
Robin ChanBielefeld University · Faculty of Technology
Robin Chan
Doctor of Natural Sciences
About
26
Publications
3,390
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
287
Citations
Introduction
Publications
Publications (26)
In the life cycle of highly automated systems operating in an open and dynamic environment, the ability to adjust to emerging challenges is crucial. For systems integrating data-driven AI-based components, rapid responses to deployment issues require fast access to related data for testing and reconfiguration. In the context of automated driving, t...
In this work we present two video test data sets for the novel computer vision (CV) task of out of distribution tracking (OOD tracking). Here, OOD objects are understood as objects with a semantic class outside the semantic space of an underlying image segmentation algorithm, or an instance within the semantic space which however looks decisively d...
LU-Net is a simple and fast architecture for invertible neural networks (INN) that is based on the factorization of quadratic weight matrices $\mathsf{A=LU}$, where $\mathsf{L}$ is a lower triangular matrix with ones on the diagonal and $\mathsf{U}$ an upper triangular matrix. Instead of learning a fully occupied matrix $\mathsf{A}$, we learn $\mat...
Deep neural networks (DNN) have made impressive progress in the interpretation of image data so that it is conceivable and to some degree realistic to use them in safety critical applications like automated driving. From an ethical standpoint, the AI algorithm should take into account the vulnerability of objects or subjects on the street that rang...
In this work we present two video test data sets for the novel computer vision (CV) task of out of distribution tracking (OOD tracking). Here, OOD objects are understood as objects with a semantic class outside the semantic space of an underlying image segmentation algorithm, or an instance within the semantic space which however looks decisively d...
Semantic segmentation is a crucial component for perception in automated driving. Deep neural networks (DNNs) are commonly used for this task, and they are usually trained on a closed set of object classes appearing in a closed operational domain. However, this is in contrast to the open world assumption in automated driving that DNNs are deployed...
Deep neural networks (DNN) have made impressive progress in the interpretation of image data, so that it is conceivable and to some degree realistic to use them in safety critical applications like automated driving. From an ethical standpoint, the AI algorithm should take into account the vulnerability of objects or subjects on the street that ran...
Bringing deep neural networks (DNNs) into safety critical applications such as automated driving, medical imaging and finance, requires a thorough treatment of the model's uncertainties. Training deep neural networks is already resource demanding and so is also their uncertainty quantification. In this overview article, we survey methods that we de...
Semantic segmentation is a crucial component for perception in automated driving. Deep neural networks (DNNs) are commonly used for this task and they are usually trained on a closed set of object classes appearing in a closed operational domain. However, this is in contrast to the open world assumption in automated driving that DNNs are deployed t...
VRUs in a reachable area depending on the ego-car's velocity. Moreover, filtering via the degree of detection, allows for further contextualization in two regards. We measure a segmentation CNN's detection ability of well as visualization tools for the usecase of semantic segmentation in autonomous driving. Our approach present and implement method...
State-of-the-art semantic or instance segmentation deep neural networks (DNNs) are usually trained on a closed set of semantic classes. As such, they are ill-equipped to handle previously-unseen objects. However, detecting and localizing such objects is crucial for safety-critical applications such as perception for automated driving, especially if...
Deep neural networks (DNNs) for the semantic segmen-tation of images are usually trained to operate on a pre-defined closed set of object classes. This is in contrast to the "open world" setting where DNNs are envisioned to be deployed to. From a functional safety point of view, the ability to detect so-called "out-of-distribution" (OoD) samples, i...
Convolutional neural networks (CNNs) have seen spectacular advances over the past century, particularly improving the state-of-the-art in computer vision tasks. Semantic segmentation, an image classification at pixel-level, is an essential step in understanding a vehicle's surroundings via camera images for autonomous driving. While CNNs keep becom...
In semantic segmentation datasets, classes of high importance are oftentimes underrepresented, e.g., humans in street scenes. Neural networks are usually trained to reduce the overall number of errors, attaching identical loss to errors of all kinds. However, this is not necessarily aligned with human intuition. For instance, an overlooked pedestri...
In recent years, deep learning methods have outper-formed other methods in image recognition. This has fostered imagination of potential application of deep learning technology including safety relevant applications like the interpretation of medical images or autonomous driving. The passage from assistance of a human decision maker to ever more au...
Neural networks for semantic segmentation can be seen as statistical models that provide for each pixel of one image a probability distribution on predefined classes. The predicted class is then usually obtained by the maximum a-posteriori probability (MAP) which is known as Bayes rule in decision theory. From decision theory we also know that the...
As part of autonomous car driving systems, semantic segmentation is an essential component to obtain a full understanding of the car's environment. One difficulty, that occurs while training neural networks for this purpose, is class imbalance of training data. Consequently, a neural network trained on unbalanced data in combination with maximum a-...
As part of autonomous car driving systems, semantic segmentation is an essential component to obtain a full understanding of the car's environment. One difficulty, that occurs while training neural networks for this purpose, is class imbalance of training data. Consequently, a neural network trained on unbalanced data in combination with maximum a-...