
Rodrigo Ledesma-Aguilar- PhD
- Reader at University of Edinburgh
Rodrigo Ledesma-Aguilar
- PhD
- Reader at University of Edinburgh
About
75
Publications
13,568
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,410
Citations
Introduction
Current institution
Additional affiliations
October 2013 - present
Publications
Publications (75)
The shape and stability of a droplet in contact with a solid surface is affected by the chemical composition and topography of the solid, and crucially, by the droplet’s size. During a variation in size, most often observed during evaporation, droplets on smooth patterned surfaces can undergo sudden shape and position changes. Such changes, called...
Capillary imbibition underpins many processes of fundamental and applied relevance in fluid mechanics. A limitation to the flow is the coupling to the confining solid, which induces friction forces. Here we study the effect of coating the solid with a liquid lubricant layer. Using a theoretical framework, we show that for sufficiently small lubrica...
The motion of droplets on solid surfaces in response to an external gradient is a fundamental problem with a broad range of applications, including water harvesting, heat exchange, mixing and printing. Here we study the motion of droplets driven by a humidity gradient, i.e. a variation in concentration of their own vapour in the surrounding gas pha...
Superhydrophobic materials are often inspired by nature, whereas metamaterials are engineered to have properties not usually occurring naturally. In both, the key to their unique properties is structure. Here, it is shown that a negative Poisson’s ratio (auxetic) mechanical metamaterial can transform into a unique superhydrophobic material. When st...
Young’s equation is fundamental to the concept of the wettability of a solid surface. It defines the contact angle for a droplet on a solid surface through a local equilibrium at the three-phase contact line. Recently, the concept of a liquid Young’s law contact angle has been developed to describe the wettability of slippery liquid-infused porous...
Superhydrophobicity plays a pivotal role in numerous applications. Recently, we have demonstrated the potential of auxetic metamaterials in creating superhydrophobic materials with unique wetting properties. However, the superhydrophobic properties are lost when the liquid penetrates into the surface structure. Understanding the conditions for drop...
In 1948, Cassie provided an equation describing the wetting of a smooth, heterogeneous surface. He proposed that the cosine of the contact angle, θc, for a droplet on a composite surface could be predicted from a weighted average using the fractional surface areas, fi, of the cosines of contact angles of a droplet on the individual component surfac...
Superhydrophobic materials are often inspired by nature, whereas metamaterials are engineered to have properties not usually found in naturally occurring materials. In both cases, the key that unlocks their unique properties is structure. Here, we show that a negative Poisson's ratio (auxetic) mechanical metamaterial is capable of transforming into...
For sessile droplets of pure liquid on a surface, evaporation depends on surface wettability, the surrounding environment, contact angle hysteresis (CAH) and surface roughness. For non-pure liquids the evaporation characteristics are further complicated by the constituents and impurities within the droplet. For saline solutions, this complication t...
A versatile method for the creation of multitier hierarchical structured surfaces is reported, which optimizes both antiviral and hydrophobic (easy-clean) properties. The methodology exploits the availability of surface-active chemical groups while also manipulating both the surface micro- and nanostructure to control the way the surface coating in...
Slippery liquid-infused porous surfaces (SLIPS) are an innovation that reduces droplet-solid contact line pinning and interfacial friction. Recently, it has been shown that a liquid analogue of Young's law can be deduced for the apparent contact angle of a sessile droplet on SLIPS despite there never being contact by the droplet with the underlying...
Spontaneous capillary imbibition is a classical problem in interfacial fluid dynamics with a broad range of applications, from microfluidics to agriculture. Here we study the duration of the cross-over between an initial linear growth of the imbibition front to the diffusive-like growth limit of Washburn's law. We show that local-resistance sources...
Programmable fluidic systems on curved and flexible substrates are of increasing interest. One approach to achieving programmability is the controlled sequential wetting and dewetting on a surface using voltage actuation. In particular, liquid dielectrophoresis techniques have recently been shown to provide the ability to form a spread liquid film on...
The empirical laws of dry friction between two solid bodies date back to the work of Amontons in 1699 and are pre-dated by the work of Leonardo da Vinci. Fundamental to those laws are the concepts of static and kinetic coefficients of friction relating the pinning and sliding friction forces along a surface to the normal load force. For liquids on...
The breakup of a slender filament of liquid driven by surface tension is a classical fluid dynamics stability problem that is important in many situations where fine droplets are required. When the filament is resting on a flat solid surface which imposes wetting conditions the subtle interplay with the fluid dynamics makes the instability pathways...
Overcoming friction between moving components is important for reducing energy losses and component wear. Hydrodynamic lubrication via thin-film boiling provides an opportunity for reduced friction energy and mass transport. A common example of such lubrication is the Leidenfrost effect, where a liquid droplet levitates on a cushion of its own vapo...
We investigate the evaporation of a two-dimensional droplet on a solid surface. The solid is flat but with smooth chemical variations that lead to a space-dependent local contact angle. We perform a detailed bifurcation analysis of the equilibrium properties of the droplet as its size is changed, observing the emergence of a hierarchy of bifurcatio...
Contact-line pinning and dynamic friction are fundamental forces that oppose the motion of droplets on solid surfaces. Everyday experience suggests that if a solid surface offers low contact-line pinning, it will also impart a relatively low dynamic friction to a moving droplet. Examples of such surfaces are superhydrophobic, slippery porous liquid...
Bubbles attached to surfaces are ubiquitous in nature and in industry. However, bubbles are problematic in important technologies, including causing damage to the operation of microfluidic devices and being parasitic during heat transfer processes, so considerable efforts have been made to develop mechanical and electrical methods to remove bubbles...
The current paradigm of self-propelled motion of liquid droplets on surfaces with chemical or topographical wetting gradients is always mono-directional. In contrast, here, we demonstrate bidirectional droplet motion, which we realize using liquid infused surfaces with topographical gradients. The deposited droplet can move either toward the denser...
Sessile droplet evaporation underpins a wide range of applications from inkjet printing to coating. However, drying times can be variable and contact-line pinning often leads to undesirable effects, such as ring stain formation. Here, we show voltage programmable control of contact angles during evaporation on two pinning-free surfaces. We use an e...
The transport of small amounts of liquids on solid surfaces is fundamental for microfluidics applications. Technologies allowing control of droplets of liquid on flat surfaces generally involve the generation of a wettability contrast. This approach is however limited by the resistance to motion caused by the direct contact between the droplet and...
We investigate the evaporation of a two-dimensional droplet on a solid surface. The solid is flat but with smooth chemical variations that lead to a space-dependent local contact angle. We perform a detailed bifurcation analysis of the equilibrium properties of the droplet as its size is changed, observing the emergence of a hierarchy of bifurcatio...
The problem of contact line pinning on surfaces is pervasive and contributes to problems from ring stains to ice formation. Here we provide a single conceptual framework for interfacial strategies encompassing five strategies for modifying the solid-liquid interface to remove pinning and increase droplet mobility. Three biomimetic strategies are in...
The stability of liquid films on surfaces is critically important in microscale patterning and the semiconductor industry. If the film is sufficiently thin, it may spontaneously dewet from the surface. The timescale and rate of dewetting depend on the film repellency of the surface and the properties of the liquid. Therefore, control over the repel...
We demonstrate spontaneous bidirectional motion of droplets on liquid infused surfaces in the presence of a topographical gradient, in which the droplets can move either toward the denser or the sparser solid fraction area. Our analytical theory explains the origin of this bidirectional motion. Furthermore, using both lattice Boltzmann simulations...
We study the relaxation towards equilibrium of a liquid barrel-a partially wetting droplet in a wedge geometry-using a diffuse-interface approach. We formulate a hydrodynamic model of the motion of the barrel in the framework of the Navier-Stokes and Cahn-Hilliard equations of motion. We present a lattice-Boltzmann method to integrate the diffuse-i...
The spontaneous dewetting of a liquid film from a solid surface occurs in many important processes, such as printing and microscale patterning. Experience suggests that dewetting occurs faster on surfaces of higher film repellency. Here, we show how, unexpectedly, a surrounding viscous phase can switch the overall dewetting speed so that films retr...
The motion of confined droplets in immiscible liquid-liquid systems strongly depends on the intrinsic relative wettability of the liquids on the confining solid material and on the typical speed, which can induce the formation of a lubricating layer of the continuous phase. In electrowetting, which routinely makes use of aqueous drops in ambient no...
The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric fields, but these all inconveniently involve the input of external energy. Alternatively, gradients...
A significant limitation for droplet mobility on solid surfaces is to overcome the inherent pinning of the droplet’s contact line that occurs due to chemical/physical heterogeneities. A recent innovation is to use surface texture or porosity to create a stabilised lubricant surface. Droplets on such Slippery Liquid Infused Porous Surfaces/Lubricant...
The prospect of thermal energy harvesting in extreme environments, such as in space or at microscales, offers unique opportunities and challenges for the development of alternate energy conversion technologies. At microscales mechanical friction presents a challenge in the form of energy losses and wear, while presence of high temperature differenc...
A fundamental limitation of liquids on many surfaces is their contact line pinning. This limitation can be overcome by infusing a non-volatile and immiscible liquid or lubricant into texture or roughness created in or applied onto the solid substrate so that the liquid of interest no longer directly contacts the underlying surface. Such slippery li...
Contact-line pinning is a fundamental limitation to the motion of contact lines of liquids on solid surfaces. When a sessile droplet evaporates, contact-line pinning typically results in either a stick-slip evaporation mode, where the contact line pins and de-pins from the surface in an uncontrolled manner or a constant contact area mode with a pin...
We present a lattice-Boltzmann method that can simulate the coupled hydrodynamics and electrostatics equations of motion of a two-phase fluid as a means to model electrowetting phenomena. Our method has the advantage of modelling the electrostatic fields within the lattice-Boltzmann algorithm itself, eliminating the need for a hybrid method. We val...
We present a lattice-Boltzmann method that can simulate the coupled hydrodynamics and electrostatics equations of motion of a two-phase fluid as a means to model electrowetting phenomena. Our method has the advantage of modelling the electrostatic fields within the lattice-Boltzmann algorithm itself, eliminating the need for a hybrid method. We val...
Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning e...
The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an...
We demonstrate the continuous translational invariance of the energy of a capillary surface in contact with reconfigurable solid boundaries. We present a theoretical approach to find the energy-invariant equilibria of spherical capillary surfaces in contact with solid boundaries of arbitrary shape and examine the implications of dynamic frictional...
We demonstrate the continuous translational invariance of the energy of a capillary surface in contact with reconfigurable solid boundaries. We present a theoretical approach to find the energy-invariant equilibria of spherical capillary surfaces in contact with solid boundaries of arbitrary shape and examine the implications of dynamic frictional...
We present a theoretical study of the statics and dynamics of a partially wetting liquid droplet, of equilibrium contact angle $\theta_{\rm e}$, confined in a solid wedge geometry of opening angle $\beta$. We focus on a mostly non-wetting regime, given by the condition $\theta_{\rm e} - \beta > 90^\circ$, where the droplet forms a liquid barrel --...
We present a theoretical study of the statics and dynamics of a partially wetting liquid droplet, of equilibrium contact angle $\theta_{\rm e}$, confined in a solid wedge geometry of opening angle $\beta$. We focus on a mostly non-wetting regime, given by the condition $\theta_{\rm e} - \beta > 90^\circ$, where the droplet forms a liquid barrel --...
Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched b...
The effects of neighboring droplets on the dissolution of a sessile droplet, i.e. collective effects, are investigated both experimentally and numerically. On the experimental side small approximately 20 nL mono-disperse surface droplets arranged in an ordered pattern were dissolved and their size evolution is studied optically. The droplet dissolu...
Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between cont...
Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, w...
We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations...
We analyse the effect of confining rigid and elastic boundaries on the
motility of a model dipolar microswimmer. Flexible boundaries are deformed by
the velocity field of the swimmer in such a way that the motility of both
extensile and contractile swimmers is enhanced. The magnitude of the increase
in swimming velocity is controlled by the ratio o...
We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to th...
Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, j...
We show that the injection of polymer chains into nanochannels becomes easier
as the channel becomes narrower. This counter intuitive result arises because
of a decrease in the diffusive time scale of the chains with increasing
confinement. The results are obtained by extending the de Gennes blob model of
confined polymers, and confirmed by hybrid...
Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, j...
We consider the flow-driven translocation of single polymer chains through
nanochannels. Using analytical calculations based on the de Gennes blob model
and mesoscopic numerical simulations, we estimate the threshold flux for the
translocation of chains of different number of monomers. The translocation of
the chains is controlled by the competitio...
Using three-dimensional numerical simulations, we demonstrate the growth
saturation of an unstable thin liquid film on micropatterned
hydrophilic-hydrophobic substrates. We consider different transverse-striped
micropatterns, characterized by the total fraction of hydrophilic coverage and
the width of the hydrophilic stripes. We compare the growth...
The controlled formation of micrometre-sized drops is of great importance to many technological applications. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum crit...
We investigate numerically the dynamics of unstable gravity driven three-dimensional thin liquid films on hydrophilic-hydrophobic patterned substrates. We explore longitudinally striped and checkerboard arrangements. Simulations show that for longitudinal stripes, the thin film can be guided preferentially on the hydrophilic stripes, while fingers...
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond...
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a Lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface ad...
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional Lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement...
We study a low-amplitude, long-wavelength lateral instability of the Saffman-Taylor finger by means of a phase-field model. We observe such an instability in two situations in which small dynamic perturbations are overimposed to a constant pressure drop. We first study the case in which the perturbation consists of a single oscillatory mode and the...
We study the response of the Saffman Taylor finger to a periodic force
by means of a phase field model that was recently introduced for viscous
fingers (1). A lateral instability on the sides of the finger develops,
grows and coarsens. Sidebranching with wavelenght selection is obtained
for a wide range of incident frequencies. (1) Phase-field mode...