
Robin GerlachMontana State University | MSU · Center for Biofilm Engineering and Department of Chemical and Biological Engineering
Robin Gerlach
Dipl.-Ing.; Ph.D.
About
181
Publications
23,804
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,300
Citations
Citations since 2017
Introduction
Additional affiliations
Publications
Publications (181)
Knowledge of taxis (directed swimming) in the Archaea is currently expanding through identification of novel receptors, effectors, and proteins involved in signal transduction to the flagellar motor. Although the ability for biological cells to sense and swim toward hydrogen gas has been hypothesized for many years, this capacity has yet to be obse...
Microalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of...
Microbially-induced calcium carbonate (CaCO3) precipitation (MICP) is a widely explored and promising technology for use in various engineering applications. In this review, CaCO3 precipitation induced via urea hydrolysis (ureolysis) is examined for improving construction materials, cementing porous media, hydraulic control, and remediating environ...
The addition of small amounts of algal biomass to stimulate methane production in coal seams is a promising low carbon renewable coalbed methane enhancement technique. However, little is known about how the addition of algal biomass amendment affects methane production from coals of different thermal maturity. Here, we show that biogenic methane ca...
Microbial generation of coal bed methane (CBM) represents a significant source of natural gas on Earth. While biostimulation has been demonstrated in batch cultures, environmental parameters such as overburden pressure and formation water flow need to be tested at the laboratory scale to understand in situ potential. We designed and constructed a h...
Enzymatically induced calcium carbonate precipitation is a promising geotechnique with the potential, for example, to seal leakage pathways in the subsurface or to stabilize soils. Precipitation of calcium carbonate in a porous medium reduces the porosity and, consequently, the permeability. With pseudo-2D microfluidic experiments, including pressu...
Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients w...
Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed t...
Biomineralization is a natural process with significant potential for use in various engineering applications. Engineered biomineralization has been researched intensively, primarily to develop methods to control mineral formation by microorganisms to enable various technologies. Engineered microbial mineral formation processes have developed from...
Biogenic methane is estimated to account for one-fifth of the natural gas worldwide and there is great interest in controlling methane from different sources. Biogenic coalbed methane (CBM) production relies on syntrophic associations between fermentative bacteria and methanogenic archaea to anaerobically degrade recalcitrant coal and produce metha...
Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed t...
Fungi and bacteria coexist in a wide variety of natural and artificial environments which can lead to their association and interaction – ranging from antagonism to cooperation – that can affect the survival, colonization, spatial distribution and stress resistance of the interacting partners. The use of polymicrobial cultivation approaches has fac...
Algal biofuels are a renewable liquid fuel with advantages over crop-based biofuels, including higher yield per acre, the ability to recycle production inputs, and the option to create valuable co-products. Previous analyses suggest that algal biofuels could become cost-competitive if technological improvements are achieved. Most previous research,...
Biomineralization is an emerging biotechnology for subsurface engineering applications like remediating leaky wellbores. The process relies on ureolysis to induce precipitation of calcium carbonate in undesired flow paths. In geologic storage of CO2, there is a potential for leakage and low pH conditions, thus, ureolysis-induced calcium carbonate p...
Microbial production of natural gas in subsurface organic-rich reservoirs (e.g., coal, shale, oil) can be enhanced by the introduction of amendments (e.g., algal extracts from biofuel production) to stimulate microbial communities to generate “new” methane resources on human timescales, potentially providing a lower carbon energy source. This study...
The mixed effects of temperature (20 °C, 25 °C and 30 °C), nitrate concentration (0.5 mM and 2.0 mM), pH buffer, and bicarbonate addition (trigger) on biomass growth and lipid accumulation were investigated in the environmental alga PW95 during batch experiments in standardized growth medium. PW95 was isolated from coal-bed methane production water...
Urea-hydrolysing biofilms are crucial to applications in medicine, engineering, and science. Quantitative information about ureolysis rates in biofilms is required to model these applications. We formulate a novel model of urea consumption in a biofilm that allows different kinetics, for example either first order or Michaelis–Menten. The model is...
Engineered (bio)mineralization uses the enzyme urease to catalyze the hydrolysis of urea to promote carbonate mineral precipitation. The current study investigates the influence of temperature on ureolysis rate and degree of inactivation of plant‐sourced ureases over a range of environmentally relevant temperatures. Batch experiments at 30°C demons...
Rising atmospheric carbon concentrations affect global health, the economy, and overall quality of life. We
are fast approaching climate tipping points that must be addressed, not only by reducing emissions but also
through new innovation and action toward carbon capture for sequestration and utilization (CCSU). In this
perspective, we delineate ne...
Microbially enhanced coal-bed methane could allow for a more sustainable method of harvesting methane from un-mineable coaldbeds. The model presented here is based on a previously validated batch model; however, this model system is based on upflow reactor columns compared to previous experiments and now includes flow, transport and reactions of am...
Microbe-mineral interactions are ubiquitous and can facilitate major biogeochemical reactions that drive dynamic Earth processes such as rock formation. One example is microbially induced calcium carbonate precipitation (MICP) in which microbial activity leads to the formation of calcium carbonate precipitates. A majority of MICP studies have been...
In this manuscript, we describe the second of two field demonstrations of microbially induced calcium carbonate precipitation (MICP) performed in a failed waterflood injection well in Indiana. In 2012, fracture-related flow pathways developed in the wellbore cement, causing injection water to bypass the oil-bearing formation and enter a high-permea...
This study addresses a major gap in the understanding and control of microbially enhanced coal-bed methane (MECBM) production. A mathematical and conceptual model comprises a food-web that includes two types of bacteria and three types of archaea representing substrate-specific members of the community; the microbial community members are potential...
Enzymatically induced calcium carbonate precipitation (EICP) is an emerging engineered mineralization method similar to others such as microbially induced calcium carbonate precipitation (MICP). EICP is advantageous compared to MICP as the enzyme is still active at conditions where microbes, e.g., Sporosarcina pasteurii, commonly used for MICP, can...
Biofilms, surface-adherent microbial communities, are associated with microbial fouling and corrosion in terrestrial water-distribution systems. Biofilms are also present in human spaceflight, particularly in the Water Recovery System (WRS) on the International Space Station (ISS). The WRS is comprised of the Urine Processor Assembly (UPA) and the...
Obstructions of the ureter lumen can originate from intrinsic or extrinsic factors, such as kidney stones, tumours, or strictures. These can affect the physiological flow of urine from the kidneys to the bladder, potentially causing infection, pain, and kidney failure. To overcome these complications, ureteral stents are often deployed clinically i...
Microbially-induced calcium carbonate precipitation (MICP) is an emerging biotechnology for wellbore integrity applications including sealing defects in wellbore cement and modifying the permeability of rock formations. The goal of this field demonstration was to characterize a failed waterflood injection well and provide proof of principle that MI...
Subsurface coal environments, where biogenic coal-to-methane conversion occurs, are difficult to access, resulting in inherent challenges and expenses for in situ experiments. Previous batch reactor studies provided insights into specific processes, pathways, kinetics, and engineering strategies, but field-relevance is restricted due to limited sub...
Aims:
Development of biomineralization technologies has largely focused on microbially induced carbonate precipitation (MICP) via Sporosarcina pasteurii ureolysis; however, as an obligate aerobe, the general utility of this organism is limited. Here, facultative and anaerobic haloalkaliphiles capable of ureolysis were enriched, identified and then...
Concerns about leakage exist when storing fluids like CO2 or natural gas in the subsurface given their potential to damage functional groundwater aquifers or be emitted to the atmosphere. Defects in the cement surrounding the wellbore undermine the integrity of subsurface storage systems. Microbially induced calcite precipitation (MICP) is a techni...
This chapter describes the role ureolytic biofilms (communities of microbes attached to surfaces) play in struvite stone formation in the urinary tract. The formation of struvite stones (MgNH4PO4·6H2O), commonly known as infection stones, is associated with urinary tract infections, particularly, with ureolytic microorganisms. Establishment of ureo...
The kinetics of urea hydrolysis (ureolysis) and induced calcium carbonate
(CaCO3) precipitation for engineering use in the subsurface was
investigated under aerobic conditions using Sporosarcina pasteurii
(ATCC strain 11859) as well as Bacillus sphaericus strains 21776
and 21787. All bacterial strains showed ureolytic activity inducing
CaCO3 precip...
The vast majority of research on algal biofuel production has been conducted on single species as monocultures in small, closed systems. Growth of algae in wastewater has potential to help overcome shortages of water, nitrogen, and phosphorus availability; however, cultivation in open wastewater systems presents several unique challenges that inclu...
Bacterially driven reactions such as ureolysis can induce calcium carbonate precipitation, a well-studied process called microbially induced calcium carbonate precipitation (MICP). MICP is of interest in subsurface applications such as sealing leaks around wells. For effective field deployment, it is important to study MICP under radial flow condit...
The biogeochemical process known as microbially induced calcite precipitation (MICP) is being investigated for engineering and material science applications. To model MICP process behavior in porous media, computational simulators must couple flow, transport, and relevant biogeochemical reactions. Changes in media porosity and permeability due to b...
Infection stones are complex aggregates of crystals amalgamated in an organic matrix that are strictly associated with urinary tract infections. The management of patients who form infection stones is challenging owing to the complexity of the calculi and high recurrence rates. The formation of infection stones is a multifactorial process that can...
The kinetics of urea hydrolysis (ureolysis) and induced calcium carbonate (CaCO3) precipitation for engineering use in the subsurface was investigated under aerobic conditions using Sporosarcina pasteurii (ATCC strain 11859) as well as Bacillus sphaericus strains 21776 and 21787. All bacterial strains showed ureolytic activity inducing CaCO3 precip...
Algal biomass refineries for sustainable transportation fuels, in particular biodiesel, will benefit from algal strain enhancements to improve biomass and lipid productivity. Specifically, the supply of inorganic carbon to microalgal cultures represents an area of great interest due to the potential for improved growth of microalgae and the possibi...
Multi-scale Microscopy of Microbially Induced Calcium Carbonate Precipitation - Volume 24 Supplement - Neerja Zambare, Ellen Lauchnor, Robin Gerlach, Betsey Pitts
The presence of delaminations, apertures, fractures, voids and other unrestricted flow channels in the wellbore environment substantially reduces wellbore integrity. Compromised cement may cause a loss of zonal isolation leading to deleterious flow of fluids between zones or to the surface with multiple potential negative impacts including: loss of...
This study investigated the removal of selenate (SeO42-), sulfate (SO42-) and nitrate (NO3-) at different influent pH values ranging from 7.0 to 5.0 and 20 °C in an upflow anaerobic sludge blanket (UASB) reactor using lactate as an electron donor. At pH 5.0, the UASB reactor showed a 20-30% decrease in reactor performance compared to operation at p...
Arthrobacter spp. are widespread in soil systems and well-known for their Cr(VI) reduction capabilities making them attractive candidates for in situ bioremediation efforts. Cellulose drives carbon flow in soil systems; yet, most laboratory studies evaluate Arthrobacter-Cr(VI) interactions solely with nutrient-rich media or glucose. This study aims...
BACKGROUND: Selenium (Se) discharged into natural waterbodies can accumulate over time and have negative impacts on the environment. Se-laden wastewater streams can be treated using biological processes. However, the presence of other electron acceptors in wastewater, such as nitrate (NO3⁻) and sulfate (SO4²⁻), can influence selenate (SeO4²⁻) reduc...
Coalbed methane (CBM) is an important unconventional natural gas resource in the U.S. and around the world. Many of the CBM containing coal formations are home to microbial communities producing the gas by converting coal to methane. Biogenically produced CBM provides an opportunity for developing technologies to enhance the microbial processes and...
Urinary tract infections can lead to the formation of infection stones; this occurs as a result of a biomineralization process induced by ureolytic microorganisms. This project aimed to investigate the role of urine chemistry on microbial growth and mineral precipitation induced by ureolytic microorganisms, with the overal goal of minimize microbia...
This study aimed to develop a laboratory model capable of simulating the formation of struvite stones in the urinary tract system while allowing for real-time observations of fluid chemistry, biofilms, minerals and microbe-mineral interactions.
Purpose:
Infection stones comprise approximately 15% of all urinary tract stones and are induced by infection with urease-positive pathogens. The bacteria within the stone matrix present significant treatment impediments compared to metabolic kidney stones. While much is known about how urinary composition regulates metabolic stone formation, ther...
Novel methods are needed to prevent or mitigate subsurface fluid leakage (stored carbon dioxide or fuels, during unconventional oil & gas resource development or nuclear waste disposal). Ureolysis-induced calcium carbonate precipitation (UICP) has been investigated as a method to plug leakage pathways in the near wellbore environment or in fracture...
Precipitation reactions influence transport properties in porous media and can be coupled to advective and dispersive transport. For example, in subsurface environments, mixing of groundwater and injected solutions can induce mineral supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-comput...
This study investigates the use of “real options analysis” (ROA) to quantify the value of greater product flexibility at algal biofuel production facilities. A deterministic optimization framework is integrated with a combined life cycle assessment/techno-economic analysis model and subjected to an ensemble of 30-year commodity price trajectories....
Microbially induced calcite precipitation (MICP) is a technology aiming at the mitigation of potential leakage from underground gas storage sites. A numerical model for MICP was previously developed and validated. The model complexity leads to high computation times, prohibiting at the moment the use of the model for designing field-scale MICP appl...
Attachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. Quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentati...
Algal biofuels are becoming more economically competitive due to technological advances and government subsidies offering tax benefits and lower cost financing. These factors are linked, however, as the value of technical advances is affected by modeling assumptions regarding the growth conditions, process design, and financing of the production fa...
The temporal and spatial effects of selenite (SeO3(2-)) on the physical properties and respiratory activity of Phanerochaete chrysosporium biofilms, grown in flow-cell reactors, were investigated using oxygen microsensors and confocal laser scanning microscopy (CLSM) imaging. Exposure of the biofilm to a SeO3(2-) load of 1.67mgSeL(-1)h(-1) (10mgSeL...
A primary environmental risk from unconventional oil and gas development or carbon sequestration is subsurface fluid leakage in the near wellbore environment. A potential solution to remediate leakage pathways is to promote microbially-induced calcium carbonate precipitation (MICP) to plug fractures and reduce permeability in porous materials. The...
This chapter describes how urinary tract infections can lead to stone formation. The most frequent type of infection stone is struvite (MgNH4PO4 · 6H2O), although it is common that struvite stones and infections are associated with other stone types, often forming large staghorn calculi. A complete understanding of struvite stone formation requires...
Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy cons...