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Abstract— Many studies have shown that carsharing reduces
environmental pollution and the transportation costs for a
large segment of the population. Car sharing also reduces the
number of private vehicles on the road because members do
not purchase their own car. However, the traditional carsharing
business model is difficult to scale geographically to neighbor-
hoods with lower population densities because the operator
must bear the upfront fixed cost of purchasing or leasing the
vehicles in the fleet. In contrast to traditional carsharing, Peer-
to-Peer (P2P) carsharing allows car owners to convert their
personal vehicles into shared cars which can be rented to other
drivers on a short-term basis. This model leverages the fact
that most privately owned vehicles sit idle over 90% of the
day. This paper presents a simulation study and a reservation
control policy (RCP) to increase the revenue generated from
P2P carsharing. The results show that rejecting reservations,
even when the time slot is available, increases revenue when
the demand is sufficiently high.

I. INTRODUCTION

National priorities are focused on reducing the energy
consumption and greenhouse gas emissions from the trans-
portation sector. There are many potential supply side and
demand side solutions. Car sharing is one such demand side
energy saving innovation. Car sharing reduces the environ-
mental impact of driving and reduces private transportation
costs for some drivers with only intermittent need for vehicle
transportation. Carsharing is both environmentally friendly
and cost efficient. Previous studies have demonstrated that
each new share car added to existing carsharing fleets
removes 4.6 to 20 private vehicles from the road. This
reduction is because members of carsharing services are
much less likely to purchase their own cars and may even
sell a car after joining a carsharing service, [1][2]. Car
sharing changes the economics of driving by converting
vehicle transportation from a fixed cost into a variable
cost. Car sharing has been shown to reduce mode adjusted
vehicle miles traveled (MVMT) among members by 67%
[3]. The average member of the City CarShare carsharing
service in San Francisco spends only about $540 per year on
automotive transportation [3]. This represents a tenfold cost
savings when compared to owning a small sedan 1. A range
of market demand studies conducted in the US and Europe
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have estimated cost savings alone would drive between 3%
and 25% of the driving population to forego car ownership,
or to replace their privately owned cars, and instead take
up membership in a carsharing service [4]. Other research
estimates that if a sufficient number of conveniently located
vehicles were available, then 10% of the individuals over
the age of 21 in metropolitan areas of North America would
adopt carsharing [5].

Carsharing is important economically as it provides access
to mobility for those without a car. Many studies (see Litman
[6], Raphael et al. [7], and Raphael and Rice [8]) have shown
that lack of car access negatively impacts employment and
health outcomes. This is particularly true for low income
households that often lack access to a car due to the high
cost of car ownership. The traditional carsharing business
model is difficult to scale geographically to neighborhoods
with lower population densities because the operator must
bear the high upfront fixed cost of purchasing all of the
vehicles in the fleet. These less dense neighborhoods are
also typically under-served by public transportation, many
of which are low income.

In contrast to traditional carsharing, Person-to-Person
(P2P) carsharing allows car owners to convert their personal
vehicles into shared cars which can be rented to other drivers
on a short-term basis. This business model leverages the fact
that most privately owned vehicles sit idle over 90% of the
day [9]. Person-2-Person carsharing alleviates upfront costs
and scales more economically than traditional carsharing.
Thus, P2P carsharing provides greater potential for car ac-
cessibility than traditional carsharing. P2P carsharing extends
the reach and potential benefits of carsharing. There are
several new service companies dedicated to P2P carsharing:
WhipCar, Relayrides, GetAround, Spride Share and Go-Op.

The first author’s previous work explores the economic
incentives and potential market size of P2P carsharing [10].
Given the recent economic downturn, P2P carsharing is
particularly relevant to car-owners who can generate an
additional income stream from an asset they already own.
In this paper, we explore the operational aspects of P2P
carsharing. The fundamental operational trade-off is between
car owner revenue and renter satisfaction. The car owner
revenue is directly related to the utilization of their car.
Renter satisfaction is directly related to the availability of
reservations. This paper uses simulation to explore this trade-
off. We present a reservation admission control policy that
increases car utilization and applies to both traditional and
P2P carsharing.

This paper makes two main contributions to our under-
standing of P2P carsharing. First, this is the first study to
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present an operational and simulation model of P2P car-
sharing. Particularly, we explore the main operational trade-
off of balancing car utilization with reservation availability.
Secondly, we propose a reservation admission control policy
for carsharing, and P2P carsharing specifically, that generates
more revenue for car owners.

The remainder of the paper is organized as follows. In
the next section we review the literature on carsharing and
discuss how the contributions of this paper relate to that
literature. Section III describes the operations and pricing
structure of P2P carsharing. The reservation control policy
(RCP) is introduced in Section IV. A discrete event sim-
ulation of P2P carsharing is presented in Section V along
with the implementation of the reservation control policy.
The RCP is evaluated via simulation under four supply and
demand scenarios in Section VI. Finally, we conclude and
summarize the results in Section VII

II. LITERATURE REVIEW
There is only one previous research paper the authors are

aware of that directly considers P2P carsharing. The first
author’s previous work examined the economic incentives
and market for P2P carsharing [10]. Additionally, it presents
a framework to estimate the supply and demand for P2P
carsharing at the census block group level. Finally, the
framework is applied to a case study of Pittsburgh, PA.
This paper complements [10] by investigating some the
operational mechanics taken for granted previously.

The literature on carsharing focuses on the behavioral,
economic and environmental impacts of carsharing. Particu-
larly, these papers consider the demographics of carsharing
members and their motivations for joining a carsharing
organization [3]. Another stream of research examines the
neighborhood characteristics that foster carsharing [11],[12],
and [4].

Led by Shaheen and her coauthors, there is now a rich
literature establishing the positive environmental and eco-
nomic impacts of carsharing [1], [5], [2]. Cumulatively, this
research documents the long term affects of carsharing on
members. Household vehicle ownership decreases due to
members selling an existing car or forgoing purchase of a car.
Also, the evidence shows that carsharing members travel less
and have a smaller carbon footprint than groups with similar
characteristics before joining carsharing.

While most of the existing research on carsharing con-
siders the environmental or economic impacts of carsharing,
there are several papers that examine the operational mechan-
ics of carsharing. Barth et al. [13] , and Nakayama [14] an-
alyze the tradeoffs associated with one way carsharing trips
using simulation. They present a simulation study to evaluate
management strategies for carsharing and characterize the
tradeoffs between utilization and car availability. This paper
presents a similar perspective for P2P carsharing.

III. P2P CARSHARING
In contrast to traditional carsharing, Peer-to-Peer (P2P)

carsharing allows car owners to convert their personal vehi-
cles into shared cars which can be rented to other drivers on a

short-term basis. This business model leverages the fact that
most privately owned vehicles sit idle over 90% of the day
[9]. Person-2-Person carsharing alleviates upfront costs, and
scales more economically than traditional carsharing. Thus,
P2P carsharing provides greater potential for car accessibility
than traditional carsharing.

P2P carsharing services facilitate the rental process by
providing insurance, gas, a method to access the car, and
an online reservation system. Typically, the car owner re-
ceives approximately 70% of the rental revenue, while the
remaining goes to the service provider to cover insurance,
telematics, other expenses and profit. Currently the rental
price structure is similar to that of nonprofit traditional
carsharing services with an hourly rate of roughly $5 per
hour and $.35 per mile. The P2P carsharing organization
can afford to adopt the non-profit rates because the P2P
model removes roughly 50% of the cost of business from
the traditional carsharing model (see Zipcar S-1 filing [15]).

This lower cost business model also allows P2P providers
to place cars more profitably in areas with lower population
densities. The users of P2P in less dense areas may prove
to have different usage characteristics than users in more
dense areas. For the time being, we assume that P2P renters
behave identically to traditional carsharing members. Both
the pricing and operational procedures of P2P carsharing are
slightly different than traditional carsharing as we describe
below.

A. Pricing

Currently, the carsharing sector does employ price dif-
ferentiation based on weekday vs weekend, type of car,
and some have long term or overnight pricing. The hourly
rental rates range from approximately $5 per hour, for some
nonprofit carsharing organizations, to $20 per hour for high
end cars like BMW’s. There does seem to be some price
differentiation based on location, but this practice appears
to be rare. Further research is needed to systematically
investigate pricing based on location of the car and is the
subject of future research.

To the authors’ knowledge, no carsharing companies set
prices based on how far in advance a renter makes a
reservation. The prevailing pricing structure in the carsharing
industry does not employ the revenue management tech-
niques found in other service sectors, i.e airlines, rental car
services, and hotels see [16]. Also to the authors’ knowledge,
all carsharing companies accept reservations based on a first
come first serve (FCFS) basis. In the revenue management
literature, there is a recognized duality between admission
control and pricing policies [16],[17]. In the following sec-
tion, we present an admission control policy for carsharing
based on time of the rental request.

IV. RESERVATION CONTROL POLICY

The effectiveness of traditional carsharing and peer-to-
peer carsharing services depend on their reservation system.
Both the renters’ quality of service, and the car owners’
profitability is related to providing high car availability to
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renters, while maintaining high efficiency of the car. We now
present a reservation control policy for accepting or rejecting
renter reservation requests. Following the work of Luss
[18],[19], Aalto [20], and Virtamo [21] on the optimization of
reservation systems, we develop a reservation control policy
(RCP) for carsharing.

To introduce the policy, consider a single car in isolation.
Our car is accepting reservations for a future date T time
units in the future. The reservation book initially has 24
available hourly slots. The renter demand arrives randomly
according to a non-homogeneous Poisson process with rate
λ(t). The average remaining renter demand at time t is
Λt =

∫ T

t
λ(s)ds. Each arriving renter has associated with

it an independently distributed mark (see [22]) R = (Γ, H)
representing a uniformly distributed desired renter start time
Γ, and H is distributed according to gh a geometric dis-
tribution. A rental request of length h with start time τ
is accepted if a contiguous block of slots of length h is
available starting at the τ − th slot and rejected otherwise.
A contiguous block of available reservation slots is called
an island. Luss [18] and Virtamo [21] show that the time
evolution of the reservation book is a Markov Process. The
state descriptor of the process is the locations and sizes of
islands in the reservation book.

Virtamo [21] develops a reservation control policy whose
objective is to maximize the utilization of islands in the
system. To accomplish this, a dynamic programming for-
mulation is employed. The policy maximizes utilization by
appropriately rejecting a rental request even when an island
of the desired size is available. The rationale behind these
rejections is that accepting the “wrong” request creates an
island of an undesirable size given the distribution of rental
durations.

We summarize the approach here. The Bellman value
function, Vl(λ), is a function of the size of an island and
average remaining renter demand λ, and represents the final
value of the utilization of that island. There is a value
function for every possible size of island. Given that we are
considering only one vehicle, there are 25 possible island
sizes. The dynamics of the value function are

dVl(λ)

dλ
=

l−1∑
h=1

gh

l−h∑
j=1

(h+ Vl−(h,j)(λ)− Vl(λ)) (1)

for l = 0, 1, . . . , 24, where l− (h, j) is the size of an island
produced by accepting a request of size h into an island of
size l which starts at position j within the island. The dynam-
ics of islands upon accepting a request play an important role
in computing the optimal reservation policy. For the simple
24-hour case that we have where the availability is binary,
we can see that a request of length h divides an island of
type l into 2 smaller islands of length j and l − h− j + 1,

Vl−(h,j)(λ) = Vj(λ) + Vl−h−j(λ). (2)

The initial conditions for this set of differential equations are
Vl(0) = 0 ∀l and V0(·) = 0. This set of differential equations
can be solved recursively starting for l = 0.

The resulting decision rule to accept a rental request
follows directly from 1. If h + Vl−(h,j)(λ) > Vl(λ), then
we should accept the request and reject it otherwise. This
decision rule results in a set of threshold value λh,j , and
if the expected remaining rental demand λTt is greater than
λlh,j , then the request is rejected. The interested reader may
see [21] for more details.

V. SIMULATION

In the previous section, we considered one car in isolation.
In this section, we describe a discrete simulation approach
to capture the dynamics of many cars. This simulation
framework allows us to analyze the tradeoffs between car
utilization and rental availability under several reservation
control policies and car supply location distributions. The
purpose of the simulation is to explore the key tradeoffs of
utilization and quality of service in a stylized setting. A more
robust approach is needed to apply the results directly the
carsharing context.

A. Baseline Policy

For the baseline simulation, we represent the P2P sys-
tem as a 2-dimensional space with car and renter location
generated by spatial Poisson processes. First, the car supply
appears randomly according to a non-homogeneous spatial
Poisson process with density function ΛO(x, y). Each atom
of the car owner location process has an independent mark
associated with it, O = (A1, A2, . . . , A24) representing the
hourly availability of the car over the day.

Next, renters arrive according to a homogeneous (in time)
Poisson process over an interval of length T . Each renter
has an independent random mark R = (Γ, H) representing
reservation start time and length. The distribution of the
spatial location of these renters is assumed to be uniform.
The reservation start time is assumed to be uniform between
1 and 24, and the length is geometrically distributed with
mean 4.

The car owner process divides space into a random
tessellation (i.e. open covering) of convex sets called the
Possion-Voroni tessellation (see [22]). Next, each of the
arriving renters is matched to the closest car and requests
a reservation. If all of the requested time slots are available,
then the request is accepted, otherwise it is rejected.

We are interested in the spatial statistics generated from
this process. Particularly, we report the car utilization as a
function of location and the reservation acceptance rate as
a function of renter location.These two summary statistics
capture the trade-off between car owner revenue and renter
satisfaction.

B. Reservation Control Policy

Our implementation of the reservation control policy
(RCP) assumes that each car in the system implements
the policy independently. Renter requests at each car are
accepted or rejected based on the threshold developed in
the previous section. Given that the renter locations are
uniformly distributed, the total expected number of arrivals at
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Fig. 1. Spatial Utilization for Car Locations with a = 8 and expected
demand of 2750 under the RCP policy

Fig. 2. Spatial Acceptance Rates for a = 8 and expected demand of 2750
under the RCP policy

each location is the same. Thus, the rejection thresholds are
independent of location of the car. In the general setting, the
rejection thresholds are a function of location. In addition to
the car utilization and reservation acceptance rate, we collect
the conditional rejection rate when there is space available
in the reservation book.

VI. RESULTS AND DISCUSSION

We calibrate the renter characteristics to those found in the
carsharing literature. Cervero’s five year study of the impacts
of City CarShare’s car sharing service in San Francisco found
that the average renter completed 1.31 trips each month.
The average duration of each trip was found to be 3.93
hours [3]. For the simulation, we assume the trip duration is
geometrically distributed with mean of 4 hours.

For the simulation, we assume a 10 by 10 spatial grid. The

locations of the supply of cars is governed by the density
function λ(x, y). We consider a non-uniform density with
two hotspots at locations (3, 7) and (7, 3) and with intensities
a and b,

λ(x, y) =
a√

(x− 3)2 + (y − 7)2
+

b√
(x− 7)2 + (y − 3)2

.

(3)
We simulate the system with 10,000 realizations. For sim-

plicity, we assume b = 2a. Figure 1 shows the average spatial
car utilization for the case of the nonuniform car locations for
with a = 8 and the expected total demand is 2750 under the
RCP policy. The revenue per accepted reservation is $5 per
hour. Figure 2 displays the corresponding spatial acceptance
rates. We see that the car utilization is higher under the RCP
policy and the acceptance rate is lower. The utilization of the
cars closer to the hotspots is lower due to the fact that the
user demand is located uniformly. The RCP policy generates
4.9% more revenue than the unoptimized case. Note, this
simulation represents one day in the operations of the P2P
carsharing service, So, a RCP yields a 4.9% revenue increase
for every day of operations.

We explore a range of scenarios under which to examine
the RCP policy described in the previous section. These
scenarios correspond to varying the car supply intensity from
a = 1 to a = 17 where b = 2a, and the total expected
demand from 1000 to 5000 in steps of 250. The resulting
percent revenue gains from the RCP over the baseline range
from -15% to 5%, see Figure 3.

The revenue for each scenario is the spatial average
weighted by the probability of a car appearing in that
location. Similarly, Figure 4 is the percent utilization change
under the RCP compared to the baseline. The utilization for
each scenario is the spatial average utilization weighted by
the probability of a car appearing in that location. Here,
we observe that the RCP performs better in high demand
conditions, both at low and high supply.

VII. CONCLUSION
Carsharing is both environmentally and economically sus-

tainable. An extension of traditional carsharing called peer-
to-peer (P2P) carsharing has the potential to vastly extend
these benefits. We present a reservation control policy to
improve the operational efficiency of P2P carsharing. This
policy also is applicable to traditional car sharing. A simu-
lation setting is used to evaluate this policy in comparison
to other plausible schemes.

We find that reservation control policy yields large in-
creases in revenue when the service is popular. Most exist-
ing car sharing organizations do not employ a reservation
admission control policy. In fact, most carsharing companies
are non-profits, and the for profit organizations have yet
to achieve profitability. The policy developed in this paper
respresents an opportunity for carsharing organizations to
generate more revenue with their existing assets. These
operational improvements could benefit the entire sector, and
perpetuate the positive environmental and economic benefits
of carsharing.
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Fig. 3. Gain in Revenue under RCP policy over Baseline for various Supply
and Demand Scenarios

Fig. 4. Gain in Utilization under RCP policy over Baseline for various
Supply and Demand Scenarios

While these preliminary results are promising, the simula-
tion setting is simplified and makes many assumptions. Our
future work includes relaxing many of these assumption in
the simulation, and providing a rigorous framework for the
analysis.
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