study, we demonstrated the equivalency of the SSH design to the dye swap design based on con-
sistency and stability of DEG lists. Specifically, we compared DEGs from dye swap and SSH designs in a
toxicogenomics study where the primary hepatocytes of mice were treated with three peroxisome prolifer-
ator–activated receptor-alpha (PPAR�) agonists at three different doses. The study showed that the SSH
design results in DEGs and biological interpretations were comparable to those in the dye swap design.
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FIG. 1. Schematic comparing (A) the dye swap design and (B) the self-self hybridization design. For simplicity, each
treatment group contains only one sample (denoted as T1, T2, and T3) and the control group contains one sample as
well (denoted as C). For the study described in this report, each dose (treatment) group contains three samples (ani-
mals) and three dose groups for each chemical treatment, as well as three animal-matched control samples. (A) Dye
swap design. Each shaded block contains two hybridizations with dye swap; the treatment group (e.g., T1) and the con-
trol sample (C) hybridization are repeated with dye labels switched. The ratio of expression between treatment and con-
trol is computed as the average of the two hybridization data to compensate for dye bias, as given in the first equation.
The differentially expressed genes (DEGs) are calculated from a one-sample t test. (B) Self-self hybridization design.
All treatment samples are labeled with the same dye (e.g., Cy5[T1]), and the control samples with the other dye (e.g.,
Cy3[C]). In addition, the self-self hybridization is conducted for the control sample only (i.e., control samples are sep-
arately labeled with Cy5[C] and Cy3[C]). For each treatment group (e.g., T1) to correct dye bias, the DEGs are deter-
mined using a two-sample t test, as shown in the second equation, by directly comparing the expression ratio of
Cy5(T1)/Cy3(C) with the self-self hybridization expression ratio Cy5(C)/Cy3(C). This design requires lesser arrays
compared to the dye swap. This benefit is more pronounced when a multiple dose experiment is conducted, such as
the one described in this paper.
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Thus, SSH achieves dye bias correction similar to the dye swap design, but does so with a minimal num-
ber of additional arrays, RNA, and cost.

MATERIALS AND METHODS

Toxicogenomics study

Three mice were used in this study (Guo et al., 2006) to obtain primary hepatocytes that were treated
with three PPAR� agonists (i.e., bezafibrate, fenofibrate, and Wy14,643), each at doses of 10, 30, and 100
�M. For each dose of each chemical, the RNA was extracted after 24 h of treatment from three individual
mice; that is, there were three biological replicates for each dose of each chemical. Animal-matched con-
trol RNA samples were also collected after 24 h of treatment. The gene expression data were obtained from
Agilent whole mouse genome oligo microarrays (Mouse 44 K; Agilent Technologies, Santa Clara, CA) with
Cy3-labeled, treated samples paired with Cy5-labeled, control samples from the matched animal that were
cohybridized. The process was then repeated by switching the dyes between treated and control samples,
resulting in 3 (chemicals)� 3 (doses)� 3 (animals)� 2 (dye swaps)� 54 total arrays. In addition, nine
SSH experiments were done for each of the three control mice, each with three technical replicates.

Data analysis using ArrayTrack

Data analyses were conducted using FDA microarray software ArrayTrack (Tong et al., 2003; Tong 
et al., 2004). ArrayTrack is generally available through the FDA website (�http://edkb.fda.gov/webstart/
arraytrack�).

ArrayTrack is an integrated software suite designed for management, analysis, and interpretation of mi-
croarray experiment data. ArrayTrack is MIAME (minimum information about a microarray experiment)
supportive for storing both microarray data and experiment parameters associated with a toxicogenomics
study. Many data analysis and visualization tools are available with ArrayTrack, including five normaliza-
tion methods (including linear & lowess and median scaling used in this study), several statistical approaches
for identification of differentially expressed genes, clustering/classification methods (e.g., PCA, HCA), and
so forth. Importantly, ArrayTrack provides a rich collection of functional information about genes, proteins,
and pathways for facilitating data interpretation that are drawn from various public biological databases.
The primary emphasis of ArrayTrack is the direct linking of analysis results with functional information
for facilitating the interaction between the choice of analysis methods and the biological relevance of analy-
sis results.

In this study, the raw expression data was first normalized using the ArrayTrack linear and lowess method
with a default target value of 1000. Spots with low intensity approaching noise level (i.e., smaller than 500)
and the control genes (e.g., spike-in and housekeeping genes) were removed, leaving 25,010 spots for sub-
sequent analysis. The statistical significance (p value) for each gene between two classes for the different
experiment design was determined with the Student t test, as illustrated in Figure 1. DEGs were determined
using the ArrayTrack volcano plot with default settings of p � 0.05 and fold change �1.5. Other selection
criteria were also investigated, but the results remained the same.

For the SSH design, two lists of DEGs were generated from the nine SSH data using the two-sample t
test. One list was from the nine SSH data with the arrays having control and treatment labeled with Cy3
and Cy5, respectively, and the other compared the arrays having control and treatment labeled with Cy5
and Cy3, respectively. In the dye swap design, the DEGs were determined by averaging each pair of dye-
flipped data followed by a one-sample t test based on three biological replicates (Fig. 1).

The common genes shared by the aforementioned three lists of DEGs were determined using the venn
diagram function in ArrayTrack. The common pathways shared by the three DEG lists were determined us-
ing the common pathway function in ArrayTrack (Fang et al., 2006). The statistical significance of indi-
vidual pathways was assessed using the Fisher exact test (Zeeberg et al., 2003). The right-sided Fisher ex-
act test with a p value �0.05 indicates that the probability of genes occurring in a pathway by chance alone
is �5%.

SELF-SELF HYBRIDIZATION FOR TWO-COLOR MICROARRAYS

17



RESULTS

The dye swap design required two complete sets of hybridizations. One contained control and treated
samples labeled with Cy3 and Cy5, respectively (called polarity �, or P� hereafter), and the other con-
tained hybridization data from control and treatment samples that were reversely labeled with Cy5 and Cy3,
respectively (called polarity �, or P� hereafter). As depicted in Figure 1, the DEGs were determined based
on each gene’s average differential expression of the dye swap pair (P� and P�). For the dye swap de-
sign, 3 (chemicals)� 3 (doses)� 3 (animals)� 2 (dye swaps)� 54 arrays were needed to derive the DEGs.

In the SSH design, two DEG lists were determined. One DEG list was derived by comparing nine SSHs
and data from P� (called P�_SSH hereafter), and the other list was obtained by comparing the SSH data
with the hybridization data from P (called P�_SSH hereafter). For the SSH design, 27 arrays from con-
trol-treated hybridizations (i.e., half the number of arrays used in the dye swap design) plus nine arrays
from control-control hybridizations were used for either P�_SSH or P�_SSH.

Table 1 provides the number of DEGs obtained for each of three doses of three chemicals from both the
SSH and dye swap designs, along with the number of DEGs that are in common in the two designs. The
total number of DEGs from the SSH design (P�_SSH and P�_SSH) is similar to that from the dye swap
design, indicating that both designs have similar sensitivity for DEG identification. Importantly, DEG con-
cordance between the designs is high. The P�_SSH and dye swap DEGs overlap by �80% overlap. The
DEG overlap between the P�_SSH and dye swap results is similarly high. A stringent test of DEG list con-
sistency can be made by comparing common genes between P�_SSH and P�_SSH (Table 1, penultimate
column) with common genes between P�_SSH and P�_SSH and dye swap (Table 1, final column), which
are practically identical. Also note that DEG concordances between any two of three analyses (P�_SSH,
P�_SSH, and dye swap) are higher for higher doses, possibly because the signal-to-noise ratio increases
with increasing dose.

The dependency of DEG list stability to normalization method was also investigated. The results from
the linear and lowess normalization, median scaling methods, and raw data were compared to determine if
normalization affected the concordance between SSH and dye swap designs. In general, the linear and
lowess normalization resulted in higher concordance than median normalization, indicating that median
scaling is not an efficient method to minimize the variability associated with dye bias in this experiment
and that linear and lowess normalization is preferable for two-color array data.

The consistency of results in terms of biological context was also evaluated. More specifically, biologi-
cal pathways associated with genes identified as differentially expressed were compared using the common
pathway tool available in ArrayTrack. Figure 2 shows the common pathways shared by the three analyses
(P�_SSH, P�_SSH, and dye swap) associated with the 100 �M bezafibrate treatment. In this analysis,
each DEG list (having 285, 235, and 256 DEGs from P�_SSH, P�_SSH, and dye swap, respectively, as
shown in Table 1) was mapped to KEGG pathways. Sixty-four, 63, and 64 pathways associated with
P�_SSH, P�_SSH, and dye swap, respectively, were identified, of which 59 pathways were shared by the
three analyses. Of the 59 pathways, 24 were determined to be statistically significant based on the Fisher
exact test (p � 0.05) (Table 3). Similar results were obtained for other chemicals and treatments (results
not shown).

DISCUSSION

The SSH design was investigated as an alternative to the dye swap design using data from a toxicoge-
nomics study. Primary hepatocytes from mice were treated with three PPAR� agonists (bezafibrate, fenofi-
brate, and Wy14,643) at three dose levels (10, 30, and 100 �M). Gene expression data for each dose of
each chemical treatment was generated using Agilent’s two-color microarray platform. Both SSH and dye
swap design experiments were independently carried out so that results in terms of significant gene selec-
tion could be directly compared.

DEG identification is one of the most important objectives in the application of DNA microarrays. The
best method to obtain a stable (or reproducible) list of DEGs is a current area of scientific debate and even
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contention (Marshall, 2004; Shi et al., 2005a; Tan et al., 2003). The number of DEGs derived from the SSH
design is comparable to that with the dye swap design, though the two designs compensate very differently
for dye bias. It is interesting to compare the SSH DEG list with lists derived from using only one half the
dye swap arrays (i.e., P� and P� in this study). Applying the same statistical criteria for gene selection,
many more genes were identified for either P� or P� than the SSH design (about 1.4- to 8-fold more genes;
results not shown). The need for dye bias correction by experiment design is readily apparent. Without cor-
rection, the DEG list is substantially longer, and the increased number of DEGs is almost entirely false pos-
itives. Since SSH and dye swap yielded a high 80% concordance in DEGs, the SSH design can be viewed
as an economical means of minimizing false positives compared with the dye swap design.

The ultimate goal of using the DNA microarray is to gain insight into the biological phenomena that dis-
tinguishes sample classes. An effective and commonly employed means to examine biological context is
identifying and examining the biological pathways known to be associated with the DEGs (Kanehisa, 2002;
Karchin et al., 2002). Pathways identified in the P�_SSH/P�_SSH and dye swap designs had more than
90% commonality (Table 3). Additionally 24 of 59 common pathways were statistically significant across
these three experiments. Most of the common pathways involved lipid metabolism, consistent with the
known mode of action of the three test chemicals. The results demonstrate that the biological interpretation
based on common pathways is consistent between the SSH design and dye swap designs.

Fewer arrays are needed for the SSH design than the dye swap design. The number arrays required for
the dye swap design is dependent on the number of treated RNA samples (N). More accurately, two times
the number (2N) of arrays are needed regardless of the number of control samples in the dye swap design.
For the SSH design, however, the required number of arrays is dependent on both number of treated (N)
and control (M) samples, where M is the number of control samples for which the SSHs are conducted.
Two extreme cases illustrate the potential savings of using SSH. When only one control is needed for an
experiment in which treated samples are obtained at multiple dose points, about half of the arrays are needed
for the SSH design as that for the dye swap design. On the other extreme, if a matched control for each
treated sample is used (i.e., N � M), the required arrays are equal in the SSH and dye swap designs. The
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FIG. 2. Common pathways shared by the dye swap and self-self hybridization designs (P�_SSH and P�_SSH) for
the 100 �M bezafibrate treatment of a mouse. KEGG pathways were used in this comparison.



benefit of using the SSH design over the dye swap design can be best realized when M � N. Thus, the SSH
design is especially efficient for toxicogenomics studies where only a few controls are commonly used. Us-
ing a pooled control rather than matched controls is maximally advantageous.

CONCLUSIONS

One of the most common uses of DNA microarrays is to determine DEGs for subsequent use in biolog-
ical interpretation or signature identification. To derive a reliable DEG list using the two-color microarray
type, the experiment design must enable correction of the inevitable dye bias. To date, the dye swap de-
sign is commonly recommended for the correction of the dye bias for two-color array. In this study, we
proposed a SSH design that utilizes the SSH data as an alternative solution to the dye swap design. We
demonstrated that the SSH design is comparable to the dye swap design in terms of identified DEGs and
the biological interpretations linked to those genes, while requiring far fewer arrays for many types of stud-
ies.
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TABLE 3. STATISTICALLY SIGNIFICANT KEGG PATHWAYS SHARED BY THREE LISTS OF DEGS DERIVED FROM

P�_SSH, P�_SSH, AND DYE SWAP FOR 100 �m BEZAFIBRATE TREATMENT

Title P valuesa

Fatty acid metabolism 10�8

Fatty acid elongation in mitochondria 1.29 � 10�7

Valine, leucine and isoleucine degradation 4.96 � 10�5

Glycolysis/gluconeogenesis 4.97 � 10�5

Benzoate degradation via hydroxylation 8.18 � 10�5

Caprolactam degradation 8.67 � 10�5

Propanoate metabolism 1.135 � 10�5

Bile acid biosynthesis 2.12 � 10�5

Limonene and pinene degradation 6.68 � 10�4

Lysine degradation 9.85 � 10�4

Tryptophan metabolism 2.34 � 10�3

Alkaloid biosynthesis II 2.48 � 10�3

Pyruvate metabolism 3.47 � 10�3

beta-alanine metabolism 5.82 � 10�3

gamma-hexachlorocyclohexane degradation 6.14 � 10�3

Pentose phosphate pathway 7.11 � 10�3

Butanoate metabolism 7.20 � 10�3

Carbon fixation 7.45 � 10�3

1- and 2-methylnaphthalene degradation 0.0330
Peptidoglycan biosynthesis 0.0336
Nitrogen metabolism 0.0406
Fructose and mannose metabolism 0.0415
Tyrosine metabolism 0.0434
Glycerolipid metabolism 0.0443

aFisher exact test, p � 0.05.
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