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Abstract

Sequential optimality conditions for constrained optimization are necessarily satisfied by local
minimizers, independently of the fulfillment of constraint qualifications. These conditions support
the employment of different stopping criteria for practical optimization algorithms. On the other
hand, when an appropriate strict constraint qualification associated with some sequential optimality
condition holds at a point that satisfies the sequential optimality condition, such point satisfies the
Karush-Kuhn-Tucker conditions. This property defines the concept of strict constraint qualification.
As a consequence, for each sequential optimality condition, it is natural to ask for its weakest asso-
ciated constraint qualification. This problem has been solved in a recent paper for the Approximate
Karush-Kuhn-Tucker sequential optimality condition. In the present paper we characterize the weak-
est strict constraint qualifications associated with other sequential optimality conditions that are
useful for defining stopping criteria of algorithms. In addition, we prove all the implications between
the new strict constraint qualifications and other (classical or strict) constraint qualifications.

Key words: Constrained optimization, Optimality conditions, Constraint qualifications, KKT condi-
tions, Approximate KKT conditions, Complementary AKKT, Approximate Gradient Projection.

1 Introduction
We will consider finite-dimensional constrained optimization problems defined by

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, (1.1)

where f : Rn → R, h : Rn → Rm, and g : Rn → Rp have at least continuous first-order derivatives.
Sequential Optimality Conditions are properties of the feasible points of (1.1) that are necessarily

satisfied by any local minimizer x∗ and are formulated in terms of the sequences that converge to x∗.
For example, the most popular sequential optimality condition is AKKT (Approximate Karush-Kuhn-
Tucker), which is satisfied by a feasible point x∗ if there exist sequences xk → x∗, {λk} ⊂ Rm, and
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{µk} ⊂ Rp+ such that

lim
k→∞

∇f(xk) +
m∑
i=1

λki∇hi(xk) +
p∑
i=1

µki∇gi(xk) = 0 (1.2)

and
lim
k→∞

min{µki ,−gi(xk)} = 0 for all i = 1, . . . , p. (1.3)

In constrast to pointwise optimality conditions, sequential optimality conditions are satisfied by any
local minimizer independently of the fulfillment of constraint qualifications. For instance, the KKT
conditions do not hold at the minimizer of x subject to x2 = 0, but AKKT does. Therefore, it is natural
to ask under which conditions on the constraints, a point that satisfies a sequential optimality condition
also satisfies KKT. These conditions will be called Strict Constraint Qualifications.

Recall that a constraint qualification is a property of feasibility points of the constrained optimization
problem that, when satisfied by a local minimizer, implies that such minimizer satisfies KKT. Since, on the
other hand, all local minimizers satisfy sequential optimality conditions, strict constraint qualifications
are, in fact, constraint qualifications. The reciprocal is not true. For instance, Abadie’s constraint
qualification [1] and quasinormality [11, 23] are constraint qualifications that are not strict constraint
qualifications related with AKKT, see [7].

The strength of a sequential optimality condition is associated with the weakness of its associated
strict constraint qualifications. Therefore, it is natural to ask for the weakest strict constraint qualification
associated with each sequential optimality condition. For example, in [7] it has been proved that the
weakest strict constraint qualification associated with AKKT is the so called Cone Continuity Property
(CCP). This property says that the point-to-set mapping that associates each feasible point x∗ point to
the normal cone defined by the gradients of active constraints at x∗ is continuous at that point.

In this paper we aim to discover the weakest strict constraint qualifications associated with a number
of interesting sequential optimality conditions. We also mean to provide geometrical interpretations of
the strict constraint qualifications, as in the case of CCP. We hope that this type of research will be useful
from the practical point of view because sequential optimality conditions are linked in a natural way to
stopping criteria for numerical algorithms. For example, a stopping criterion associated with AKKT may
be given by

‖∇f(xk) +
m∑
i=1

λki∇hi(xk) +
p∑
i=1

µki∇gi(xk)‖ ≤ ε, (1.4)

‖h(xk)‖ ≤ ε, ‖max{0, g(xk)}‖ ≤ ε and |min{µki ,−gi(xk)}| ≤ ε for all i = 1, . . . , p, (1.5)

where xk is the sequence generated by the algorithm under consideration and ε is an error tolerance.
As a consequence of these results we will be able to present an updated landscape of constraint

qualifications, strict constraint qualifications and sequential optimality conditions.
This paper is organized as follows. In Section 2 we give a motivating example where we address

the only sequential optimality condition considered in this paper that is weaker than AKKT. It will be
instructive to realise that the corresponding strict constraint qualification will be stronger than the strict
constraint qualifications associated with other sequential optimality conditions. In Section 4 we discover
the weakest strict constraint qualifications associated with AGP (Approximate Gradient Projection),
CAKKT (Complemetary AKKT), LAGP (Linear AGP) and SAKKT (Strong-AKKT [22]) sequential
optimality conditions. In all these cases we will stress the geometrical meaning of the strict constraint
qualifications so far obtained. Section 4 will be preceded by Section 3, in which we introduce the necessary
background for the rest of the paper. In Section 5 we show the relations existent between the new
introduced strict constraint qualifications whereas in Section 6 we establish the relations with well-known
constraint qualifications. Finally, in Section 7 we state some conclusions and lines for future research.
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Notation
We will employ the standard notation of [15, 32, 34]. N denotes the set of natural numbers and Rn
stands for the n-dimensional real Euclidean space. We denote by B the closed unit ball in Rn, and
B(x, η) := x + ηB the closed ball centered at x with radius η > 0. R+ is the set of positive scalars, R−
is the set of negative scalars, and a+ = max{0, a}, the positive part of a. We use 〈·, ·〉 to denote the
Euclidean inner product, and ‖ · ‖ is the associated norm. We use ‖ · ‖∞ for the supremum norm. Given
a set-valued mapping (multifunction) F : Rs ⇒ Rd, the sequential Painlevé-Kuratowski outer/upper limit
of F (z) as z → z∗ is denoted by

lim sup
z→z∗

F (z) := {w∗ ∈ Rd : ∃ (zk, wk)→ (z∗, w∗) with wk ∈ F (zk)} (1.6)

and the inner limit by

lim inf
z→z∗

F (z) := {w∗ ∈ Rd : ∀zk → z∗ ∃ wk → w∗ with wk ∈ F (zk)}. (1.7)

2 Example: The Scaled-AKKT condition
The Scaled-AKKT condition provides a simple example for the type of analysis that will be done in this
paper with respect to stronger sequential optimality conditions.

Let us consider feasible sets of the form

{x ∈ Rn : h(x) = 0, g(x) ≤ 0}, (2.1)

where h : Rn → Rm and g : Rn → Rp admit continuous first derivatives onto Rn.
The Scaled-AKKT condition is said to hold at a feasible point x∗ of (1.1) if there exists a sequence

{xk} that converges to x∗ and sequences {λk} ⊂ Rm and {µk} ⊂ Rp+ such that (1.3) holds and

lim
k→∞

max{1, ‖λk‖∞, ‖µk‖∞}
−1‖∇f(xk) +

m∑
i=1

λki∇hi(xk) +
p∑
i=1

µki∇gi(xk)‖ = 0. (2.2)

This property is frequently associated with stopping criteria in modern practical optimization algo-
rithms [35] and algorithms that motivate interesting complexity results [17]. Clearly, AKKT implies
Scaled-AKKT, so Scaled-AKKT is a sequential optimality condition. We will show that the weakest
strict constraint qualification associated with Scaled-AKKT is the proposition

MFCQ or
[
{
m∑
i=1

λi∇hi(x∗) +
∑

gj(x∗)=0

µj∇gj(x∗) : λ ∈ Rm, µj ∈ Rp+} = Rn
]
, (2.3)

where MFCQ is the Mangasarian-Fromovitz Constraint Qualification [11, 26].
First, note that (2.3) is a strict constraint qualification associated with Scaled-AKKT. Indeed, if

{
∑m
i=1 λi∇hi(x∗) +

∑
gj(x∗)=0 µj∇gj(x∗) : λ ∈ Rm, µj ∈ Rp+} = Rn it turns out that the cone generated

by the gradients of active constraints at x∗ is the whole space Rn. Then, x∗ satisfies KKT independently
of the objective function. Suppose now that a feasible point x∗ of (1.1) satisfies the Scaled-AKKT
condition (i.e (1.3) and (2.2)) and MFCQ. Then, if the set {λk, µk, k ∈ N} is bounded, KKT follows from
(2.2) and (1.3) taking limits on an appropriate subsequence. If the set {λk, µk, k ∈ N} is unbounded, by
(2.2) and (1.3), we have that

lim
k→∞

[
∇f(xk)

max{1, ‖λk‖∞, ‖µk‖∞}
+

m∑
i=1

λ̃ki∇hi(xk) +
∑

gi(x∗)=0

µ̃ki∇gi(xk)
]

= 0,
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where the set {λ̃k, µ̃k, k ∈ N} is bounded and, for all k, we have that max{‖λ̃k‖∞, ‖µ̃k‖∞} = 1.
Therefore, taking an appropriate subsequence, we have that there exist λ ∈ Rm and µ ∈ Rp+ with
max{‖λ‖∞, ‖µ‖∞} = 1 such that

m∑
i=1

λi∇hi(x∗) +
∑

gj(x∗)=0

µj∇gj(x∗) = 0. (2.4)

Therefore, x∗ does not satisfy MFCQ. This completes the proof that (2.3) is a strict constraint qualifica-
tion associated with Scaled-AKKT.

Let us prove now that (2.3) is the weakest strict constraint qualification associated with Scaled-
AKKT. Assume that x∗ satisfies (2.1) and does not satisfy (2.3). Then, there exist λ ∈ Rm, µ ∈ Rp+
with max{‖λ‖∞, ‖µk‖∞} = 1 such that (2.4) holds. Since x∗ does not satisfy (2.3) there exists a non-null
c ∈ Rn such that c is not a linear combination of the gradients ∇hi(x∗) and ∇gj(x∗) for j : gj(x∗) = 0,
with non-negative coefficients corresponding to the inequality gradients. Therefore, x∗ is not a KKT
point of the problem (1.1) for f(x) = 〈x, c〉, x ∈ Rn. Now take xk = x∗ for all k ∈ N. By (2.4), for all k
we have:

∇f(xk) +
m∑
i=1

kλi∇hi(xk) +
∑

gi(x∗)=0

kµi∇gi(xk) = ∇f(xk) = c.

So, since max{‖kλ‖∞, ‖kµ‖∞} = k, we have that the Scaled-AKKT condition holds replacing λk and µk
with kλ and kµ respectively.

3 Definitions and basic results
In this section, we review some basic concepts and results that wil be used later on.

We say that F is outer semicontinuous (osc) at z∗ if

lim sup
z→z∗

F (z) ⊂ F (z∗). (3.1)

We say that F is inner semicontinuous (isc) at z∗ if

F (z∗) ⊂ lim inf
z→z∗

F (z). (3.2)

When F is inner semicontinuous and outer semicontinuous at z∗, we say that F is continuous at z∗.
Given the set S, the symbol z S−→ z∗ means that z → z∗ with z ∈ S. For a cone K ⊂ Rs, its polar
(negative dual) is K◦ = {v ∈ Rs|〈v, k〉 ≤ 0 for all k ∈ K}. We use the notation φ(t) ≤ o(t) for any
function φ : R+ → Rs such that lim supt→0+ t

−1φ(t) ≤ 0.
Given S ⊂ Rn and z∗ ∈ S, define the (Bouligand-Severi) tangent/contingent cone to S at z∗ by

TS(z∗) := lim sup
t↓0

S − z∗

t
= {d ∈ Rn : ∃ tk ↓ 0, dk → d with z∗ + tkd

k ∈ S}. (3.3)

The (Fréchet) regular normal cone to S at z∗ ∈ S is defined as

N̂S(z∗) := {w ∈ Rn : 〈w, z − z∗〉 ≤ o(|z − z∗|) for z ∈ S}. (3.4)

The (Mordukhovich) limiting normal cone to S at x∗ ∈ S is

NS(z∗) := lim sup
z

S−→z∗

N̂S(z). (3.5)
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For general sets we have the inclusion N̂S(z∗) ⊂ NS(z∗) for all z∗ ∈ S. When S is a convex set, both
regular and limiting normal cones reduce to the classical normal cone of convex analysis and then the
common notation NS(z∗) is used. Furthermore, there is a nice relation between the Euclidean projection
and the normal cone, as the next proposition shows. Recall that the Euclidean projection onto a closed
set S, denoted by PS , is defined as, PS(z) := argmin Inf{‖z − s‖ : s ∈ S}.

Proposition 3.1. [34, Proposition 6.17] Let C be a non empty convex closed set and x ∈ C. Then,
ω ∈ NC(x) if and only if PC(x+ ω) = x.

Now, denote by Ω the feasible set associated with (1.1), Ω := {x ∈ Rn|h(x) = 0, g(x) ≤ 0}. Let
J(x∗) be the set of indices of active inequality constraints. Let x∗ ∈ Ω be a local minimizer of (1.1). The
geometrical first-order necessary optimality condition states that 〈∇f(x∗), d〉 ≥ 0 for all d ∈ TΩ(x∗). In
other words,

−∇f(x∗) ∈ TΩ(x∗)◦. (3.6)

Associated with the tangent cone, we define the linearized cone LΩ(x∗) as follows.

LΩ(x∗) := {d ∈ Rn | 〈∇hi(x∗), d〉 = 0, ∀i ∈ {1, . . . ,m}, 〈∇gj(x∗), d〉 ≤ 0, ∀j ∈ J(x∗)} . (3.7)

LΩ(x∗) can be considered as the first-order linear approximation of the tangent cone TΩ(x∗). If x∗ ∈ Ω
satisfies

TΩ(x∗)◦ = LΩ(x∗)◦, (3.8)

we have that, by the geometric first-order necessary optimality condition (3.6), the KKT conditions
hold at x∗. The condition (3.8) was introduced by Guignard [20]. Gould and Tolle [21] proved that
Guignard’s condition (3.8) is the weakest constraint qualification that guarantees that a local minimizer
satisfies KKT. Another well-known CQ is the Abadie’s constraint qualification, which is stronger than
Guignard’s CQ and reads LΩ(x∗) = TΩ(x∗).

Several other constraint qualifications have been proposed in the literature, for instance, we can
mention CRCQ, [24], RCRCQ [31], CPLD [33], RCPLD [4], pseudonormality [12], quasinormality [23],
CRSC and CPG [5]. Recently [7] the Cone Continuity property (CCP) was introduced, which turns out
to be the weakest strict CQ associated with AKKT. CCP states the continuity of the set-valued mapping
x ∈ Rn ⇒ K(x) at a feasible point x∗, where

K(x) =


m∑
i=1

λi∇hi(x) +
∑

j∈J(x∗)

µj∇gj(x) : µj ∈ R+, λi ∈ R

 . (3.9)

It is worhty to note that the outer semicontinuity of K(x) at x∗ is sufficient to imply the continuity of
K(x) at the same point, since K(x) is always inner semicontinuous at x∗.

4 Weakest strict constraint qualifications associated with se-
quential optimality conditions

The weakest strict constraint qualification associated with AKKT is the Cone-Continuity property (CCP).
This name has been motivated by its obvious geometrical meaning. In the case of sequential optimality
conditions other than AKKT the geometrical meaning of the weakest strict constraint qualification is not
so obvious. Therefore, we decided to design them according to their association with the corresponding
sequential optimality condition. For example, if we apply this rule to the case of AKKT, we have that
“AKKT-regular” becomes an alternative denomination for CCP. If we apply the same convention to
Scaled-AKKT, the points that satisfy (2.3) should be called Scaled-AKKT-regular.
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4.1 Weakest strict constraint qualification associated with the Approximate
Gradient Projection condition

The AGP optimality condition was introduced by Martínez and Svaiter in [30]. Given a scalar γ ∈ [−∞, 0],
we say that a feasible point x∗ ∈ Ω, satisfies AGP(γ) for (1.1) if there is a sequence {xk} with xk → x∗

such that
PΩ(xk,γ)(xk −∇f(xk))− xk → 0, (4.1)

where PΩ(xk,γ) is the orthogonal projection onto the closed convex set Ω(xk, γ), defined as

Ω(xk, γ) :=

z ∈ Rn :
〈∇hi(xk), z − xk〉 = 0, for all i ∈ {1, . . . ,m}
〈∇gj(xk), z − xk〉 ≤ 0, if 0 ≤ gj(xk)
gj(xk) + 〈∇gj(xk), z − xk〉 ≤ 0, if γ < gj(xk) < 0 ( when γ 6= 0)

 . (4.2)

It was showed in [30] that AGP(γ) is independent of the parameter γ for γ ∈ [−∞, 0), that is, if
AGP(γ) holds for some γ ∈ [−∞, 0) then AGP(γ′) holds for every γ′ ∈ [−∞, 0). In this case, we just
write AGP instead of AGP(γ). AGP(0) is equivalent to the sequential optimality condition SAKKT [22].

The set Ω(xk, γ) can be considered as a linear aproximation ofz ∈ Rn :
hi(z) = hi(xk), for all i ∈ {1, . . . ,m}
gj(z) ≤ gj(xk), if 0 ≤ gj(xk)
gj(z) ≤ 0, if γ < gj(xk) < 0 (when γ 6= 0)

 . (4.3)

One of the attractiveness of AGP is that it does not involve Lagrange multipliers estimates. AGP is
the natural optimality condition that fits stopping criteria for algorithms based on inexact restoration
[27, 29, 19, 16, 13], and is strictly stronger than the usual AKKT condition. Consequently, the stopping
criteria based on AGP are more reliable that those based on AKKT.

Note that the natural stopping criterion associated with AGP is:

‖h(x)‖ ≤ εfeas, ‖max{0, g(x)}‖ ≤ εfeas and ‖PΩ(x,γ)(x−∇f(x))− x‖ ≤ εopt, (4.4)

where εfeas and εopt are user-given tolerances.
The AGP-regular constraint qualification is defined below.

Definition 4.1. We say that AGP-regular condition holds at the feasible point x∗ if the set-valued
mapping

(x, ε) ∈ Rn × Rn ⇒ NΩ(x,−∞)(x+ ε) (4.5)

is outer semicontinuous at (x∗, 0), that is,

lim sup
(x,ε)→(x∗,0)

NΩ(x,−∞)(x+ ε) ⊂ NΩ(x∗,−∞)(x∗) = LΩ(x∗)◦. (4.6)

Since the set Ω(x,−∞) is defined by linear inequality and equality constraints, the normal cone
NΩ(x,−∞)(x+ ε) admits the geometrical interpretation given by the following proposition.

Proposition 4.1. Every element of NΩ(x,−∞)(x+ ε) has the form

m∑
i=1

λi∇hi(x) +
∑

j:gj(x)≥0

µ1j∇gj(x) +
∑

j:gj(x)<0

µ2j∇gj(x),

where λi ∈ R, µ1j ∈ R+, µ2j ∈ R+,

µ1j(〈∇gj(x), ε〉) = 0, if gj(x) ≥ 0, and µ2j(gj(x) + 〈∇gj(x), ε〉) = 0, if gj(x) < 0.
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Figure 1: Example of the cone mappings associated to the AKKT and AGP conditions. The shaded
area is the feasible set composed of the intersection of two circles. The point of interest is x∗ = 0.
There are three sample sequences converging to x∗. The sequences {xk}, {x̂k}, and {x̃k} are infeasible
with respect to both constraints, infeasible with respect to only one constraint, and strictly feasible
respectively. AKKT-regularity and AGP-regularity basically state that the possible limits of the vectors
of the respective green cones must belong to the blue cone which is the normal of the linearized cone at
x∗. Note that the cones associated to AKKT always take into account all the active constraints at x∗,
while the cones associated to AGP only take into account the constraints that are biding or violated. It
is also interesting to observe the effect of the possible perturbations {εk} allowed in AGP. Their possible
values are represented by the shaded circles in the AGP figure. They allow to take into account the
gradients of constraints that will be biding at x∗ but for which the sequence is strictly feasible. See for
example the point x̃k1 in the figure.

By the polarity theorem [10, Theorem 1.1.8], the outer semicontinuity of NΩ(x,−∞)(x+ ε) at (x, ε) =
(x∗, 0) is equivalent to the inner semicontinuity at (x, ε) = (x∗, 0) of LΩ(x,−∞)(x+ ε), the tangent cone of
Ω(x,−∞) at x+ε. That is, for each d ∈ LΩ(x∗), and for arbitrary sequences xk and εk with xk → x∗ and
εk → 0, there exists a sequence dk ∈ LΩ(xk,−∞)(xk + εk) such that dk → d. Figure 1 shows an example
where AGP-regularity holds.

The next Theorem 4.2 shows that the outer semicontinuity of NΩ(x,−∞)(x+ε) at (x∗, 0) is the minimal
condition to guarantee that AGP implies KKT for every objective function. Thus, AGP-regular is the
weakest strict constraint qualification associated with AGP.

Theorem 4.2. The AGP-regular property is the weakest strict constraint qualification associated with
AGP.

Proof. Let us show first that, under the AGP-regular property, AGP implies the KKT condition for any
objective function. Let f be an objective function for which AGP(γ) holds at x∗ for some γ ∈ [−∞, 0).
Thus, there is a sequence {xk} ∈ Rn such that xk → x∗ and PΩ(xk,γ)(xk − ∇f(xk)) − xk → 0. Define
yk := PΩ(xk,γ)(xk −∇f(xk)) and εk := yk − xk. Clearly, limk→∞ εk = 0.
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By Proposition 3.1,

ωk := xk −∇f(xk)− yk ∈ NΩ(xk,γ)(yk = xk + εk). (4.7)

Since the inclusion NΩ(xk,γ)(yk) ⊂ NΩ(xk,−∞)(yk) always holds, we have that

ωk ∈ NΩ(xk,−∞)(xk + εk) and ωk = xk −∇f(xk)− yk = −∇f(xk)− εk. (4.8)

Taking limit in the last expression and using the continuity of the gradient of f we get

−∇f(x∗) = lim
k→∞

ωk ∈ lim sup
(x,ε)→(x∗,0)

NΩ(x,−∞)(x+ ε) ⊂ NΩ(x∗,−∞)(x∗). (4.9)

Thus, −∇f(x∗) belongs to NΩ(x∗,−∞)(x∗) = LΩ(x∗)◦, that is, the KKT condition holds at x∗.
Now, let us prove that, if AGP implies the KKT condition for every objective function, then AGP-

regular holds. Take ω∗ ∈ lim sup(x,ε)→(x∗,0)NΩ(x,−∞)(x+ ε). Then by the definition of outer limit, there
are sequences {xk}, {ωk} and {εk} such that xk → x∗, εk → 0, ωk → ω∗ and ωk ∈ NΩ(xk,−∞)(xk + εk).
Define the objective function, f(x) := −〈w∗, x〉 for all x ∈ Rn. We will show that AGP(−∞) holds at x∗
for this choice of f . So, it is sufficient to show that limk→∞ PΩ(xk,−∞)(xk −∇f(xk))− xk = 0.

Define yk := xk + εk and zk := PΩ(xk,−∞)(xk − ∇f(xk)) = PΩ(xk,−∞)(xk + ω∗). Since ωk is in
NΩ(xk,−∞)(yk) we have PΩ(xk,−∞)(ωk +yk) = yk (Proposition 3.1). Using the triangle inequality and the
non expansivity of the Euclidean projection, we get

‖zk − yk‖ = ‖PΩ(xk,−∞)(xk + ω∗)− PΩ(xk,−∞)(ωk + yk)‖ ≤ ‖ω∗ − ωk‖+ ‖yk − xk‖. (4.10)

Taking limits in (4.10), we obtain limk→∞ zk − yk = 0, and as consequence

lim
k→∞

PΩ(xk,−∞)(xk −∇f(xk))− xk = lim
k→∞

zk − xk = lim
k→∞

(zk − yk) + lim
k→∞

(yk − xk) = 0. (4.11)

Thus, AGP holds at x∗ and, by hypothesis, the KKT condition also holds at x∗, that is, −∇f(x∗) = ω∗

belongs to NΩ(x∗,−∞)(x∗) = LΩ(x∗)◦.

4.2 Weakest strict constraint qualification associated with the complemen-
tary AKKT condition

A feasible point x∗ satisfies the Complementary AKKT condition (CAKKT) introduced in [9] if there
exist sequences {xk} ⊂ Rn, {λk} ⊂ Rm, and {µk} ⊂ Rp+ such that

lim
k→∞

∇f(xk) +
m∑
i=1

λki∇hi(xk) +
p∑
j=1

µkj∇gj(xk) = 0 (4.12)

and

lim
k→∞

m∑
i=1
|λki hi(xk)|+

p∑
j=1
|µkj gj(xk)| = 0. (4.13)

The difference between CAKKT and AKKT is that in AKKT we require min{−gi(xk), µk} → 0 for
all i = 1, . . . , p instead of (4.13). It has been proved in [9] that CAKKT is a genuine optimality condition
satisfied by every local minimizer, it is strictly stronger than AKKT and it is satisfied by every feasible
limit point generated by the Augmented Lagrangian method described in [2] under a weak Lojasiewicz-like
assumption on the constraints.

8



An example in which CAKKT does not hold but both AKKT and AGP hold at a non-optimal point
consists of minimizing 1

2 (x2−2)2 subject to x1 = 0 and x1x2 = 0. Clearly, (0, 2) is the unique minimizer.
However, every point (ε, 1), for ε ≥ 0 small enough, satisfies AKKT and AGP (and even LAGP, which
will be introduced later) although those points do not satisfy CAKKT. This means that algorithms which
guaranteed convergence to, say, AGP points could converge to wrong feasible limits whereas algorithms
with guaranteed convergence to CAKKT points could not.

The formulation (4.12–4.13) of CAKKT is useful because does not involve the limit point x∗ and,
so, it induces naturally the associated stopping criteria to be employed in numerical methods. However,
the following, obviously equivalent, formulation is more adequate for mathematical proofs. We will say
that a feasible point x∗ satisfies the CAKKT condition for the problem (1.1), if there exist sequences
{xk} ⊂ Rn, {λk} ⊂ Rm, and {µk} ⊂ Rp+, with µkj = 0 for all j /∈ J(x∗) such that xk → x∗,

lim
k→∞

∇f(xk) +
m∑
i=1

λki∇hi(xk) +
∑

j∈J(x∗)

µkj∇gj(xk) = 0, (4.14)

and
lim
k→∞

m∑
i=1
|λki hi(xk)|+

∑
j∈J(x∗)

|µkj gj(xk)| = 0. (4.15)

For all x ∈ Rn and r ∈ R+, we define KC(x, r) by:

KC(x, r) :=


m∑
i=1

λi∇hi(x) +
∑

j∈J(x∗)

µj∇gj(x):
m∑
i=1
|λihi(x)|+

∑
j∈J(x∗)

|µjgj(x)| ≤ r, λi ∈ R, µj ≥ 0

 .

(4.16)
The set KC(x, r) is non-empty and convex, with the property αKC(x, r) = KC(x, αr) for all α > 0.

Moreover, KC(x,∞) = K(x) for all x ∈ Rn and KC(x, r) coincides with LΩ(x∗)◦ at (x, r) = (x∗, 0),
where K(x) is defined by (3.9) and LΩ(x∗) is defined by (3.7).

We can interpret KC(x, r) as a perturbation of the linearized normal cone LΩ(x∗)◦ around x∗ with
the additional constraint

∑m
i=1 |λihi(x)|+

∑
j∈J(x∗) |µjgj(x)| ≤ r, which tries to control the failure of the

complementarity condition for points x close to x∗.

Definition 4.2. We say that the CAKKT-regular property holds at the feasible point x∗ if the set-valued
mapping

(x, r) ∈ Rn × R+ ⇒ KC(x, r)

is outer semicontinuous at (x∗, 0), in other words, the following inclusion holds:

lim sup
(x,r)→(x∗,0)

KC(x, r) ⊂ KC(x∗, 0) = LΩ(x∗)◦. (4.17)

For a graphical example, see Figure 2.

Theorem 4.3. A feasible point x∗ is CAKKT-regular if and only if for every continuously differentiable
objetive function such that CAKKT holds at x∗ we have that KKT also holds. (That is, CAKKT-regular
is the weakest strict constraint qualification associated with CAKKT.)

Proof. We start proving that, under the CAKKT-regular property, CAKKT implies KKT. Let f be a
smooth objective function such that CAKKT holds at x∗. Then, by definition, there exist sequences
{xk} ⊂ Rn, {λk} ⊂ Rm, {µk} ⊂ Rp+ with µkj = 0 for all j /∈ J(x∗), {ζk} ⊂ Rm and {rk} ⊂ R+
such that limk→∞ xk = x∗, ζk := ∇f(xk) +

∑m
i=1 λ

k
i∇hi(xk) +

∑
j∈J(x∗) µ

k
j∇gj(xk) → 0 and rk :=

9



∑m
i=1 |λki hi(xk)| +

∑
j∈J(x∗) |µkj gj(xk)| → 0. Define ωk :=

∑m
i=1 λ

k
i∇hi(xk) +

∑
j∈J(x∗) µ

k
j∇gj(xk).

Clearly, the sequence {ωk} satisfies

ωk ∈ KC(xk, rk) and ωk = ζk −∇f(xk). (4.18)

Since ζk → 0 and ∇f(xk)→ ∇f(x∗) we get ωk → −∇f(x∗). From the definition of outer limit

−∇f(x∗) = lim
k→∞

ωk ∈ lim sup
(x,r)→(x∗,0)

KC(x, r) ⊂ KC(x∗, 0) = LΩ(x∗)◦, (4.19)

which implies that the KKT condition holds.
Now, we will show that if CAKKT implies KKT for any objective function, then the CAKKT-regular

property holds. Thus, our aim is to prove the inclusion lim sup(x,r)→(x∗,0)KC(x, r) ⊂ LΩ(x∗)◦.
Take ω∗ ∈ lim sup(x,r)→(x∗,0)KC(x, r), so there are sequences {xk}, {ωk} and {rk} such that xk → x∗,

ωk → ω∗, rk → 0 and ωk ∈ KC(xk, rk). Now, define the linear function f(x) := −〈w∗, x〉 for all x ∈ Rn.
Let us see that CAKKT holds at x∗ with this choice of f . Since ωk is in KC(xk, rk), there are multipliers
{λk} ⊂ Rm, {µk} ⊂ Rp+ with µkj = 0 for j /∈ J(x∗) such that

ωk =
m∑
i=1

λki∇hi(xk) +
∑

j∈J(x∗)

µkj∇gj(xk) (4.20)

and
m∑
i=1
|λki hi(xk)|+

∑
j∈J(x∗)

|µkj gj(xk)| ≤ rk. (4.21)

Since rk → 0, the expression (4.15) holds and from ωk → ω∗, ζk := ∇f(xk) +ωk = −ω∗+ωk → 0. Thus,
CAKKT holds and, due to the hypothesis, −∇f(x∗) = ω∗ ∈ LΩ(x∗)◦ = KC(x∗, 0).

4.3 Weakest strict constraint qualification associated with the Strong Ap-
proximate KKT condition

We say that a feasible point x∗ satisfies the Strong Approximate KKT condition SAKKT if there exist
sequences xk → x, {λk} ⊂ Rm and {µk} ⊂ Rp+ such that (1.2) holds and µkj = 0 whenever gj(xk) < 0
[22]. Obviously, this implies (1.3). SAKKT strictly implies AKKT.

In spite of its strength, SAKKT does not generate practical stopping criteria for constrained optimiza-
tion algorithms because reasonable optimization algorithms may generate natural sequences for which the
fulfillment of SAKKT cannot be detected. Consider, for example, the problem of minimizing x subject
to −x ≤ 0. A reasonable sequence generated by (say) an interior point algorithm could be xk = 1/k (or
any other positive sequence such that xk → 0). However, for this sequence we have that ∇f(xk) = 1 and
g(xk) < 0 for all k. Therefore, the condition “µk < 0 when g(xk) < 0” imposes that µk = 0 for all k. This
means that this sequence cannot be used to detect SAKKT. In spite of this, SAKKT holds because any
negative sequence that tends to zero (in particular the constant sequence xk ≡ 0) does detect SAKKT.

However, it is interesting to analyze the strict constraint qualifications under which points that satisfy
SAKKT also fulfill KKT.

Definition 4.3. Let x∗ be a feasible point. We say that the SAKKT-regular property holds at x∗ if the
multifunction x ∈ Rn ⇒ NΩ(x,0)(x) is outer semicontinuous at x∗, that is,

lim sup
x→x∗

NΩ(x,0)(x) ⊂ NΩ(x∗,0)(x∗) = LΩ(x∗)◦. (4.22)
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Figure 2: Example of the cone mappings associated to the SKKT and CAKKT conditions using the same
feasible set, x∗, and approximating sequences as Figure 1. Once again SKKT-regularity and CAKKT-
regularity basically state that the possible limits of the vectors of the respective green cones must belong
to the blue cone which is the normal of the linearized cone at x∗. Note that the cones associated to SKKT
always take into account only the constraints that are biding or violated and there is no perturbation εk.
See Figure 1 and compare. This is its main difference with respect to AGP. Moreover, the set associated
to CAKKT is the cone associated to AKKT with an extra constraints that limits the size of the vectors
depending on how close to zero is the respective constraint and how large is the parameter rk. Here, {rk}
was taken to converge 0 at a speed proportional to the speed the sequences approach x∗.

Proposition 4.4. Let x and ε be elements in Rm such that x+ε belongs to Ω(x, 0). Then, every element
of NΩ(x,0)(x+ ε) can be written as

m∑
i=1

λi∇hi(x) +
∑

j:gj(x)≥0

µj∇gj(x),

where λi ∈ R, µj ∈ R+ for all i, j and µj(〈∇gj(x), ε〉) = 0, if gj(x) ≥ 0.
Also, NΩ(x,0)(x+ ε) is a subset of NΩ(x,0)(x).
By Proposition 4.4, we can rephrase the SAKKT-regular property saying that it is equivalent to the

outer semicontinuity of the set-valued mapping that associates to each point x, the linearized normal cone
defined by the gradients of the equality constraints and the gradients of inequality constraints whenever
the point x is not in the interior of the zero-lower set defined by the corresponding inequality constraint.
See an example in Figure 2.
Theorem 4.5. Let x∗ be a feasible point. Then, the SAKKT-regular condition holds at x∗ if and only if
for every smooth objective function such that the SAKKT condition holds at x∗, the KKT condition also
holds at x∗.
Proof. First, let us show that if SAKKT-regular holds, SAKKT implies KKT independently of the ob-
jective function. Let f be a function such that SAKKT holds, by the equivalence between AGP(0) and
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SAKKT, [22, Theorem 1.2.6(c)], there is a sequence {xk} ⊂ Rn such that xk → x∗ and PΩ(xk,0)(xk −
∇f(xk))− xk → 0. Define yk := PΩ(xk,0)(xk −∇f(xk)) and εk := yk − xk. By Proposition 3.1 we have

ωk = xk −∇f(xk)− yk ∈ NΩ(xk,0)(yk = xk + εk) ⊂ NΩ(xk,0)(xk), (4.23)

where the last inclusion comes from Proposition (4.4). Thus, the sequence {ωk} satisfies

ωk ∈ NΩ(xk,0)(xk) and ωk = xk −∇f(xk)− yk → −∇f(x∗). (4.24)

Thus, by definition of outer limit and outer semicontinuity, we can conclude

−∇f(x∗) ∈ lim sup
x→x∗

NΩ(x,0)(x) ⊂ NΩ(x∗,0)(x∗) = LΩ(x∗)◦, (4.25)

proving that x∗ satisfies the KKT condition.
Now, we will prove if for any objective function, SAKKT implies KKT, then SAKKT-regular holds

at x∗. Take ω∗ ∈ lim supNΩ(x,0)(x), so, there are sequences {xk} and {ωk} such that xk → x∗, ωk → ω∗

e ωk ∈ NΩ(xk,0)(xk). Define f(x) := −〈w∗, x〉 for all x ∈ Rn. We will show that AGP(0) holds at x∗ for
f(x) = −〈w∗, x〉. Denote zk := PΩ(xk,0)(xk −∇f(xk)) = PΩ(xk,0)(xk +ω∗). From the non–expansivity of
the projection PΩ(xk,0)(x) and from PΩ(xk,0)(ωk + xk) = xk we have∥∥zk − xk∥∥ =

∥∥PΩ(xk,0)(xk + ω∗)− PΩ(xk,0)(ωk + xk)
∥∥ ≤ ∥∥ω∗ − ωk∥∥ . (4.26)

The last inequality, implies that zk − xk → 0 and as consequence AGP(0) (or equivalent SAKKT) holds
at x∗. Thus, KKT holds at x∗, that is, −∇f(x∗) = ω∗ ∈ NΩ(x∗,0)(x∗) = LΩ(x∗)◦.

4.4 Weakest strict constraint qualification associated with the Linear Ap-
proximate Gradient Projection condition

When the optimization problem (1.1) has linear constraints, a variation of AGP, called Linear Approxi-
mate Gradient Projection (LAGP) condition has been introduced [3]. Denote by ΩL the set defined by
all the linear constraints and define ΩNL(xk,−∞) as follows:

ΩNL(xk,−∞) :=

z ∈ Rn :
〈∇hi(xk), z − xk〉 = 0, for all i ∈ I1
〈∇gj(xk), z − xk〉 ≤ 0, if 0 ≤ gj(xk), j ∈ J1
gj(xk) + 〈∇gj(xk), z − xk〉 ≤ 0, if gj(xk) < 0, j ∈ J1

 , (4.27)

where the non-linear constraints of (1.1) are defined by {hi, i ∈ I1} and {gj , j ∈ J1}. Thus, we say that
a feasible point x∗ satisfies the LAGP condition for the problem (1.1) if there is a convergent sequence
{xk} ⊂ ΩL, with limit x∗, such that

PΩNL(xk,−∞)∩ΩL
(xk −∇f(xk))− xk → 0. (4.28)

In [3], it was showed than LAGP is stronger than AGP (and as a consequence, stronger than AKKT).
Now, we will introduce the weakest strict constraint qualification associated with LAGP.
Definition 4.4. If the set-valued mapping (x, ε) ∈ Rn ×Rn ⇒ NΩNL(x,−∞)∩ΩL

(x+ ε) is outer semicon-
tinuous relatively to ΩL × Rm at (x∗, 0), that is,

lim sup
(x,ε)→(x∗,0),x∈ΩL

NΩNL(x,−∞)∩ΩL
(x+ ε) ⊂ NΩNL(x∗,−∞)∩ΩL

(x∗) = LΩ(x∗)◦.

we say that the LAGP-regular property holds at x∗ ∈ Ω.
Following the arguments of Theorem 4.2, we obtain

Theorem 4.6. LAGP-regular property is the weakest strict constraint qualification associated with LAGP.
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Guignard’s CQ Local minimizer
implies KKT

CAKKT-regular CAKKT implies KKT

SAKKT-regular SAKKT implies KKT

LAGP-regular LAGP implies KKT

AGP-regular AGP implies KKT

Cone-Continuity AKKT implies KKT

Figure 3: Equivalence results concerning constraint qualifications.

5 Relations between the new strict constraint qualifications
The results of Section 4, together with the equivalence result proved in [7], are condensed in Figure 1,
where, for completeness, we also included the equivalence between Guignard and “Local optimizer implies
KKT”. Moreover, by the results proved in [3, 9, 22] we have the following theorem.

Theorem 5.1. The following implications hold:

1. CCP implies AGP-regular;

2. AGP-regular implies SAKKT-regular;

3. AGP-regular implies LAGP-regular;

4. SAKKT-regular implies CAKKT-regular.

Proof. The four parts of the thesis are proved in the same way. We give one example. In Section 4 we
proved that SAKKT-regular is equivalent to “SAKKT implies KKT”. In other words, SAKKT-regular is
equivalent to “SAKKT or not-KKT”. Similarly, we proved that CAKKT-regular is equivalent to “CAKKT
or not-KKT”. But in [22] it has been proved that SAKKT implies CAKKT. Therefore, SAKKT-regular
implies CAKKT-regular.

The rest of the this section is devoted to show that all the implications in Theorem 5.1 are strict.

Example 5.1. (AGP-regular is strictly weaker than the Cone Continuous property.)

Consider the two-dimensional Euclidean space R2, the point x∗ = (0, 0) and the feasible set defined
by the inequality constraints

g1(x, y) = −x1;
g2(x, y) = x1 + x3

1 exp(x2
2).

Clearly, x∗ = (0, 0) is feasible point both constraints are active at x∗. Furthermore, by direct calculations
we have

∇g1(x1, x2) = (−1, 0) e ∇g2(x1, x2) = (1 + 3x2
1 exp(x2

2), 2x2x
3
1 exp(x2

2)) ∀(x1, x2) ∈ R2.
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Thus, LΩ(x∗)◦ = {µ1(−1, 0) + µ2(1, 0) : µ1, µ2 ≥ 0} = R× {0}.

The Cone Continuous Property does not hold at x∗ = (0, 0).
Define xk := 1/k, yk := 1/k, µk2 := (2x2x

3
1 exp(x2

2))−1 and µk1 := µk2(1 + 3x2
1 exp(x2

2)). Note that
(xk1 , xk2)→ (0, 0) and µk1 , µ

k
2 ≥ 0 for all k ∈ N. So,

ωk := µk1(−1, 0) + µk2(1 + 3x2
1 exp(x2

2), 2x2x
3
1 exp(x2

2)) ∈ K((xk1 , xk2)). (5.1)

By direct calculations, ωk = (0, 1) ∀k ∈ N. Hence, limk→∞ ωk = (0, 1) is in lim supx→x∗ K(x) but
(0, 1) is not in LΩ(x∗)◦, thus, K(x) cannot be outer semicontinuous at x∗.

AGP-regular holds at x∗.
Take ω∗ = (ω1, ω2) ∈ lim sup(x,ε)→(x∗,0)NΩ(x,−∞)(x+ ε). Then, there are sequences {xk = (xk1 , xk2)},

{ωk} and {εk = (εk1 , εk2)} in R2 such that xk → x∗, εk → (0, 0), ωk → ω∗ and ωk ∈ NΩ(xk,−∞)(xk + εk).
To prove tha ω∗ ∈ NΩ(x∗,−∞)(x∗) = LΩ(x∗)◦ we must analyze all the different possible cases as xk
approaches to x∗ = (0, 0). We have the possible cases (xk1 > 0, xk1 < 0 and xk1 = 0 for infinitely many
indices in N).

Assume that there infinitely many indices k ∈ N such that

1. xk1 > 0 holds. In this case, g1(xk1 , xk2) < 0 and g2(xk1 , xk2) > 0. For this case, we define two conditions

condition (g1): if g1(xk1 , xk2) + 〈∇g1(xk1 , xk2), (εk1 , εk2)〉 = 0.
condition (g2): if 〈∇g2(xk1 , xk2), (εk1 , εk2)〉 = 0.

Depending if εk = (εk1 , εk2) satisfies the conditions (g1) and (g2) or not, we have the following
subcases:

(a) εk satisfies condition (g1) and condition (g2).
Since εk satisfies both conditions (g1) and (g2) we have

εk1 = −xk1 and εk1(1 + 3(xk1)2 exp (xk2)2) + εk2(2xk2(xk1)3 exp (xk2)2) = 0. (5.2)

Using (5.2) we get

− 1− 3(xk1)2 exp (xk2)2 + εk2(2xk2(xk1)2 exp (xk2)2) = 0. (5.3)

So, if there is an infinite index set such that the expression (5.3) holds, we obtain a contradic-
tion, by taking limit in an adequate subsequence.

(b) εk satisfies condition (g1) but not condition (g2).
Since εk does not satisfy condition (g2), we have that the multiplier associated with∇g2(xk1 , xk2)
for ωk ∈ NΩ(xk,−∞)(xk + εk) is null (see Proposition 4.1). Thus, ωk = µk1(−1, 0) ∈ R × {0}
for some µk1 ≥ 0. Now, if there is an infinite index set in this subcase, taking limit (for an
adequate subsequence), the limit ω∗ must be in R× {0};

(c) εk does not satisfy condition (g1) but satisfies condition (g2).
In this case the multiplier associated with ∇g1(xk1 , xk2) is zero. Thus,

ωk := µk2(1 + 3x2
1 exp(x2

2), 2x2x
3
1 exp(x2

2)) for some µk2 ≥ 0.

Moreover, by condition (g2) we have

εk1(1 + 3(xk1)2 exp (xk2)2) + εk2(2xk2(xk1)3 exp (xk2)2) = 0.

14



Now, we will show that if there is an infinite index set in this subcase, ω∗2 is zero. By contra-
diction, assume that ω∗2 is non zero. For k large enough,

2µk2 |xk2(xk1)3 exp (xk2)2| > (1/2)|ω∗2 | > 0, (5.4)

as consequence xk2 is a positive number. Using the expression above and the definition of ωk1
we have

ωk1 = µk2 + 3µk2(xk1)2 exp (xk2)2 >
3|ω∗2 |

4|xk1xk2 |
.

Taking limits in this expression for the adequate subsequence, we obtain a contradiction, since
the left-side is bounded.

(d) εk satisfies neither condition (g1) and condition (g2).
In this case, the multipliers associated with ∇g1(xk, yk) and ∇g2(xk, yk) are both zero, hence
ωk = (0, 0) ∈ R× {0}.

Thus, if there is an infinite set of indices k such that xk > 0 holds, taking limit in the adequate
subsequence we get that ω∗ ∈ R× {0};

2. xk1 < 0 holds. In this case, g1(xk1 , xk2) > 0 and g2(xk1 , xk2) < 0.
For this case, we define two conditions

condition (g1): if 〈∇g1(xk1 , xk2), (εk1 , εk2)〉 = 0;

condition (g2): if g2(xk1 , xk2) + 〈∇g2(xk1 , xk2), (εk1 , εk2)〉 = 0.

Depending if εk satisfies the conditions above or not, we have the next subcases:

(a) εk satisfies the condition(g1) and the condition (g2).
From these conditions we have

εk1 = 0 and xk1 + (xk1)3 expx2
2 + εk1(1 + 3x2

1 exp (xk2)2) + εk2(2xk2(xk1)3 exp (xk2)2) = 0.

Using εk1 = 0 and dividing by xk1 in the last expression we get

1 + (xk1)2 expx2
2 + εk2(2xk2(xk1)2 exp (xk2)2) = 0.

Thus, if there exists an infinite index set such that the expression above holds, taking limits
we obtain a contradiction.

(b) εk satisfies condition (g1) but not condition (g2).
Since εk satisfies condition (g1), εk1 = 0 and since εk does not satisfies condition (g2) the
multiplier associated with ∇g2(xk, yk) is zero, then ωk = µk1(−1, 0) for some µk1 ≤ 0. Taking
limit (for an adequate subsequence) we obtain that ω∗ must be in R× {0};

(c) εk does not satisfy condition (g1) but satisfies condition (g2).
Since εk does not satisfy the condition (g1) the multiplier associated with ∇g1(xk, yk) is zero
by Proposition 4.1. Thus,

ωk = µk2(1 + 3(xk1)2 exp (xk2)2, 2xk2(xk1)3 exp (xk2)2)

and
xk1 + (xk1)3 expx2

2 + εk1(1 + 3(xk1)2 exp (xk2)2) + εk2(2xk2(xk1)3 exp (xk2)2).
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Now, if we assume that ω∗2 is not zero, we obtain for k sufficiently large that

ωk1 = µk2 + 3µk2(xk1)2 exp (xk2)2 >
3|ω∗2 |

4|xk1xk2 |
.

So, if there is an infinite index subset with this property we get a contradiction, since ωk1 → ω∗1
and the right-hand side blows out.

(d) εk satisfies neither condition (g1) and condition (g2).
In this subcase, both multipliers associated with ∇g1(xk, yk) and ∇g2(xk, yk) are zero, and
hence ωk = (0, 0).

Therefore, if there is an infinite index set such that xk1 < 0, taking limit we get that ω∗ belongs to
R× {0};

3. xk1 = 0 holds. For this case, we have g1(xk1 , xk2) = 0 and g2(xk1 , xk2) = 0. By calculations, we also
have ∇g1(xk1 , xk2) = (−1, 0) and ∇g2(xk1 , xk2) = (1, 0). Thus, ωk = µk1∇g1(xk1 , xk2) + µk2∇g2(xk1 , xk2)
must be in R × {0}. So, if there is an infinite index set for this subcase, the limit, ω∗ must be in
LΩ(x∗)◦ = R× {0}.

From all the possible cases, we have that ω∗ = limk→∞ ωk must be in R×{0} = NΩ(x∗,−∞)(x∗), in other
words, x∗ is AGP-regular. See Figure 4.

Example 5.2. (SAKKT-regular is strictly weaker than AGP-regular.)

Consider x∗ = (0, 0) in the Euclidean space R2 and the feasible set defined by the inequality constraints

g1(x1, x2) = −x1;
g2(x1, x2) = −x2

1 − x2
2.

Clearly x∗ = (0, 0) is feasible point both constraints are active. By direct calculations we get

∇g1(x1, x2) = (−1, 0) and ∇g2(x1, x2) = (−2x1,−2x2) ∀x = (x1, x2) ∈ R2.

We also have LΩ(x∗)◦ = {µ1(−1, 0) + µ2(0, 0) : µ1, µ2 ≥ 0} = R− × {0}.

SAKKT-regular holds at x∗.
Take ω∗ = (ω∗1 , ω∗2) ∈ lim supx→x∗ NΩ(x,0)(x), then there are sequences {xk = (xk1 , xk2)} and {ωk} in

R2 such that xk → x∗, ωk → ω∗ and ωk ∈ NΩ(xk,0)(xk). To show that ω∗ ∈ NΩ(x∗,−∞)(x∗) = LΩ(x∗)◦
we will analyze all the possible cases. Suppose that there are infinitely many indices k ∈ N such that at
least one of the following cases hold:

1. xk1 > 0. In this case, we have g1(xk1 , xk2) < 0 and g2(xk1 , xk2) < 0. From Proposition 4.4, ωk =
(0, 0), since the multipliers associated with ∇g1(xk1 , xk2) and ∇g2(xk1 , xk2) are not zero only when
g1(xk1 , xk2) ≥ 0 or g2(xk1 , xk2) ≥ 0.

2. xk1 < 0. In this case, we have g1(xk1 , xk2) > 0 and g2(xk1 , xk2) < 0. Using Proposition 4.4, the
multipliers associated with ∇g2(xk1 , xk2) are zero. Thus, ωk takes the form µk1(−1, 0) for some
µk1 ≥ 0. Clearly, µk1(−1, 0) ∈ LΩ(x∗)◦ = R− × {0}.

3. xk = 0. In this case, both functions are non negative and, depending of the value of xk2 , g2(xk1 , xk2),
can be strictly negative or zero. Consider the following subcases:
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Figure 4: Picture associated to Example 5.1. The feasible set is simply the vertical line that passes
through x∗ = 0. Once again the blue cone, which is the horizontal line, represents the normal of the
linearized cone at x∗. The gray areas are the regions associated to the linearization of the constraints at
points in {xk}. The red regions represent the cones associated with AKKT, that appear in the definition
of CCP. The green arrows are the directions that belong the cones associated to AGP. Note that far
from the origin the cone associated to AKKT already have two generating directions (associated to the
gradients of both constraints that are active at the origin). Since one of the directions in the AKKT cone
is always not horizontal, this cone always contains vertical vector (0, 1)t. On the other hand, even in
points close to the origin the cone associated to AGP has at most one direction at any point of interest
and never contains any vertical vector.

(a) xk2 = 0 for infinitely many indices. By direct calculations, g2(xk1 , xk2) = 0, so

ωk = µk1(−1, 0) + µk2(−2xk1 ,−2xk2) = µk1(−1, 0) + µk2(0, 0) ∈ R− × {0} = LΩ(x∗)◦.

(b) xk2 6= 0 for infinitely many indices. In this subcase, g2(xk1 , xk2) < 0. From Proposition 4.4,
the multipliers associated with g2(xk1 , xk2) are zero and ωk = µk1(−1, 0) ∈ R− × {0} for some
µk1 ≥ 0.

Therefore, in all the possible cases, we obtain (taking an adequate subsequence) that ω∗ belongs to
K(x∗) = R− × {0}, as we wanted to show.

x∗ is not AGP-regular.
For every k ∈ N, define xk1 := 1/k, xk2 := 1/k, εk1 := −xk1 , εk2 := 0 and multipliers µk2 := (2xk1)−1

and µk1 := 0. Also, define ωk := µk1(−1, 0) + µk2(−2xk1 ,−2xk2). Obviously, εk → 0. From Proposition
4.1, ωk ∈ NΩ((xk

1 ,x
k
2 ),−∞)((xk1 , xk2) + (εk1 , εk2)), furthermore, due to the choice of µk1 and µk2 , ωk = (−1,−1)

∀k ∈ N. Thus, (−1,−1) ∈ lim sup(x,ε)→(x∗,0)NΩ(x,−∞)(x+ε), but (−1,−1) does not belong to LΩ(x∗)◦ =
R− × {0}. As a consequence x∗ is not AGP-regular.

Example 5.3. (LAGP-regularity is strictly weaker than AGP-regularity.)

17



Define x∗ = (0, 0) and the feasible set defined by

h(x1, x2) = x1;
g(x1, x2) = x1 − x2

1x2.

The point x∗ = (0, 0) is feasible and both constraints are active at x∗. By straight calculations, we have
that

∇h(x1, x2) = (1, 0) and ∇g(x1, x2) = (1− 2x1x2,−x2
1) for all x = (x1, x2) ∈ R2.

Furthermore, LΩ(x∗)◦ = {λ(1, 0) + µ(1, 0) : λ ∈ R, µ ≥ 0} = R× {0}.

x∗ = (0, 0) is AGP-regular.

First, we note that the set of linear constraint, ΩL, is given by the only equality constraint h(x1, x2) =
0, so:

ΩL = {(x1, x2) ∈ R2 : h(x1, x2) = 0} = {(x1, x2) ∈ R2 : x1 = 0} = {0} × R.

Now, we will show that NΩNL(x,−∞)∩ΩL
(x+ ε) is outer semicontinuous at (x∗, 0) relatively to ΩL × R2.

Take ω∗ = (ω1, ω2) ∈ lim supNΩNL(x,−∞)∩ΩL
(x + ε) relatively to ΩL × R2. From the definition of outer

limit, there are sequences {xk}, {ωk} and {εk} in R2 such that xk → x∗, εk → (0, 0), ωk → ω∗ and

xk ∈ ΩL , xk + εk ∈ ΩNL(xk,−∞) ∩ ΩL , and ωk ∈ NΩNL(xk,−∞)∩ΩL
(xk + εk).

To see that ω∗ belongs to NΩNL(x∗,−∞)∩ΩL
(x∗ + 0) = LΩ(x∗)◦, we will analyze all the possible cases.

Since xk ∈ ΩL and xk + εk ∈ ΩL we have xk1 = 0 and εk1 = 0 and, as a consequence, g(xk1 , xk2) = 0 for all
k ∈ N. Thus, independently of the choice of εk2 , the following condition holds:

condition (g): 〈∇g(xk1 , xk2), (εk1 , εk2)〉 = 0.

This is a simple consequence of the following observation:

〈∇g(xk1 , xk2), (εk1 , εk2)〉 = εk1(1− 2xk1xk2) + εk2(−(xk1)2) = 0.(1− 0) + εk2 .0 = 0,

whenever xk1 = εk1 = 0. Since the condition (g) is valid, there exist λk and µk ≥ 0 (not necessary all
zeroes) such that

ωk = λk∇h(xk1 , xk2) + µk∇g(xk1 , xk2) ∈ NΩNL(xk,−∞)∩ΩL
(xk + εk).

But, since xk = 0, we get ∇h(x1, x2) = (1, 0) and ∇g(xk1 , xk2) = (1, 0) and, thus, ωk ∈ R × {0} for all
k ∈ N, which implies ω∗ = limk→∞ ωk ∈ R× {0} = K(x∗).

x∗ = (0, 0) is not AGP-regular.
Define xk1 := 1/k, xk2 := xk1 , εk1 := xk2(xk1)2 and εk2 = xk2(1 − 2xk1xk2). Clearly, εk → (0, 0) and

g(xk1 , xk2) = xk1(1 − xk1x
k
2) > 0 (for k large enough). Define multipliers µk := ((xk1)2)−1 ∈ R+ and

λk := −µk(1− 2xk1xk2) and the sequence {ωk} given by

ωk := λk∇h(xk1 , xk2) + µk∇g(xk1 , xk2) = λk(1, 0) + µk(1− 2xk1xk2 ,−(xk1)2) = (0,−1).
Since, for all k ∈ N,

〈∇g(xk1 , xk2), (εk1 , εk2)〉 = εk1(1− 2xk1xk2) + εk2(−(x2
1)k)

= xk2(xk1)2(1− 2xk1xk2) + xk2(1− 2xk1xk2)(−(x2
1)k) = 0,
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we have, from Proposition (4.4), that ωk = (0,−1) ∈ NΩ(xk,−∞)(xk + εk) for all k ∈ N and limk→∞ ωk =
(0,−1) is in lim sup(x,ε)→(x∗,0)NΩ(x,−∞)(x+ ε), but (0,−1) does not belong to LΩ(x∗)◦ = R× {0}. So,
x∗ is not AGP-regular.

Example 5.4. (CAKKT-regularity does not imply SAKKT-regularity.)

Consider x∗ = (0, 0) and the feasible set defined by the equality and inequality constraints

h(x1, x2) = x1;
g(x1, x2) = x1 expx2.

Obviously, x∗ = (0, 0) is feasible the inequality constraint is active. Moreover,

∇h(x1, x2) = (1, 0) and ∇g(x1, x2) = (expx2, x1 expx2).

From the last expression, we get LΩ(x∗)◦ = {λ(1, 0) + µ(1, 0) : λ ∈ R, µ ≥ 0} = R× {0}.

x∗ is CAKKT-regular.
Take ω∗ = (ω∗1 , ω∗2) ∈ lim sup(x,r)→(x∗,0)KC(z, r), then, there exist sequences {xk} and {ωk} in R2

and scalars rk ≥ 0 such that xk → x∗, ωk → ω∗, ωk ∈ KC(zk, rk) and rk → 0. Since ωk ∈ KC(zk, rk),
there are sequences λk and µk ≥ 0 such that

ωk = λk∇h(xk) + µk∇g(xk) = λk(1, 0) + µk(expxk2 , xk1 expxk2) (5.5)

and
|λkh(xk)|+ |µkg(xk)| = |λkxk1 |+ |µkxk1 expxk2 | ≤ rk. (5.6)

Using (5.5) and (5.6) we get |ωk2 = µkxk1 expxk2 | ≤ rk and ωk2 → 0. From the last expression we conclude
that ω∗ is in LΩ(x∗)◦ = R× {0} and CAKKT-regularity holds.

x∗ is not SAKKT-regular.
Take xk1 := 1/k, xk2 := xk1 , µk := (xk1 expxk2)−1 and λk := −µk expxk2 . Since g(xk1 , xk2) > 0 we have

that
ωk := λk(1, 0) + µk(expxk2 , xk1 expxk2) = (0, 1) ∈ NΩ(xk,0)(xk) for all k ∈ N.

Clearly, limk→∞ ωk = (0, 1) ∈ lim supNΩ(x,0)(x), however (0, 1) is not in R × {0}. Thus, SAKKT-
regularity fails.

We showed that all the implications of Theorem 5.1 are strict. The rest of this section is devoted to
show the independence between LAGP-regularity and the conditions CAKKT-regularity and SAKKT-
regularity.

The following example shows that SAKKT-regularity does not imply LAGP-regularity and, as a
consequence, it does not imply CAKKT-regularity either, since CAKKT-regularity is implied by SAKKT-
regularity.

Example 5.5. (SAKKT-regularity does not imply LAGP-regularity).

Consider the feasible set expressed by the following equality and inequality constraints

h(x1, x2) = x1;
g(x1, x2) = −x2

1 − x2
1x

2
2 − x2

2.
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Clearly, x∗) = (0, 0) is feasible point and both constraints are active at x∗. By straight calculations we
have:

∇h(x1, x2) = (1, 0) and ∇g(x1, x2) = (−2x1 − 2x1x
2
2,−2x2x

2
1 − 2x2) for all x = (x1, x2) ∈ R2

Moreover, LΩ(x∗)◦ = {λ(1, 0) + µ(0, 0) : λ ∈ R, µ ∈ R+} = R× {0}.

x∗ is SAKKT-regular.
Our aim is to show that the set-valued mapping NΩ(x,0)(x) is outer semicontinuous at x∗. Take

ω∗ = (ω∗1 , ω∗2) ∈ lim supNΩ(x,0)(x). From the definition of outer limit, there are sequences {xk} and {ωk}
in R2 such that xk → x∗, ωk → ω∗ and ωk ∈ NΩ(xk,0)(xk). We have two possible cases.

• There is an infinite set of indices k such that xk1 6= 0. In this case, g(xk1 , xk2) = −(xk1)2(1+(xk2)2)−x2
2

is always negative, thus, the multipliers associated with ∇g(xk1 , xk2) are zero (Proposition (4.4))
Then, ωk has the form λk∇h(xk1 , xk2) = λk(1, 0) ∈ R × {0} for some λk ∈ R. Taking the adequate
subsequence, we get ω∗ ∈ R× {0};

• There is an infinite set of indices k such that xk1 = 0. In this case, g(xk1 , xk2) = −x2
2. Now, depending

of the values of xk2 , we obtain the following subcases:

– xk2 6= 0. In this case g(xk1 , xk2) < 0. So, from Proposition (4.4), the multipliers associated with
∇g(xk, yk) are zero. Thus, ωk = λk∇h(xk1 , xk2) = λk(1, 0) ∈ R× {0} for some λk ∈ R. Taking
limit (in an adequate subsequence), we get ω∗ ∈ R× {0};

– xk2 = 0. In this case g(xk1 , xk2) = (0, 0) and there exist λk ∈ R and µk ∈ R+ such that
ωk = λk(1, 0)+µk(−2xk1−2xk1(xk2)2,−2xk2(xk1)2−2xk2) = λk(1, 0) ∈ R×{0}, where, in the last
equality, we have used (xk1 , xk2) = (0, 0). So, ωk is in R×{0} and, taking limit for an adequate
subsequence, ω∗ ∈ R× {0}.

In all the analyzed cases, we concluded that ω∗ belongs to R×{0}. This proves the outer semicontinuity
of the multifunction NΩ(x,0)(x) at x∗ = (0, 0).

x∗ is not LAGP-regular.
Since the only linear constraint is given by h (an equality constraint), we have:

ΩL = {x = (x1, x2) ∈ R2 : h(x1, x2) = 0} = {x = (x1, x2) ∈ R2 : x1 = 0} = {0} × R.

Now, define xk1 := 0, xk2 := 1/k, εk1 = 0 and εk2 = −xk2/2. Clearly, all these sequences go to zero. For
that choice, we see that xk and xk + εk are in ΩL. Moreover, g(xk1 , xk2) = −(xk2)2 is a negative scalar and
the following expression holds for all k ∈ N:

g(xk, yk) + 〈∇g(xk, yk), (εk1 , εk2)〉 = 0. (5.7)

By (5.7), we can define µk := (2xk2)−1, λk := 1, so that

ωk := λk∇h(xk1 , xk2) + µk∇g(xk1 , xk2) = λk(1, 0) + µk(0,−2xk2) = (1,−1) ∈ NΩNL(xk,−∞)∩ΩL
(xk + εk).

Thus, limωk = (1,−1) ∈ lim supNΩNL(xk,−∞)∩ΩL
(xk + εk) relatively to ΩL × R2. Clearly, (1,−1) is

not in LΩ(x∗)◦ = R× {0}. Hence, LAGP-regularity does not hold at x∗.
The next example shows that LAGP-regularity does not imply CAKKT-regularity and, consequently,

does not imply SAKKT-regularity either.

Example 5.6. (LAGP-regularity does not imply CAKKT-regularity).
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Consider x∗ = (0, 0) and the feasible set defined by

h(x1, x2) = x1;
g(x1, x2) = x1 − x2

1x2 − x2
2.

Clearly, x∗ = (0, 0) is feasible both constraints are active. We also have

∇h(x1, x2) = (−1, 0) and ∇g(x1, x2) = (1− 2x1x2,−2x2 − x2
1) for all (x1, x2) ∈ R2.

Hence, LΩ(x∗)◦ = {λ(1, 0) + µ(1, 0) : λ ∈ R, µ ≥ 0} = R× {0}.

x∗ is LAGP-regular.
From the equality constraint we get that ΩL = {x = (x1, x2) ∈ R2 : x1 = 0} = {0} × R. We

will show that NΩNL(x,−∞)∩ΩL
(x + ε) is outer semicontinuous at (x∗, 0) relatively to ΩL × R2. Pick

ω∗ = (ω1, ω2) ∈ lim supNΩNL(x,−∞)∩ΩL
(x + ε) relatively to ΩL × R2. Thus, there are sequences {xk},

{ωk} and {εk} in R2 such that xk → x∗, εk → (0, 0), ωk → ω∗, and

xk ∈ ΩL , xk + εk ∈ ΩNL(xk,−∞) ∩ ΩL , ωk ∈ NΩNL(xk,−∞)∩ΩL
(xk + εk).

Since xk ∈ ΩL and xk+εk ∈ ΩL we have xk1 = 0 and εk1 = 0 and, as a consequence, g(xk1 , xk2) = −(xk2)2

for all k ∈ N. To see that ω∗ belongs to NΩNL(x∗,−∞)∩ΩL
(x∗ + 0) = LΩ(x∗)◦, we will analyze all the

possible cases depending of the value of xk2 . Assume that there is an infinite set of indices such that:

• xk2 6= 0. In this case, g(xk1 , xk2) = −(xk2)2 is strictly negative and ωk = λk(1, 0) for some λk ∈ R, so,
ωk ∈ LΩ(x∗)◦ = R× {0}

• xk2 = 0. In this case, g(xk1 , xk2) = 0, for any value of εk2 , (1 − 2xk1xk2)εk1 + (−2xk2 − (xk1)2)εk2 = 0.
Then, there are λk ∈ R and µk ≥ 0 such that

ωk = λk(1, 0) + µk(1− 2xk1xk2 ,−2xk2 − (xk1)2) = (λk + µk, 0) ∈ LΩ(x∗)◦ = R× {0}

where the last equality holds because xk1 = xk2 = 0, in this case.

Thus, for all the cases, we conclude that the limit ω∗ must be in LΩ(x∗)◦ = R× {0}.

x∗ is not CAKKT-regular.
Take xk1 := 1/k, xk2 := (xk1)1/2, µk := (xk2)−1, λk := −µk(1− 2xk1xk2) and define the sequence {ωk} as

ωk = λk(1, 0) + µk(1− 2xk1xk2 ,−2xk2 − (xk1)2) = (0,−2− (xk1)3/2) ∈ KC(xk, rk),

where rk := |µkg(xk1 , xk2)| + |λkh(xk1 , xk2)| = (xk1)2 + 1/2(1 − 2xk1xk2)(xk1)1/2. Since xk → x∗ and rk → 0,
ω := limωk = (0,−2) belongs to lim sup(x,r)→(x∗,0)KC(x, r) but not in LΩ(x∗)◦ = R× {0}.

Figure 5 shows the implications between the strict constraint qualifications considered in this paper.

6 Relations with other constraint qualifications
Recall that strict constraint qualifications are constraint qualifications. In fact, if a point is a local
minimizer, it satisfies every sequential optimality condition and, if it also satisfies an associated strict
constraint qualification, necessarily fulfills KKT. Therefore, every local minimizer that satisfies a strict
constraint qualification fulfills the KKT conditions. Therefore, it is natural to establish the relations
between strict constraint qualifications and other constraint qualifications.
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Figure 5: Implications between strict constraint qualifications

6.1 Strict constraint qualifications and Abadie’s constraint qualification
In this subsection, we will show that both CAKKT-regularity and LAGP-regularity are strictly stronger
than Abadie’s constraint qualification.

Let us start with the following two auxliary lemmas.

Lemma 6.1. [34, Teorema 6.11] Let x̄ be a feasible point. For every y ∈ T ◦Ω(x̄), there is a smooth
function F with −∇F (x̄) = y and such that x̄ is a strict global minimizer of F with respect to Ω.

Lemma 6.2. Take y ∈ T ◦Ω(x̄), then there are sequences {xk} ⊂ Rn, {λk} ⊂ Rm and {µk} ⊂ Rp+ such
that:

1. {xk} converges to x̄;

2. ωk :=
∑m
i=1 λ

k
i∇hi(xk) +

∑p
j=1 µ

k
j∇gj(xk)→ y;

3. For all j ∈ {1, .., p}, µkj is proportional to max{0, gj(xk)};

4. rk :=
∑m
i=1 |λki hi(xk)|+

∑p
j=1 |µkj gj(xk)| → 0.

Proof. Let y ∈ T ◦Ω(x̄). From Lemma 6.1, there exists a smooth function F such that −∇F (x̄) = y and F
attains its strictly global minimum with respect to Ω at x̄. Pick r > 0, and for every k ∈ N, consider the
optimization problem

Minimize Fk(x) := F (x) + k

2

 p∑
j=1

max{gj(x), 0}2 +
m∑
i=1

h2
i (x)

 subject to x ∈ B(x̄, r).

By Weierstrass’ theorem, there is a solution xk for the optimization problem (6.1). Using penalty argu-
ments, we get xk → x̄,

∇F (xk) +
m∑
i=1

khi(xk)∇hi(xk) +
p∑
j=1

kmax{gj(xk), 0}∇gj(xk) = 0, (6.1)

and
m∑
i=1

khi(xk)2 +
p∑
j=1

kmax{gj(xk), 0}2 ≤ F (x∗)− F (xk). (6.2)

Define λki := khi(xk) for i ∈ {1, . . . ,m} and µkj := kmax{gj(xk) 0} for j ∈ {1, . . . , p}. We also
define ωk :=

∑p
j=1 kmax{gj(xk), 0}∇gj(xk) +

∑m
i=1 khi(xk)∇hi(xk). From the expression (6.1) and the
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continuity of ∇F , ωk → y. Finally, define rk :=
∑m
i=1 |λki hi(xk)|+

∑p
j=1 |µkj gj(xk)|. From the continuity

of F and by (6.2), rk → 0.

The next lemma is a variation of the lemma above, useful for the analysis of the LAGP-regular
property.

Lemma 6.3. Let y be an element in T ◦Ω(x̄). Then, there are sequences {xk} ⊂ ΩL and {ωk} ⊂ Rm such
that xk → x̄, ωk → y and ωk ∈ NΩNL(xk,−∞)∩ΩL

(xk).

Proof. Since y belongs to T ◦Ω(x̄), we have, by Lemma 6.1, that there exists a smooth function F such
that −∇F (x̄) = y and F attains its strictly global minimum with respect to Ω at x̄. Without loss of
generality, we may assume that {gj : j ∈ {1, .., p1}}(p1 ≤ p) and {hi : i ∈ {1, ..,m1}}(m1 ≤ m) define the
non-linear constraints.

Take r > 0 and for every k ∈ N, consider the optimization problem

Minimize Fk(x) := F (x) + k

2

 p1∑
j=1

max{gj(x), 0}2 +
m1∑
i=1

h2
i (x)

 (6.3)

subject x ∈ B(x̄, r) ∩ ΩL.

where ΩL is the feasible set defined by the linear constraints. From Weierstrass’ theorem, there is a
minimizer xk for (6.3). Furthermore, by penalty arguments, {xk} converges to x̄, thus, for k large
enough, xk ∈ Int(B(x̄, r)). Using the geometric optimality condition (3.6), we get 〈∇Fk(xk), d〉 ≥ 0 for
every direction d ∈ TΩL

(xk) or, equivalently,

−∇Fk(xk) ∈ NΩL
(xk) = TΩL

(xk)◦.

Taking the derivative of Fk at xk, we obtain the following expression:

− (∇F (xk) +
p1∑
j=1

kmax{gj(xk), 0}∇gj(xk) +
n1∑
i=1

khi(xk)∇hi(xk)) ∈ NΩL
(xk). (6.4)

Define λki := khi(xk) for i ∈ {1, . . . ,m1} and µkj := kmax{gj(xk), 0} for j ∈ {1, . . . , p1}. We also
define ωk1 :=

∑p1
j=1 µ

k
j∇gj(xk) +

∑m1
i=1 λ

k
i∇hi(xk) and ωk2 := −∇F (xk) − ωk1 . From the definition of

ΩNL(xk,−∞) and (6.4), it follows that ωk1 ∈ NΩNL(xk,−∞)(xk) and ωk2 ∈ NΩL
(xk). Finally, define

ωk := ωk1 + ωk2 = −∇F (xk). Clearly, ωk → −∇F (x∗) = y and

ωk = ωk1 + ωk2 ∈ NΩNL(xk,−∞)(xk) +NΩL
(xk) ⊂ NΩNL(xk,−∞)∩ΩL

(xk).

So, the sequence {ωk} satisfies all the required properties.

The fact that CAKKT-regular implies Abadie’s constraint qualification is proved in the following
theorem.

Theorem 6.4. CAKKT-regularity implies Abadie’s constraint qualification.

Proof. Abadie’s constraint qualification says that TΩ(x∗) = LΩ(x∗)◦. Since TΩ(x∗) ⊂ LΩ(x∗)◦ always
holds, we must show the other inclusion. In order to show the inclusion LΩ(x∗)◦ ⊂ TΩ(x∗) we will first
show the inclusion NΩ(x∗) ⊂ LΩ(x∗)◦ or, equivalently, NΩ(x∗) ⊂ KC(x∗, 0) (Note that for x∗ ∈ Ω, we
have KC(x∗, 0) = LΩ(x∗)◦.)

Take y ∈ NΩ(x∗), from the definition of the normal cone (3.5) there are sequences {xk} ⊂ Ω and {yk}
such that

xk → x∗ , yk → y and yk ∈ N̂Ω(xk) = T ◦Ω(xk).
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Using Lemma 6.2, for each yk ∈ T ◦Ω(xk), we may find sequences with limits xk and yk such that the
conclusions of the Lemma 6.2 holds. Hence, for each k ∈ N there is a number j(k) ∈ N, scalars rj(k) and
vector xj(k) and ωj(k) such that

•
∥∥xk − xj(k)

∥∥ < 1/2k for all k ∈ N;

• ωj(k) =
∑m
i=1 λ

j(k)
i ∇hi(xj(k)) +

∑p
s=1 µ

j(k)
s ∇gs(xj(k));

•
∥∥yk − wj(k)

∥∥ < 1/2k for all k ∈ N;

• µ
j(k)
s = j(k) max{gs(xj(k)), 0} for all s ∈ {1, .., p};

• rj(k) =
∑m
i=1 |λ

j(k)
i hi(xj(k))|+

∑p
s=1 |µ

j(k)
s gs(xj(k))| ≤ 1/2k for all k ∈ N.

Obviously, the sequences {rj(k)}, {xj(k)} and {ωj(k)} converge, respectively, to 0, x∗ and y. Further-
more, for k large enough, ωj(k) is inKC(xj(k), rj(k)), since (for k large ), µj(k)

s = j(k) max{gs(xj(k)), 0} = 0
for all s /∈ J(x∗). Summing up, xj(k) → x∗, ωj(k) → y, rj(k) → 0, and ωj(k) ∈ KC(xj(k), rj(k)). Thus, due
to the definition of outer limit y ∈ lim sup(x,r)→(x∗,0)KC(x, r) ⊂ LΩ(x∗)◦ where the last inclusion holds
since CAKKT-regularity also holds at x∗. So, we proved the inclusion NΩ(x∗) ⊂ LΩ(x∗)◦ = LΩ(x∗)◦,
which implies

LΩ(x∗)◦ ⊂ NΩ(x∗)◦ ⊂ TΩ(x∗),

where in the last expression, we use NΩ(x∗)◦ ⊂ TΩ(x∗) ([34, Theorem 6.28(b) and 6.26]).

For LAGP-regularity we have the following theorem.

Theorem 6.5. LAGP-regularity implies Abadie’s constraint qualification.

Proof. We only need to show the inclusion NΩ(x∗) ⊂ LΩ(x∗)◦. Take y ∈ NΩ(x∗). Then, there are
sequences {xk} ⊂ Ω and {yk} such that

xk → x∗ , yk → y and yk ∈ T ◦Ω(xk).

Using Lemma 6.3, for each yk ∈ T ◦Ω(xk), we have for each k ∈ N, a number j(k) ∈ N and vectors xj(k)

and ωj(k) such that

•
∥∥xk − xj(k)

∥∥ < 1/2k for all k ∈ N ;

• ωj(k) ∈ NΩNL(xj(k),−∞)∩ΩL
(xj(k));

•
∥∥yk − wj(k)

∥∥ < 1/2k for all k ∈ N;

Clearly, these sequences satisfy {xj(k)} ⊂ ΩL, {ωj(k)} ⊂ NΩNL(xj(k),−∞)∩ΩL
(xj(k)), xj(k) → x∗ and

ωj(k) → y. Therefore, y ∈ lim sup(x,ε)→(x∗,0),x∈ΩL
NΩNL(x,−∞)∩ΩL

(x + ε) Now, by LAGP-regularity,
y ∈ NΩNL(x∗,−∞)∩ΩL

(x∗) = LΩ(x∗)◦ which allows us to conclude the inclusion NΩ(x∗) ⊂ LΩ(x∗)◦. Using
[34, Theorem 6.28(b) and 6.26], we have LΩ(x∗)◦ ⊂ NΩ(x∗)◦ ⊂ TΩ(x∗) as we wanted to prove.

The following example shows that Abadie’s constraint qualification is strictly weaker than CAKKT-
regularity and LAGP-regularity.

Example 6.1. (Abadie’s CQ implies neither CAKKT-regularity nor LAGP-regularity).
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Consider x∗ = (0, 0) and the feasible set given by the inequality constraints

g1(x1, x2) = −x1;
g2(x1, x2) = −x2 expx2;
g3(x1, x2) = −x1x2.

The point x∗ = (0, 0) is feasible and active for all the constraints. By direct calculations

∇g1(x1, x2) = (−1, 0), ∇g2(x1, x2) = (0,− expx2 − x2 expx2), and ∇g3(x1, x2) = (−x2,−x1),

for all x = (x1, x2) ∈ R2. Furthermore, LΩ(x∗)◦ = R− × R−.

Abadie’s constraint qualification holds at x∗.
This property follows from the form of the gradients of the constraints at x∗ = (0, 0) and from Ω = R2

+,
Abadie’s CQ holds.

CAKKT-regularity does not hold.
We will show thatKC(x, r) is not outer semicontinuous at (x∗ = (0, 0), 0). Take xk1 := 1/k, xk2 := −1/k

and define µk1 := 0, µk2 := 0 and µk3 := k. For that choice we obtain that

rk := |µk1xk1 |+ |µk2xk2 exp(xk2)|+ |µk3xk1xk2 | =
k

k2 = 1
k
→ 0

and

ωk := µk1∇g1(xk1 , xk2) + µk2∇g2(xk1 , xk2) + µk3∇g3(xk1 , xk2)) = k(1/k,−1/k) = (1,−1).

Hence ωk = (1,−1) ∈ KC(xk, rk) ∀k ∈ N, (1,−1) belongs to lim sup(x,r)→(x∗,0)KC(x, r) but (1,−1)
does not belong to KC((x∗, 0)) = R− × R−. Thus, CAKKT-regularity fails.

LAGP-regularity does not hold.
Note that ΩL = {x = (x1, x2) : x1 ≥ 0}. Define xk1 := 1/k, xk2 := −1/k, εk1 := 0, εk1 := 0 and

multipliers µk1 := 0, µk2 := 0 and µk3 := k. With this choice, we have

ωk := µk1∇g1(xk1 , xk2) + µk2∇g2(xk1 , xk2) + µk3∇g3(xk1 , xk2)) ∈ NΩL∩Ω(xk,−∞)(xk + εk).

Clearly, ωk = (1,−1) for all k ∈ N, (1,−1) belongs to lim sup(x,ε)→(x∗,0),x∈ΩL
NΩL∩Ω(x,−∞)(x+ε) and

does not belong to LΩ(x∗)◦, so LAGP fails.

6.2 Relations with Pseudonormality and Quasinormality
In this section, we will prove that Pseudonormality and Quasinormality do not imply and are not implied
by any of the strict CQs defined in the previous section. By Theorem 5.1, we only need to prove that
Pseudonormality and Quasinormality are independent of CAKKT-regularity and LAGP-regularity.

Let us recall the definition of Quasinormality [23, 11]. We say that the Quasinormality Constraint
Qualification holds at x∗ ∈ Ω if whenever

∑m
j=1 λj∇hj(x∗) +

∑
j∈J(x∗) µj∇gj(x∗) = 0 for some λ ∈ Rm

and µj ∈ R+, j ∈ J(x∗), there is no sequence xk → x∗ such that for every k ∈ N, λihi(xk) > 0 when λi is
nonzero and gj(xk) > 0 when µj > 0. Now, if we require the non existence of a sequence xk → x∗ such that∑m
i=1 λjhj(xk) +

∑
j∈J(x∗) µj∇gj(xk) > 0 for all k ∈ N when

∑m
j=1 λj∇hj(x∗) +

∑
j∈J(x∗) µj∇gj(x∗) = 0

for some λ ∈ Rm and µj ∈ R+ for every j ∈ J(x∗), we say that the Pseudonormality Constraint
Qualification holds at x∗ ∈ Ω, [11, 12]. Clearly, from the definitions, Pseudonormality is stronger than
Quasiregularity.

Let us start with the following example which shows that Pseudonormality implies neither CAKKT-
regularity and LAGP-regularity.
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Example 6.2. (Pseudonormality does not imply CAKKT-regularity and does not imply LAGP-regularity.)

Consider the feasible set given by the equality and inequality constraints defined by

h(x1, x2) = x2 − x1;
g(x1, x2) = x1 − x2 expx2.

Clearly, x∗ = (0, 0) is a feasible point and active for both constraints. We also note that:

∇h(x1, x2) = (−1, 1) and ∇g(x1, x2) = (1,− expx2 − x2 expx2) for all x = (x1, x2) ∈ R2.

Moreover, we have LΩ(x∗)◦ = {λ(−1, 1) + µ(1,−1) : λ ∈ R, µ ∈ R+} = R(−1, 1), that is, LΩ(x∗)◦ is a
linear subspace generated by (−1, 1).

Pseudonormality is satisfied at x∗ = (0, 0).
First, note that since ∇g(x∗) = −∇h(x∗) = (−1, 1), the expression µ∇g(x∗) +λ∇h(x∗) = (0, 0) holds

with non zero µ ∈ R+, λ ∈ R only if µ = λ > 0. Assume by contradiction, that there is a sequence
(xk1 , xk2)→ (0, 0), such that λh(xk1 , xk2) + µg(xk1 , xk2) > 0 for all k ∈ N. Thus, if λh(xk1 , xk2) + µg(xk1 , xk2) =
µ(xk2 − xk1 + xk1 − xk2 expxk2) = µ(xk2 − xk2 expxk2) > 0 then x2 > x2 expx2 for all k ∈ N, but this is
impossible since there is no x2 ∈ R such that x2 > x2 expx2. Therefore, Pseudonormality holds.

CAKKT-regular fails at x∗ = (0, 0).
Take xk1 := 1/k, xk2 := xk1 , µk := −(1 − expxk2 − xk2 expxk2)−1 and λk := 2 − µk(− expxk2 − xk2 expxk2).
Define

ωk := λk(−1, 1) + µk(1,− expxk2 − xk2 expxk2).

We will show that ωk → (−3, 2), rk := |λkh(xk1 , xk2)| + |µkg(xk1 , xk2)| → 0 and ωk ∈ KC(xk, rk) ∀k ∈ N.
By calculations, ωk2 = λk + µk(− expxk2 − xk2 expxk2) = 2 and ωk1 = −λk + µk = −2 + µk(1 − expxk2 −
xk2 expxk2) = −3. Thus, limk→∞ ωk = (−3, 2). Moreover, rk converges to zero:

rk = |λk(xk1 − xk2)|+ |µk(xk1 − xk2 expxk2)| = |xk2 − xk2 expxk2 |
|1− expxk2 − xk2 expxk2 |

→ 0.

Thus, ωk = (−3, 2) ∈ KC(xk, rk) ∀k ∈ N and hence (−3, 2) ∈ lim sup(x,r)→(x∗,0)KC(x, r) but (−3, 2) is
not in LΩ(x∗)◦ = R(−1, 1). Thus, CAKKT-regularity does not hold.

LAGP-regularity is not satisfied at x∗ = (0, 0).
First, note that ΩL = {(x1, x2) ∈ R2 : x1 = x2}. Now, define xk1 := 1/k, xk2 := xk1 , εk1 := −(xk2 −

xk2 expxk2)(1 − expxk2 − xk2 expxk2)−1, εk2 := εk1 and multipliers µk := −(1 − expxk2 − xk2 expxk2)−1 and
λk := 2− µk(− expxk2 − xk2 expxk2). Also, define

ωk := λk(−1, 1) + µk(1,− expxk2 − xk2 expxk2).

Let us show that ωk ∈ NΩNL(xk,∞)∩ΩL
(xk + εk) for all k ∈ N. Clearly, xk and xk + εk are in ΩL, µk ≥ 0,

εk → (0, 0) and ωk = (−3, 2) ∀k ∈ N. Now, we only need to show that there is no restriction for µk ≥ 0.
Since xk1 − xk1 expxk1 < 0 for x1 6= 0, we have g(xk1 , xk2) < 0 (xk1 = xk2) so, the multiplier associated with
∇g(xk1 , xk2) is free, if g(x1, x

k
2) + 〈∇g(xk1 , xk2), (εk1 , εk2)〉 = 0, but, for this choice of εk = (εk1 , εk2),

g(x1, x
k
2) + 〈∇g(xk1 , xk2), (εk1 , εk2)〉 = xk2 − xk2 expxk2 + εk1 + εk2(− expxk2 − xk2 expxk2)

= xk2 − xk2 expxk2 + εk1(1− expxk2 − xk2 expxk2) = 0.
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Thus, we can choose µk = −(1 − expxk2 − xk2 expxk2)−1 > 0 as multiplier associated with ∇g(xk1 , xk2)
and, thus, ωk = (−3, 2) = λk(−1, 1) + µk(1,− expxk2 − xk2 expxk2) ∈ NΩNL(xk,∞)∩ΩL

(xk + εk). Clearly
(−3, 2) = limk→∞ ωk is in lim sup(x,ε)→(x∗,0),x∈ΩL

NΩNL(x,∞)∩ΩL
(x + ε) and (−3, 2) /∈ LΩ(x∗)◦. Hence,

LAGP-regularity fails.

Since Quasinormality is implied by Pseudonormality, from the last example we have that Quasinor-
mality implies neither CAKKT-regularity and LAGP-regularity.

To prove that CAKKT-regularity and LAGP-regularity are independent of Pseudonormality and
Quasinormality, it will be sufficient to show that CAKKT-regularity and LAGP-regularity do not imply
Quasinormality. The next example meets this purpose.

Example 6.3. Neither CAKKT-regularity nor LAGP-regularity imply Quasinormality

Consider the feasible set defined by the equality and inequality constraints.

h(x1, x2) = x1;
g1(x1, x2) = x3

1;
g2(x1, x2) = x1 expx2.

The point x∗ = (0, 0) is feasible and active for both constraint. Since, for all x = (x1, x2) ∈ R2, we have

∇h(x1, x2) = (1, 0) ∇g1(x1, x2) = (3x2
1, 0) and ∇g2(x1, x2) = (expx2, x1 expx2),

we obtain LΩ(x∗)◦ = {λ(1, 0) + µ1(0, 0) + µ2(1, 0), λ ∈ R, µ1 ≥ 0, µ2 ≥ 0} = R× {0}.

x∗ is CAKKT-regular.
Take ω∗ ∈ lim sup(x,r)→(x∗,0)KC(x, r), so there are sequences {xk}, {rk}, and {ωk} with xk =

(xk1 , xk2)→ x∗ = (0, 0), ωk = (ωk1 , ωk2 )→ ω∗ such that

ωk = λk(1, 0) + µk1(3(xk1)2, 0) + µk2(exp(xk2), xk1 expxk2) ∈ KC(xk, rk) (6.5)

and
|λkxk1 |+ |µk1(xk1)3|+ |µk2xk1 expxk2)| ≤ rk → 0, (6.6)

for some scalars λk, µk1 , µk2 with µk1 ≥ 0 and µk2 ≥ 0. From the expressions (6.5) and (6.6) we obtain that
|ωk2 = µk2x

k
1 expxk2 | ≤ rk and ωk2 → 0. Thus, ω∗ = limk→∞ ωk is in R×{0} and CAKKT-regularity holds.

x∗ is LAGP-regular.
First, we will calculate ΩL. Since the only linear constraint is defined by h, we have:

ΩL = {x = (x1, x2) ∈ R2 : h(x) = 0} = {x = (x1, x2) ∈ R2 : x1 = 0} = {0} × R.

Let us show that NΩNL(x,−∞)∩ΩL
(x + ε) is outer semicontinuous at (x∗, 0) relative to ΩL × R2. Take

ω∗ = (ω1, ω2) ∈ lim supNΩNL(x,−∞)∩ΩL
(x+ ε) relative to ΩL × R2, so by definition of outer limit, there

are sequences {xk}, {ωk} e {εk} in R2 such that xk → x∗, εk → (0, 0), ωk → ω∗, and

xk ∈ ΩL , xk + εk ∈ ΩNL(xk,−∞) ∩ ΩL , ωk ∈ NΩNL(xk,−∞)∩ΩL
(xk + εk).

To show that ω∗ belongs to NΩNL(x∗,−∞)∩ΩL
(x∗ + 0) = LΩ(x∗)◦, we will analyze all the possible cases.

Since xk ∈ ΩL and xk + εk ∈ ΩL we get xk1 = 0, εk1 = 0, g1(xk1 , xk2) = 0 and g2(xk1 , xk2) = 0 for k ∈ N. We
also note that for any possible value of εk2 , the following expression always holds:

〈∇g1(xk1 , xk2), (εk1 , εk2)〉 = 0 and 〈∇g2(xk1 , xk2), (εk1 , εk2)〉 = 0.
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To see this, since xk1 = εk1 = 0 we have:

〈∇g1(xk1 , xk2), (εk1 , εk2)〉 = εk1(3(xk1)2) + εk2(0) = 0.(3(xk1)2) + εk2 .0 = 0

and
〈∇g2(xk1 , xk2), (εk1 , εk2)〉 = εk1(expxk2) + εk2(xk1 expxk2) = 0. expxk2 + εk2 .0 = 0.

Thus, there are µk1 ≥ 0, µk2 ≥ 0 such that

ωk = λk∇h(xk1 , xk2) + µk1∇g1(xk1 , xk2) + µk2∇g2(xk1 , xk2) ∈ NΩNL(xk,−∞)∩ΩL
(xk + εk),

but since xk1 = 0, we have ∇h(x1, x2) = (1, 0), ∇g1(xk1 , xk2) = (0, 0), and ∇g2(xk1 , xk2) = (expxk2 , 0).
Therefore, ωk2 = 0 for all k ∈ N and ω∗ = limk→∞ ωk ∈ R× {0} = K(x∗), as we wanted to show.

Quasinormality does not hold at x∗.
For every k ∈ N, define xk1 := 1/k, xk1 := xk2 , λ := 0, µ1 := 1 and µ2 := 0. For these choices, we have

λ∇h(x∗) + µ1∇g1(x∗) + µ2∇g2(x∗) = 0.(1, 0) + 1.(0, 0) + 0.(1, 0) = (0, 0) and µ1g1(xk1 , xk2) = (xk1)3 > 0
for all k ∈ N. Thus, Quasinormality fails at x∗.

Figure 6 shows the major results obtained in this section. We believe that, up to the present date,
this is the most complete landscape of constraint qualifications with algorithmic implications.

LICQ CRCQ

MFCQ RCRCQ

CLPD RCLPDPseudonormality

CRSC

CPGQuasinormality

Abadie

CCP (AKKT-regularity)

AGP-regularity

SAKKT-regularity LAGP-regularity

CAKKT-regularity

Figure 6: An updated landscape of Constraint Qualifications. Arrows mean strict implications.

By the examples above, we have that neither CAKKT nor LAGP, under pseudonormality or quasi-
normality, imply the KKT conditions. We end this section with a specific example of this kind.
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Consider the following optimization problem:

Minimize f(x1, x2) = 3x1 − 2x2 s.t. h(x1, x2) = x1 − x2 = 0, g(x1, x2) = x1 − x2 exp(x2) ≤ 0. (6.7)

By Example 6.2, the constraints satisfy Quasinormality at x∗ = (0, 0) and, thus, Abadie’s CQ but neither
CAKKT-regularity nor LAGP-regularity. Let us see that both CAKKT and LAGP hold for this objective
function.

CAKKT holds at x∗ = (0, 0).
From the Example 6.2, we have that for xk1 := 1/k, xk2 := xk1 , µk := −(1− expxk2 − xk2 expxk2)−1 and

and λk := 2− µk(− expxk2 − xk2 expxk2):

∇f(x, xk) + λk(−1, 1) + µk(1,− expxk2 − xk2 expxk2)→ (0, 0)

and rk := |λkh(xk1 , xk2)|+ |µkg(xk1 , xk2)| → 0. Thus, CAKKT holds.
LAGP holds at x∗ = (0, 0).
Take xk1 := 1/k and xk2 := xk1 as in Example 6.2. Note that (xk1 , xk2) is in ΩL = {(x1, x2) ∈ R2 :

x1 = x2}. If we define εk1 := −(xk2 − xk2 expxk2)(1 − expxk2 − xk2 expxk2)−1, εk2 := εk1 and multipliers
µk := −(1− expxk2 − xk2 expxk2)−1 and λk := 2− µk(− expxk2 − xk2 expxk2). We have

ωk := λk(−1, 1) + µk(1,− expxk2 − xk2 expxk2) ∈ NΩNL(xk,∞)∩ΩL
(xk + εk).

Then, by Proposition 3.1, PΩNL(xk,∞)∩ΩL
(xk+εk+ωk) = xk+εk Now, since ωk = −∇f(xk1 , xk2) = (−3, 2),

∀k ∈ N, we conclude, from the non expansivity of the projection, that PΩNL(xk,∞)∩ΩL
(xk+εk+ωk)−xk →

(0, 0). Thus, the sequential optimality condition LAGP holds.
The point x∗ = (0, 0) means nothing for the optimization problem (6.7). The considered point x∗ is

not an optimal solution point neither a stationary point. But it can be attained by an algorithm that
generates CAKKT points (as an augmented lagrangian method, for instance) or by an algorithm that
generates L-AGP points (like inexact restauration methods). This means that the point (0, 0) fulfills
any sensible practical test based on CAKKT or on L-AGP (stronger than test based on AKKT) and the
algorithm will accept a point which has no relation with the optimization problem (6.7). This cannot
happen if instead of the Quasinormality condition the point satisfies any constraint qualification which
implies respectively the CAKKT regular property and the L-AGP regular property as LICQ, MFCQ,
CRSC, CPG, CCP etc.

7 Final remarks
The development of computers in the 20th century made it possible the solution of many constrained
optimization problems by means of iterative algorithms. The KKT conditions provided a theoretical
basis to the definition of suitable stopping criteria for these algorithms. Approximate forms of the KKT
conditions are used to declare that an iterate is satisfactory enough for the purposes of practical iterative
methods since the 50’s, when the first constrained optimization algorithms appeared. However, if an
algorithm does not naturally provide Lagrange multipliers approximations, stopping criteria based on
gradient projections may be preferred. AKKT, Scaled-AKKT, CAKKT, and SAKKT induce stopping
criteria based on the KKT conditions while AGP and LAGP are sequential optimality conditions that
induce stopping criteria based on gradient projections. For the practical point of view, the fact that
sequential optimality conditions are satisfied by local minimizers independently of constraint qualifications
is very important, since it justifies the decision taken in every optimization software, of not testing
constraint qualifications at all.

Since sequential optimality conditions are genuine necessary conditions for constrained optimization,
the question of their relative strength comes to be relevant. Again, this question is associated with the

29



efficiency of methods: It can be conjectured that the efficiency of a method is linked to the strength
of the optimality condition that is guaranteed to hold by the cluster points of the generated sequences.
Moreover, the possible non-fulfillment of this conjecture in practical cases could reveal that the analysis
of the methods under consideration should rely on alternative theoretical concepts.

Now, the strength analysis of sequential optimality conditions may be direct or indirect. The direct
analysis proceeds by straight comparison of the optimality conditions, showing the implications between
them and the examples in which one condition holds and other does not at a non-optimal point. The
indirect analysis asks for the constraint qualifications that must be satisfied by a point that fulfills a
sequential optimality condition in order to be a KKT point. The interest of the indirect analysis relies on
the fact that the constraint qualifications that guarantee that a stationary point (from the point of view
of a sequential optimality condition) satisfies KKT are properties of the feasible points of a constrained
optimization problem, whose geometrical meaning and consequences are instigating. In other words, this
analysis provides the classification of systems of equations and inequations from a new point of view,
which completely independs of objective functions.

We believe that future research on strict constraint qualifications associated with sequential opti-
mality conditions will address optimization problems of the form (1.1) with special characteristics on
the function or the constraints (for example, in the presence of complementarity, equilibrium or cone
constraints), problems of the form (1.1) with non-smooth components, and optimization problems that
are not given in the form (1.1). In the case of complementarity constraints, it is well-known that most
standard constrained optimization methods may converge to non-optimal points from which obvious de-
scent direction emanate, a fact that motivated the definition of many alternative pointwise optimality
conditions whose sequential stopping-criteria counterpart have not been analyzed yet. This is also the
case of bilevel optimization problems. On the other hand, optimization problems that do not obey the
form (1.1) include multiobjective optimization problems, order-value optimization [28], semidefinite pro-
gramming, PDE-constrained optimization and many other problems with engineering, economics and
industrial applications. Much research on these topics should be expected in the forthcoming years.
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