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Abstract 

Two classical papers on Ridge Regression by Arthur Hoerl and Robert Kennard were published 

in Technometrics in 1970, making 2020 their 50th anniversary. The theory and practice of Ridge 

Regression, and of related biased shrinkage estimators, have been extensively developed over the 

years. Further, newer shrinkage estimators, such as the Lasso and the Elastic Net, have become 

popular more recently. These newer developments have led to renewed interest in the original 

1970 papers. What has perhaps been lost since 1970 is the context of these classic papers.  That 

is, who were Art Hoerl and Bob Kennard, and what led two statisticians working in the private 

sector to develop Ridge Regression in the first place? What are the origins of Ridge Regression? 

Where did the name come from? The purpose of this paper is to provide this historical context by 

discussing the men involved, their work at DuPont, and their approach to methodological 

development. As Art Hoerl was my father, this is admittedly a personal viewpoint. 

 

1. INTRODUCTION 
 

In 1970, Technometrics published two papers by Art Hoerl and Bob Kennard (Hoerl and 

Kennard 1970a,b) on the topic of Ridge Regression, essentially introducing this methodology to 

the statistics community. It is fair to say that no one, including the authors, suspected how 

impactful these articles would ultimately turn out to be. While their proposed estimation 

approach for collinear data met its share of criticism and resistance (e.g., Draper and Smith 

1981), the method not only became common in practice, but also led to further developments in 

shrinkage estimation, such as Lasso (Tibshirani 1996) and Elastic Net (Zou and Hastie 2005). 

Research and utilization of these more modern but related methods has renewed interest in the 

classic Hoerl-Kennard papers. Art Hoerl (hereafter referred to as AH) was my father; I studied 

under him in graduate school, and subsequently published two articles on Ridge Regression with 

him (Hoerl et al. 1985, Hoerl et al. 1986). As might be imagined, we discussed the origins of 

Ridge Regression quite a bit. I also spent two summers as an intern in the Applied Statistics 

Group at DuPont while in graduate school. By that time, Robert (Bob) Kennard (hereafter 

referred to as RK) had been promoted outside of the ASG, but was still overseeing it. I met with 

him several times while working there, in addition to meeting him socially growing up. 

Ironically, I went to high school with his son Eric. So, I would like to think that I have a unique 

view into these men’s journey to the development of Ridge Regression, which I share below. 

First, however, let me share some information on these men as individuals. 

 

2. ABOUT THE AUTHORS 
 

2.1 Who Was Art Hoerl (AH)? 

AH was technically Arthur Edwin Hoerl, Jr., as his father was Arthur Hoerl. Arthur Hoerl, my 

grandfather, was the child of German immigrants, and lived much of his life in New York City. 

He eventually became a writer, and moved his family, including my father, to Los Angeles. 
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Although my grandfather was a prolific writer in several venues, he is best known professionally 

for writing the screenplay to the 1936 cult classic Reefer Madness. Their house was actually in 

Beverly Hills, and AH graduated from Beverly Hills High School with, among others, future 

producer Blake Edwards and actress Rhonda Fleming. I say this somewhat tongue-in-cheek, 

because their house, which I visited, was quite modest, and AH never fit in with the Hollywood 

or Beverly Hills crowds.  

 

He received his B.S. in Mechanical Engineering from the University of Southern California 

(USC) in 1944. Immediately upon graduation he was drafted in the army, and had orders to 

report to Belgium for what we now know as the “Battle of the Bulge”. Because of his 

engineering background and high scores on the Army math aptitude test, he was reassigned at the 

last minute to the Manhattan Project at Los Alamos, New Mexico, where he worked on bombing 

tables. At Los Alamos, he met Enrico Fermi, Robert Oppenheimer, and Klaus Fuchs, among 

other scientists, and also Marguerite Field, my mother.  

 

Soon after the war, he began working as a mechanical engineer, and was exposed to problems 

related to data analysis, which intrigued him. He reentered USC, receiving an M.S. in 

mathematics in 1950. His real interest was in statistics, but at that time USC didn’t offer a 

statistics degree. Upon graduation, he became the first statistician hired by the DuPont Company. 

In 1967 he left DuPont to join the University of Delaware faculty, in order to spend less time 

traveling, and more at home with his family, and also to focus more on research. He retired in 

1986, and passed away in 1994. 

 

It is my belief that AH’s background in engineering significantly impacted the way he 

approached problems, in particular, the multicollinearity issue in regression. He was 

fundamentally a creative problem solver who knew statistics, not a statistician per se, at least not 

in the classical sense. Statistical methods were always a means to an end to him, not the end in 

themselves. My own undergraduate degree was in mathematics, and early in my career I tended 

to view problems from a mathematical versus problem-solving lens, so AH and I typically had 

very different takes on issues and how to approach them.  

 

I do find it reassuring that there has recently been a broader realization of the need for 

statisticians to take more of an engineering (problem-solving) viewpoint, versus a statistical or 

mathematical viewpoint, when addressing real problems. I point to the formation of the 

International Statistical Engineering Association (ISEA - https://isea-change.org/), and also 

Michael Jordan’s recent presentation at the University of Michigan’s Symposium on Statistics in 

the Data Science Era 

(https://media.rackham.umich.edu/rossmedia/Play/1f811e3d1ad94e4d9d0f1b430cba8a341d). 

During this talk, Jordan noted the need for developing a problem-solving culture within the 

statistics discipline. Further, he suggested that we "embrace being engineers," and consider 

"...what statistical engineering could look like, as a counterpart to statistical science." 

 

2.2 Who Was Bob Kennard (RK)? 

The following borrows significantly from Bob’s obituary, which can be found in its entirety at 

https://obittree.com/obituary/us/florida/indian-harbour-beach/beach-funeral-homes---east/robert-

kennard/987155/. Robert Wakely Kennard was born January 27, 1923 in Newark, Delaware. RK 

https://isea-change.org/
https://media.rackham.umich.edu/rossmedia/Play/1f811e3d1ad94e4d9d0f1b430cba8a341d
https://obittree.com/obituary/us/florida/indian-harbour-beach/beach-funeral-homes---east/robert-kennard/987155/
https://obittree.com/obituary/us/florida/indian-harbour-beach/beach-funeral-homes---east/robert-kennard/987155/
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graduated from Newark High School in 1940. He was a “local boy who made good”, becoming 

the class President and Valedictorian at Newark High. RK eloped with Helen Elizabeth Staats 

(Betty) in nearby Elkton, Maryland, which had a reputation for liberal marriage laws. Bob also 

served in the military (army) in World War II. He sustained a back injury in training and had the 

first successful disc surgery that was performed at the Walter Reed Army Hospital. Similar to 

AH’s experience, the army noticed RK’s mathematical skills, and promoted him to Technical 

Sergeant in the 2nd Signal Service Battalion of the Signal Corps. He was assigned to the Vint 

Hill intercept station in Warrenton, Virginia. There he identified and intercepted Japanese 

military and diplomatic radio signals transmitted at high speed Morse Code. His unit broke the 

Japanese “purple code” and intercepted the Imperial Command’s message to their staff that they 

were going to surrender to the United States. Clearly, RK’s early career involved solving real 

problems utilizing an engineering viewpoint. 

 

After being discharged from the Army in 1946, he resumed his studies at the University of 

Delaware. He graduated in 1949 with a B.S. in physics, and M.S. in statistics in 1952. He 

received his Ph.D. in mathematical statistics at Carnegie Technological University (now 

Carnegie-Mellon). It is noteworthy both that RK had an undergraduate degree in a physical 

science – physics, and also that his Ph.D. was in mathematical statistics. Motivated by his 

background in physics, he retained an interest in physics, astronomy, and medicine throughout 

his life, often seeking opportunities for lifelong learning in these areas.  The Hoerl-Kennard team 

was, therefore, grounded in engineering problem solving, natural science, and also mathematical 

statistics. I believe all three viewpoints were required in the development of Ridge Regression. 

 

RK began his career with DuPont in 1955, five years after AH began working there. He moved 

through various supervisory positions, eventually becoming the manager for the Systems 

Engineering Division, within which the Applied Statistics Group resided. He retired in 1982, 

moving to Groveland, Florida. He taught math and statistics at Lake Sumter Community College 

for ten years, and passed away in 2011. 

 

3. THE DEVELOPMENT AND EXTENSIONS OF RIDGE REGRESSION 
 

3.1 Ridge Analysis: The Origins of Ridge Regression 
While employed in the statistical group at DuPont, AH was often asked to optimize industrial 

processes involving more than the two or three independent variables traditionally seen in 

response surface literature. Although the method of canonical analysis had been developed by 

that time (Davies 1956), this was generally inadequate for multidimensional surfaces, for reasons 

to be discussed shortly. Possessing an engineering background, he felt the need for more than a 

numerical optimization of the estimated model. That is, he desired engineering insight as to what 

was going on in the process. Ridge Analysis was the approach he developed for this problem. 

Since the publication of Hoerl and Kennard (1970a,b), there has been significant confusion 

between Ridge Analysis and Ridge Regression, but Ridge Analysis was clearly the initial step, 

and it was the application of Ridge Analysis to the regression sum of squares that later led to the 

development of Ridge Regression. 

 

The classic paper by Box and Wilson (1951) popularized the use of response surface 

methodology (RSM) to optimize industrial processes, particularly in the chemical industry. RSM 
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involves sequential designed experiments, often fitting the subsequent data with second order 

polynomials, to account for curvature and interaction. Quadratic response surface models of the 

following form were commonly applied: 

   

  𝑦 = b0 + ∑ b𝑖𝑥𝑖
𝑝
𝑖=1 + ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗 

𝑝
1≤𝑖≤𝑗 +  e.    (1) 

Note that this model includes linear, quadratic, and two-factor interaction terms. In matrix 

notation, this can be written: 

 

 𝑦 =  b0  +  𝒃’𝒙 + 
1

2
𝒙′𝐁𝒙 + e,      (2) 

 

where 𝒃 is the 𝑝 × 1  vector of linear coefficients from equation (1), x is the 𝑝 × 1 vector of 

independent variables, e is the random error, and B is the 𝑝 × 𝑝 symmetric matrix whose 

diagonal elements are twice the quadratic terms, and whose off-diagonal elements are the 

interaction terms. 

 

If the independent variables are standardized to have zero mean and equal variances, the 

experimental region can be easily interpreted as a geometric figure with the center point as the 

origin. For central composite designs (Box et al. 2005), this is roughly the hypersphere defined 

by 𝒙′𝒙 <  𝐶2, for some distance (𝐶) from the origin, depending on the placement of the axial 

points. By taking partial derivatives with respect to the independent variables and setting them 

equal to zero, we can find the stationary point (max, min, or “saddle point”) at 𝒙 =  −𝐁−𝟏𝒃. This 

point may or may not be inside the design space. In the case of two or three independent 

variables, contour plots of the response can be used to reveal promising areas of the design space 

(maximum or minimum), in addition to the numerical stationary point given above. These plots 

also reveal when the analyst is extrapolating outside the design space. In higher dimensions, 

however, contour plots require fixing 𝑝 − 2of the independent variables, which makes 

interpretation much more difficult and confusing, especially in the case of interaction. 

 

A canonical analysis, noted above, can be performed for any 𝑝, but lacks the simplicity of 

contour plots. It shifts the reference point away from the origin (center point) to the stationary 

point, which may be well outside the design space. Interpreting a response surface based on 

extrapolations is obviously of limited value. These were the issues that led AH to develop an 

alternative approach, which he named Ridge Analysis (Hoerl 1959, 1964). It is noteworthy, 

given AH’s engineering background, that these papers were both published in chemical 

engineering journals, as was his first mention of Ridge Regression in the literature (Hoerl 1962).  

 

Canonical analysis uses the eigenvalues of B to trace response ridges relative to the stationary 

point. In contrast, Ridge Analysis determines the maximum (or minimum) predicted value of the 

response on concentric hyperspheres about the origin (center point), defined by 𝒙′𝒙 = R2, where 

R is the distance from the origin. This is accomplished through repeatedly solving the following 

equation for a range of values of 𝜆, based on the eigenvalues of B: 

 

 𝐱 = – (𝐁 –  𝜆𝐈)−1𝐛,       (3) 
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where I is the identity matrix, and 𝜆 is a Lagrangian multiplier (Hoerl 1959). The maximum 

“ridge” is defined by using values of  𝜆 > 𝜆1, i.e., where 𝜆1 is the largest eigenvalue of B. The 

minimum ridge is defined by using values of  𝜆 < 𝜆p, where 𝜆p is the smallest eigenvalue of B. 

Note that B is not typically positive semi-definite, so some eigenvalues may be negative. 

Secondary ridges, corresponding to secondary optima, are defined for 𝜆 values between the max 

and min eigenvalues. Of course, for designs that roughly form hyperspheres, the factorial and 

axial points of the design will be roughly the same distance from the center point. Letting this 

value be r, values of R less than r would obviously be within the design space, and values greater 

than r would constitute extrapolation. 

 

The coordinates of this constrained maximum track the “ridge” of the maximum response from 

the center point to the boundary of the design space, hence the term Ridge Analysis. The graph of 

these coordinates versus R is called the “ridge trace”, and shows the specific path of the 

maximum ridge. These terms would be subsequently applied to regression analysis involving 

collinear variables in HK-70 (Hoerl and Kennard 1970a), as discussed below. Figure 1 shows a 

sample plot of the ridge trace for a response surface discussed in my own paper, Hoerl (1985), 

which was of course based on AH’s paper (Hoerl 1964). Figure 1 shows the coordinates in x 

space of the maximum ridge, between the origin (R = 0) to the perimeter of the design space (R 

= 2.24). My paper was intended to reintroduce Ridge Analysis to the statistics profession, hence 

the title “Ridge Analysis 25 Years Later”. 

 

 

Figure 1 Maximum Ridge Coordinates 
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3.2 The Application to Regression: Ridge Regression 

A fundamental problem in collinear regression problems using least squares estimates, of course, 

is that the variances of the regression coefficients become large. Most of the methods that have 

been proposed over the years to address this problem are shrinkage estimates, which attempt to 

shrink the coefficients in order to reduce these variances, while adding some bias. The rationale 

for shrinkage is that the expected value of �̂�′�̂�, the squared magnitude of the estimated 

coefficient vector (in standardized units), is larger than 𝜷′𝜷, the actual squared coefficient 

vector. That is,  

 

  E(�̂�′�̂�) =  𝜷′𝜷 + 𝜎2Tr(𝐗′𝐗)−1  =  𝜷′𝜷 + 𝜎2 ∑ 𝜆𝑖
−1𝑞

𝑖=1 ,  
 

where 𝜆i is the i-th eigenvalue of X′X, and q is the number of terms in the regression model. We 

assume here that X is in correlation units, so 𝐗′𝐗 is q×q, i.e., there is no 𝛽0 term. Note that the 

squared magnitude of the coefficient vector is always biased high, but with nearly singular X′X 

matrices, producing small eigenvalues approaching zero, it will be extremely biased on the high 

side. From a practical point of view, this often results in sign reversals of the coefficients. That 

is, coefficients that are known to be positive based on subject matter theory may have negative 

estimates, and vice versa. 

 

Based on the need to shrink (or zero) the coefficient vector from the least squares’ solution 

towards the origin, Hoerl and Kennard’s approach (RK was now working alongside AH) was to 

apply Ridge Analysis to the residual sum of squares. The least squares solution obviously 

provides the overall minimum residual sum of squares, by definition. However, we can apply 

Ridge Analysis to the residual sum of squares, as it is a quadratic function of the coefficient 

vector. That is, we can write the least squares residual sum of squares as: 

 

 (𝒚 − �̂�)′(𝒚 − �̂�) =  𝒚′𝒚 –  2 �̂�′𝐗′𝐲 + �̂�′(𝐗′𝐗)�̂�,   (4) 

 

using the fact that �̂� = X�̂�. Equation 4 reveals that the residual sum of squares is a quadratic 

function of the parameter vector �̂�, just as in Equation 2 the response is a quadratic function of 

the independent variables. Ridge Analysis can therefore be applied to trace the coefficient 

coordinates of the minimum residual sum of squares (minimum ridge) from the origin (�̂�=0) to 

the least squares’ solution. Of course, we could calculate the minimum ridge beyond this point, 

but since the least squares’ coefficient vector tends to be inflated in magnitude, especially for 

collinear data, this would not be of practical value. Equation 3 from Ridge Analysis becomes the 

familiar Ridge Regression equation: 

 

 𝜷�̂�  =  (𝐗′𝐗 +  𝑘𝐈)−1𝐗′𝒚,      (5) 

 

where -k simply replaces 𝜆 from Equation 3. In Ridge Regression, positive values of k are used 

(negative 𝜆). This is because we are interested in the minimum ridge, which tracks the minimum 

residual sum of squares for any distance from the origin (�̂�=0). In a regression context, X′X is 

positive semi-definite, so all eigenvalues are non-negative. Normally in Ridge Analysis we want 

to use 𝜆 values less than the smallest eigenvalue for the minimum ridge, or between 0 and 𝜆q. A 
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value of 0 for 𝜆 is of course the least squares solution (“stationary point”), and small positive 

values result in solutions farther away from the origin (larger coefficient vectors), hence negative 

𝜆, or positive k, are typically applied in Ridge Regression. 

 

In short, Ridge Regression shrinks the estimated coefficient vector towards the origin along a 

path, a “ridge trace”, that finds the coefficient estimates minimizing the residual sum of squares 

subject to the constraint �̂�′𝜷 ̂ = 𝑐2, where 𝑐 is a constant varying from 0 (origin) to the original 

least squares coefficient vector magnitude. The user then selects the appropriate value of k, 

which corresponds to 𝑐, to determine the final estimates, either by algorithm or by looking at the 

ridge trace to see at what point the coefficients stabilize. The least squares solution is defined for 

k = 0, which typically appears on the left of the graph, and then the coefficients shrink as a 

function of k, moving left to right on the horizontal axis. See Figure 2, which is taken from Hoerl 

and Kennard (1970b).  Note that this shows the ridge trace after removing two variables (x1 and 

x4) from the model. 

 

Figure 2 Ridge Regression Trace 

 
 

 

Hoerl and Kennard (1970a) provided proof of an existence theorem, stating in short that there 

always exists a value of k > 0 such that the expected mean square error of the coefficients is 

lower for Ridge Regression than least squares. That is,  

 

𝐸[𝜷�̂�  −  𝜷)′(𝜷�̂� −  𝜷)]  <  E[(�̂�  −  𝜷)′(�̂�  −  𝜷)]  (6) 
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Of course, finding such a k in practice is the challenge. There has been extensive research over 

the years investigating algorithms to select k, including early work, such as Hoerl et al. (1975), 

and Lawless and Wang (1976). However, the practical advantage of looking at the ridge trace to 

gain engineering insight into the problem, which was a key aspect of Hoerl and Kennard 

(1970b), seems to have been all too often neglected. For example, Hoerl and Kennard (1970b) 

and Hoerl et al. (1985) illustrated how the ridge trace can be used to determine which variables 

have “staying power”, and warrant being retained in a reduced model. Again, the lack of 

emphasis on the advantage of the ridge trace in practice may relate to a mathematical or 

algorithmic perspective, as opposed to the original authors’ scientific-engineering perspective. 

 

 

3.3 Relationship to Other Work 

There has been, of course, a variety of other related work in the general area of estimate 

stabilization and shrinkage estimation, some of which preceded HK-70, some of which was 

concurrent, and some of which has occurred since. I comment here on only four specific 

developments, Tikhonov regularization, Stein Shrinkage, the Nonnegative Garrote, and the 

Lasso/Elastic Net.  

 

Andrey Nikolayevich Tikhonov was a Soviet mathematician (both pure and applied) and 

geophysicist, who worked on, among other things, the “inverse problem” in geophysics 

(Tikhonov and Arsenin 1977, Tikhonov et al. 1998). Note that the dates of these publications 

represent when they were published in English. It is called an inverse problem because it starts 

with the effects and then calculates the causes, such as calculating the density of the earth from 

measurements of its gravity. In reality, of course, the density determines the gravity. In several of 

these problems, and also in solving matrix differential equations, Tikhonov needed to invert a 

matrix, and found that the matrix was nearly singular. Younger statisticians may not realize how 

poor the software for matrix inversion was prior to the last few decades, but it was quite 

unreliable. Tikhonov discovered that by adding a small positive constant to the diagonals of the 

matrix, numerical challenges such as inverting it, calculation of eigenvalues and vectors, the 

determinant, and so on, were much easier.  

 

For example, suppose we have the following set of linear equations: 𝐀𝒙 =  𝒃. The standard 

solution for 𝒙 would be 𝐀−1𝒃. Suppose 𝐀 is nearly singular, and its inverse cannot be accurately 

calculated, using numerical methods from the 20th century? Tikhonov’s solution was to add a 

“Tikhonov matrix” 𝚪 to 𝐀 before inverting. That is, his solution was: 

 

 𝐱 =  (𝐀 +  𝚪)−1𝐛       (7) 

 

If Γ is chosen to be a multiple of the identity matrix, then the inversion of (A + 𝚪) is much more 

stable numerically than inversion of A, and Equation (7) is mathematically analogous to 

Equation (3) in ridge analysis. The use of this small diagonal matrix 𝚪 has been referred to in the 

literature as “Tikhonov regularization”, and was a breakthrough in solving numerous applied 

math and scientific problems of the day. In ridge analysis, of course, the B matrix isn’t typically 

near-singular, because it is made up of regression coefficients resulting from designed 

experiments. So, the objective is quite different; tracing maximum coordinates, rather than 

addressing numerical instability.  
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Ridge regression, on the other hand, is typically applied to the near-singularity problem which 

motivated Tikhonov. The emphasis, however, is on tracing the coordinates of the minimum 

residual sum of squares ridge through the parameter space, towards the origin. That is, the 

emphasis is on shrinking the least squares estimates towards the origin, along a specific path - 

the minimum ridge of the residual sum of squares. 

 

In a series of papers in the early 1960’s, Stein (1960, 1962) and James and Stein (1961) proposed 

a type of shrinkage estimation that is often referred to in the literature as “Stein Shrinkage”. 

Their fundamental approach was quite different from Ridge Regression, and was presented in a 

more general manner, that is, it was not limited to regression problems. James and Stein (1961) 

also provided an existence theorem, proving that under the assumption that a vector of random 

variables is multivariate normal, with mean vector 𝜽 and variance/covariance matrix 𝜎2I, one 

can reduce the expected mean square error of estimating 𝜽 by shrinking the estimates by a factor 

of C. That is, there always exists a C such that the mean square error for Stein Shrinkage is lower 

than for the maximum likelihood estimate. Applied to regression, this implied that there is 

always a constant C such that the expected mean square error of estimating the regression 

coefficients (see Equation (6)) of Stein Shrinkage is lower than for least squares. The Stein 

Shrinkage estimator in a regression context would be of the form �̂�ss = C�̂�, for some C, 0 < C < 

1, where �̂� is the least squares estimate, and �̂�ss is the Stein Shrinkage estimate. Note that this 

approach comprises linear shrinkage, in that each coefficient is shrunk by an equal proportion.  

 

As with selection of k in Ridge Regression, significant research has been conducted to identify 

appropriate values of C in practice (Stein 1962). From a practical point of view, a limitation of 

Stein Shrinkage is that, as a linear shrinkage approach, it is unable to reverse signs of 

coefficients. One of the original motivations for Ridge Regression is the common practical 

problem in which coefficients have the wrong sign, based on subject-matter knowledge. Hoerl 

and Kennard (1970b) provided two case studies where this was occurred, but with appropriate 

selection of k, the signs conformed to the expected sign. 

 

The growth in application of Ridge Regression, as well as the expansion of research conducted 

on it, has led to more modern approaches to regression. One such method is the Nonnegative 

(nn) Garrote (Breiman 1995). The motivation for Breiman’s work in this area was the desire to 

combine subset selection – to simplify models, with shrinkage estimation – to further reduce 

variance in estimation. The nn-Garrote accomplishes both, at least to a degree. Like Stein 

Shrinkage, it shrinks each parameter linearly, but in the case of the nn-Garrote, there are different 

shrinkage values for each parameter, so we have a set of 𝑐𝑖, 𝑖 = 1, … , 𝑛. Alternatively, we can 

define a diagonal matrix 𝐂, which has the individual 𝑐𝑖, on the diagonal, and zeros on the off 

diagonals.  To obtain the nn-Garrote estimates, we minimize the residual sum of squares, based 

on the least squares estimates (�̂�), as a function of 𝐂:  

 

 (𝒚 −  𝐗𝑪�̂� )′(𝒚 −  𝐗𝑪�̂� ),      (8) 

 

subject to: ci ≥ 0, and ∑ 𝑐𝑖 ≤ 𝑠, for some constant s. Obviously, if 𝐂 were the identity matrix (all 

𝑐𝑖 = 1, then we simply have the least squares estimates. However, “as the “garrote is drawn 
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tighter by decreasing s” (Breiman 1995 p. 374), some 𝑐𝑖 are driven to 0, while others are shrunk 

but remain positive.  

 

While the nn-Garrote achieves the joint objectives of subset selection and shrinkage, like Stein 

Shrinkage it is unable to reverse the signs of coefficients, as it is a “nonnegative” Garrote, i.e., 

the ci cannot be negative. Building on Breiman’s work, Tibshirani (1996) proposed a method for 

direct shrinkage and selection of the parameters, rather than identification of individual 

shrinkage values. The Least Absolute Shrinkage Selection Operator, or Lasso, uses a similar 

approach to Ridge Regression, but modifies the least squares estimates through the constraint 

Σ|𝛽i| ≤ c, that is, by fixing the maximum sum of the absolute values of the estimated coefficients, 

not their squares.  So, the Lasso fixes the sum of the parameters, in absolute value, rather than 

the sum of the shrinkage values. It obviously shares similarities with both Ridge Regression and 

the nn-Garotte. Some coefficients are typically forced to zero in the Lasso as well, hence it also 

provides subset selection as well as shrinkage. As noted previously, the ridge trace provides 

graphical guidance as to which variables should be retained in the model, but none of the 

coefficients are forced to zero mathematically. An advantage of the Lasso is that like Ridge 

Regression, it can reverse the signs of coefficients that appear incorrect relative to subject matter 

knowledge. 

 

Zhou and Hastie (2005) introduced a related technique, the Elastic Net, to overcome some 

limitations of the Lasso, particularly when the number of independent variables exceeds the 

sample size (𝑞 > 𝑛), and with very high degrees of collinearity. The Elastic Net incorporates 

both Ridge Regression (sum of squared coefficients) and Lasso (sum of absolute value of 

coefficients) penalties in the estimation process. That is, it minimizes an objective function that 

is the residual sum of squares plus Ridge and Lasso penalties. The result can therefore be 

considered an intermediate solution between Ridge Regression and the Lasso. See James et al. 

(2013) for further details on these modern regression methodologies. 

 

4. Summary 
Arthur Hoerl and Robert Kennard published their classic papers on Ridge Regression in 1970 

(Hoerl and Kennard 1970a,b), making 2020 the 50th anniversary of their publication. While the 

underlying theory and practical application of this method have been well-researched since 1970, 

the story of the motivation behind these papers has, perhaps, been overlooked or forgotten. This 

is unfortunate, as I feel strongly that it is important for the profession to understand that novel 

developments such as Ridge Regression do not occur in a vacuum. Rather, there is almost always 

an important context that provides clues as to why researchers accomplished such breakthroughs. 

In the case of Hoerl and Kennard, I believe that a critical aspect of this context was the 

application of scientific and engineering perspectives to the problem of collinearity, to augment a 

statistical/mathematical perspective. Secondly, the integration of multiple methods, in this case 

combining the response surface technique Ridge Analysis with least squares regression 

modeling, is almost always required to address complex problems.  

 

It is an honor to be able to celebrate “HK-50” with the readers of Technometrics, the journal 

which published these original papers. 
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