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Abstract. Generalising the unit element in a ring, one may consider (central)

idempotents in the ring. Similarly, the unitality condition required for a monad
(F, µ, η) on any category was released (by G. Böhm et al.) to define pre-

monads by imposing weaker requirements on η. Doing so, the adjointness

of the free functor from A to the category of unital F -modules AF and the
forgetful functor is lost. In this paper we establish, for a premonad (F, µ, η), a

weakened form of adjointness between the free functor from A to the category

AF of regular quasi-F -modules with the forgetful functor.
For this we consider, for functors L : A → B and R : B → A between any

categories A and B, an adjunction context given by maps

MorB(L(A), B)
α // MorA(A,R(B)),
β

oo

natural in A ∈ A and B ∈ B. We call this a regular adjunction context if both

α and β are regular, that is α = α ◦ β ◦ α and β = β ◦ α ◦ β.
From this configuration we derive the notion of a regular quasi-monad and

a regular quasi-comonad leading to pre-units and pre-monads (as considered

by G. Böhm, J.N. Alonso Álvarez, and others). The notions allow to study

the lifting of functors between categories to the corresponding categories of

regular quasi-modules. Hereby also the notion of a wreath product between
a monad F and an endofunctors T (in the sense of Lack and Street) can be

extended to regular quasi-monads.
Along the way, the corresponding notions for quasi-comonads are formu-

lated. The entwinings of regular quasi-monads and quasi-comonads considered

in the final section provide the techniques to handle weak bialgebras and weak
Hopf algebras on arbitrary categories but this aspect is not exploited in the

present paper.
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1. Introduction

Among other needs, the investigation of weak Hopf-algebras (e.g. Böhm et al.
[6], [3]) motivated the study of generalised forms of monads by weakening the
unitality condition. This lead to weak entwining structures studied by Caenepeel
and De Groot in [8] which were put in a more general context by Alonso Álvarez et
al. [1] and eventually were interpreted in 2-categories in Böhm [4]. We do approach
the questions behind from a different perspective thus attempting to gain a deeper
understanding of these structures.

For functors L : A→ B and R : B→ A between categories A and B, we consider
maps, natural in A ∈ A and B ∈ B,

MorB(L(A), B)
α // MorA(A,R(B)),
β

oo

requiring that α or β are regular, that is,
α = α ◦ β ◦ α or β = β ◦ α ◦ β.

Clearly this describes an adjunction provided α and β are inverse to each other.
Thus our setting extends the theory of adjunctions and triples (as considered by
Eilenberg an Moore in [9]) to more general pairs of functors.

In Section 3, a triple (F, µ, η) is named a quasi-monad on A provided F : A→ A
is an endofunctor with natural transformations µ : FF → F and η : IA → F (quasi-
unit) and the sole condition that µ is associative. Quasi-F -modules are defined by
morphisms % : F (A) → A which are compatible with the product µ of F , and the
category of all quasi-F -modules is denoted by A−→F . For these data the free and
forgetful functors,

φF : A→ A−→F and UF : A−→F → A,

give rise to an adjunction context and the properties of the resulting α’s and β’s lead
to the definition of η, µ, and (F, µ, η) to be regular, and eventually to the category
AF of regular quasi-F -modules. For a regular quasi-monad (F, µ, η), the relation
between A and AF yields a regular adjunction context and leads to a generalisation
of pre-units and pre-monads (as considered by Alonso Álvarez, Böhm and others).
Dual to the quasi-monads, in Section 4, quasi-comonads are introduced and the
basic relationships are outlined. Examples for these are weak corings (from [19])
and pre-A-corings from [7] (see 4.15).

The notions allow to study the lifting of functors between categories to the
corresponding categories of regular quasi-modules and this is done in Section 5.
They are described by generalising Beck’s distributive laws (see [2]), also called
entwinings, and it turns out that most of the diagrams are the same as for the lifting
to (proper) modules but to compensate the missing unitality extra conditions are
imposed on the entwining (e.g. Proposition 5.2). Again we have a dual theory for
quasi-comonads and this is the subject of Section 6.

Lifting an endofunctors T of A to an endofunctor T of AF leads to the question
when T is a (regular) quasi-monad and in Section 7 we provide conditions to make
this happen. Then TF allows for the structure of a regular quasi-monad (see 7.6).
Hereby also the notion of a wreath product between a monad F and an endofunctors
T (in the sense of Lack and Street [14]) can be extended to regular quasi-monads
(see 7.7, 7.8). The corresponding questions for quasi-comonads are handled in
Section 8.
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The final Section 9 is concerned with a regular quasi-monad (F, µ, η) and a
regular quasi-comonad (G, δ, ε) on any category A and the interplay between the
respective lifting properties. Hereby properties of the lifting G to AF and the lifting
F̂ to AG are investigated (see Theorems 9.9 and 9.10).

In case F = G the results in the last section provide the basics for a theory of
weak bimonads and Hopf bimonads on arbitrary categories. We will not persue the
resulting questions here.

2. Adjunction contexts

Throughout A and B will denote arbitrary categories. By IA, A or just by I, we
denote the identity morphism of an object A ∈ A, IF or F stands for the identity
on the funtor F , and IA means the identity functor of a category A. Recall that
any covariant functor F : A→ B induces a map

FA,A′ : MorA(A,A′)→ MorB(F (A), F (A′))

which is natural in A,A′ ∈ A.

2.1. Regular morphism. Let A,A′ be any objects in a category A. Then a
morphism f : A → A′ is called regular provided there is a morphism g : A′ → A
with fgf = f . Clearly, in this case gf : A → A and fg : A′ → A′ are idempotent
endomorphisms.

Such a morphism g is not necessarily unique. In particular, for gfg we also have
f(gfg)f = fgf = f , and the identity (gfg)f(gfg) = gfg shows that gfg is again
a regular morphism.

We call (f, g) a regular pair of morphisms provided fgf = f and g = gfg.
If idempotents split in A, then every idempotent morphism e : A→ A determines

a subobject of A, we denote it by eA.
If f is regular with fgf = f , then the restriction of fg is the identity morphism

on fgA′ and gf is the identity on gfA.
Examples for regular morphisms are retractions, coretractions, and isomorphisms.

For modules M,N over any ring, a morphism f : M → N is regular if and only if
the image and the kernel of f are direct summands in N and M , respectively.

This notion of regularity is derived from von Neumann regularity of rings. For
modules (and in preadditive categories) it was considered by Nicholson, Kasch,
Mader and others (see [13]).

We use the terminology also for natural transformations and functors with ob-
vious interpretations.

2.2. Adjunction context. Let L : A→ B and R : B→ A be covariant functors.
Assume there are morphisms, natural in A ∈ A and B ∈ B,

αA,B : MorB(L(A), B)→ MorA(A,R(B)),
βA,B : MorA(A,R(B))→ MorB(L(A), B).

These maps correspond to natural transformations α and β between the obvious
functors Aop×B→ Set. The quadruple (L,R, α, β) is called an adjunction context.

2.3. Quasi-unit and quasi-counit. Given an adjunction context (L,R, α, β),
the morphisms, for A ∈ A, B ∈ B,

ηA := αA,L(A)(I) : A→ RL(A) and εB := βR(B),B(I) : LR(B)→ B
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yield natural transformations

η : IA → RL, ε : LR→ IB,

called quasi-unit and quasi-counit of (L,R, α, β), respectively.
By naturality, for f : L(A) → B and g : A → R(B), there are commutative

diagrams

MorB(L(A), L(A))
αA,L(A) //

MorB(L(A),f)

��

MorA(A,RL(A))

MorA(A,R(f))

��
MorB(L(A), B)

αA,B // MorA(A,R(B)),

MorA(R(B), R(B)))
βR(B),B //

MorA(g,R(B))

��

MorB(LR(B), B)

MorB(L(g),B)

��
MorA(A,R(B))

βA,B // MorB(L(A), B),

which show that the transformations α and β are given by

αA,B : L(A)
f−→ B 7−→ A

ηA−→ RL(A)
R(f)−→ R(B),

βA,B : A
g−→ R(B) 7−→ L(A)

L(g)−→ LR(B) εB−→ B.

Naturality of ε and η induces an associative product on RL and a coassociative
coproduct on LR,

RεL : RLRL→ RL, LηL : LR→ LRLR.

2.4. Natural endomorphisms. With the notions from 2.3, consider the natural
transformations

ϑ : RL
RLη // RLRL

RεL // RL, ϑ : RL
ηRL // RLRL

RεL // RL,

γ : LR
LηR // LRLR

LRε // LR, γ : LR
LηR // LRLR

εLR // LR.

(1) ϑ respects left RL-action and ϑ respects right RL-action, that is,

RεL ◦RLϑ = ϑ ◦RεL, RεL ◦ ϑRL = ϑ ◦RεL.

(2) ϑ ◦ ϑ = ϑ ◦ ϑ.
(3) γ respects left LR-coaction and γ respects right LR-coaction, that is,

LRγ ◦ LηR = LηR ◦ γ, γLR ◦ LηR = LηR ◦ γ.

(4) γ ◦ γ = γ ◦ γ.

Proof. In the diagram

RL
RLη //

ηRL

��

RLRL

ηRLRL

��

RεL // RL

ηRL

��
RLRL

RLRLη //

RεL

��

RLRLRL
RLRεL //

RεLRL

��

RLRL

RεL

��
RL

RLη // RLRL
RεL // RL
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all partial rectangles are commutative by naturality.
The lower part shows that ϑ respects left RL-action and the right part shows

that ϑ respects right RL-action. The outer rectangle shows that ϑ and ϑ commute.

Dual to the above, we have the commutative diagram

LR
LηR //

LηR

��

LRLR

LRLηR

��

εLR // LR

LηR

��
LRLR

LηRLR //

LRε

��

LRLRLR
εLRLR //

LRLRε

��

LRLR

LRε

��
LR

LηR // LRLR
εLR // LR.

From this the assertions (3) and (4) are derived. tu
For later use we record some elementary computations.

2.5. Composing α and β. Let (L,R, α, β) be an adjunction context with quasi-
unit η and quasi-counit ε. The descriptions of α and β in 2.3 yield, for the identity
transformations IL : L→ L, IR : R→ R,

α(IL) = IA
η−→ RL,

β ◦ α(IL) = L
Lη−→ LRL

εL−→ L,

α ◦ β ◦ α(IL) = IA
η−→ RL

RLη−→ RLRL
RεL−→ RL,

β(IR) = LR
ε−→ IB,

α ◦ β(IR) = R
ηR−→ RLR

Rε−→ R,

β ◦ α ◦ β(IR) = LR
LηR−→ LRLR

LRε−→ LR
ε−→ IB.

As special cases of this setting we observe:

2.6. Adjoint pair of functors. Let (L,R, α, β) be an adjunction context with
quasi-unit η and quasi-counit ε (see 2.2, 2.4).

(1) β ◦ α = IL if and only if εL ◦ Lη = IL.
(2) α ◦ β = IR if and only if Rε ◦ ηR = IR.
(3) (L,R, α, β) is an adjunction if and only if β ◦ α = I and α ◦ β = I and this

implies

RεL ◦RLη = IRL = RεL ◦ ηRL, LRε ◦ LηR = ILR = εLR ◦ LηR.
We generalise adjoint pairs of functors by modifying the conditions on α and β.

2.7. α regular. Let (L,R, α, β) be an adjunction context (see 2.2).
(1) The following are equivalent:

(a) α ◦ β ◦ α = α;
(b) η induces commutativity of the diagram

IA
η //

η

��

RL

ηRL

��
RL RLRL.

RεL
oo
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If these conditions hold, we say that α is regular, and then

(i) β ◦ α(IL) = L
Lη−→ LRL

εL−→ L is idempotent;

(ii) ϑ and ϑ are idempotent and ϑ ◦ η = η = ϑ ◦ η.

(2) The following are equivalent:

(a) R−,− ◦ β ◦ α = α ◦ β ◦R−,−, that is commutativity of the diagram

MorB(L(A), B)

RL(A),B

��

αA,B // MorA(A,R(B))
βA,B // MorB(L(A), B)

RL(A),B

��
MorA(RL(A), R(B))

βRL(A),B // MorB(LRL(A), B)
αRL(A),B // MorA(RL(A), R(B));

(b) ϑ = ϑ, that is, commutativity of the diagram

RL
RLη //

ηRL

��

RLRL

RεL

��
RLRL

RεL
// RL.

If these conditions are satisfied we say that α is symmetric.

(3) If α is regular and symmetric, then ϑ respects the product of RL (in fact, is
a quasi-monad morphism, see 3.2).

Proof. (1) (a)⇔(b) This follows from the list in 2.5.
(i) can be seen from the commutative diagram

L
Lη //

Lη

��5
55

55
55

55
55

55
55

LRL
εL //

LRLη

��

L

Lη

��
LRLRL

εLRL //

LRεL

��

LRL

εL

��
LRL

εL
// L.

(ii) The idempotency of ϑ follows from (i).
The idempotency of ϑ follows from the commutative diagram

RL

ηRL

��

ηRL

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

RLRL
ηRLRL //

RεL

��

RLRLRL
RεLRL

//

RLRεL

��

RLRL

RεL

��
RL

ηRL
// RLRL

RεL
// RL.

(2) (a)⇒(b) Applying R to β ◦ α(IL) (see 2.5) yields

RL
RLη // RLRL

RεL // RL,
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and α ◦ β(IRL) produces the sequence

RL
ηRL // RLRL

RεL // RL.

(b)⇒(a) follows from the fact that α is defined by η.
(3) If α is symmetric, ϑ respects left and right action of RL, that is, we have the

commutative diagram

RLRL
RLϑ //

RεL

��

RLRL
ϑRL //

RεL

��

RLRL

RεL

��
RL

ϑ // RL
ϑ // RL.

Now, by regularity of α, ϑ is idempotent and hence the diagram tells us

RεL ◦ ϑϑ = ϑ ◦RεL,
that is, ϑ respects the product on RL. tu

For regular α we have the following criterion for symmetry:

2.8. Proposition. Let (L,R, α, β) be an adjunction context with α regular. Then
the following are equivalent:

(a) α is symmetric (i.e. ϑ = ϑ, see 2.4);
(b) ϑ and ϑ both respect left and right RL-action.

Proof. (a)⇒(b) is obvious.
(b)⇒(a) Assume ϑ to respect right RL-action, that is, commutativity of the

rectangle in the diagram

RL
ηRL // RLRL

RLηRL //

RεL

��

RLRLRL
RεLRL // RLRL

Rε

��
RL

RLη // RLRL
RεL // RL.

Since α is regular, the top sequence yields ηRL. Thus the diagram shows the
equality ϑ ◦ ϑ = ϑ.

If ϑ respects left RL-action we obtain a similar diagram leading to ϑ ◦ ϑ = ϑ.
Since ϑ and ϑ commute we conclude ϑ = ϑ. tu

2.9. β regular. Let (L,R, α, β) be an adjunction context (see 2.2).
(1) The following are equivalent:

(a) β ◦ α ◦ β = β;
(b) ε induces commutativity of the diagram

LR
ε //

LηR

��

IB

LRLR
εLR

// LR.

ε

OO

If these conditions hold, we say that β is regular, and then

(i) α ◦ β(IR) = R
ηR−→ RLR

Rε−→ R is idempotent.
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(ii) γ and γ (see 2.4) are idempotent and ε ◦ γ = ε = ε ◦ γ.

(2) The following are equivalent:

(a) L−,− ◦ α ◦ β = β ◦ α ◦ L−,−, that is, commutativity of the diagram

MorA(A,R(B))
βA,B //

LA,R(B)

��

MorB(L(A), B)
αA,B // MorA(A,R(B))

LA,R(B)

��
MorB(L(A), LR(B))

αA,R(B) // MorA(A,RLR(B))
βA,LR(B) // MorB(L(A), LR(B));

(b) γ = γ, that is, commutativity of the diagram

LR
LηR //

LηR

��

LRLR

LRε

��
LRLR

εLR
// LR.

If these conditions hold we say that β is symmetric.
(1) If β is regular and symmetric, then γ respects the coproduct of LR (in fact,

is a quasi-comonad morphism, see 4.2).

Proof. (dual to 2.7) (1) (a)⇔(b) follows from the list in 2.5.
(i) can be seen from the commutative diagram

R
ηR //

ηR

��

RLR

ηRLR

��

Rε // R

ηR

��
RLR

RLηR//

Rε
**UUUUUUUUUUUUUUUUUUUUU RLRLR

LRLε // RLR

Rε

��
R.

(ii) γ = L(k) and hence is idempotent by (i).
The idempotency of γ is seen from the commutative diagram

LR

LηR

��

LηR // LRLR

εLR

��9
99

99
99

99
99

99
99

9

LηLRL

��
LRLR

LRLηR //

εLR

��

LRLRLR

εLRLR

��
LR

LηR
// LRLR

εLR
// LR.

(3) By symmetry of β, γ respects left and right coactions of LR, so we have the
commutative diagram

LR
γ //

LηR

��

LR
γ //

LηR

��

LR

LηR

��
LRLR

LRγ // LRLR
γLR // LRLR.
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By regularity of β, γ is idempotent and hence we see from the diagram

LηR ◦ γ = γγ ◦ LηR,

that is, γ respects the coproduct of LR. tu

If γ is regular, we have the following criterion for symmetry:

2.10. Proposition. Let (L,R, α, β) be an adjunction context with β regular. Then
the following are equivalent:

(a) β is symmetric (i.e. γ = γ, see 2.4);

(b) γ and γ both respect left and right LR-coaction.

Proof. The statements and the proofs are dual to 2.8. tu

2.11. Definition. We call an adjunction context (L,R, α, β) regular if both α and
β are regular and call it symmetric if they are both symmetric (see 2.7, 2.9).

Any adjunction context with one of the maps regular can be transferred to a
regular context.

2.12. Proposition. Let (L,R, α, β) be an adjunction context.
(1) If α is regular, then, for β′ = β ◦ α ◦ β, (L,R, α, β′) is a regular adjunction

context. For A ∈ A and B ∈ B,

β′ : MorA(A,R(B)) → MorB(L(A), B),

R
IR−→ R 7→ LR

LηR−→ LRLR
LRε−→ LR

ε−→ IB.

(2) If β is regular, then, for α′ = α ◦ β ◦ α, (L,R, α′, β) is a regular adjunction
context. For A ∈ A and B ∈ B,

α′ : MorB(L(A), B) → MorA(A,R(B))

L
IL−→ L 7→ IA

η−→ RL
RLη−→ RLRL

RεL−→ RL.

Proof. The assertions are easily verified. The values of the maps β′ and α′ can
be seen from the list in 2.5. tu

For an adjoint pair (L,R) of functors, there are well-known bijections between the
classes of natural transformations Nat(L,L), Nat(R,R), Nat(IA, RL) and Nat(LR, IB).
The maps providing these connections can also be defined for any adjunction con-
text but they do not lead to bijections. We pick out two pairs of them.

2.13. Related natural transformations. Let (L,R, α, β) be a regular adjunction
context. Then we get the following pairs of regular maps:

(i) Nat(L,L)→ Nat(R,R), s 7→ R
ηR−→ RLR

RsR−→ RLR
Rε−→ R,

Nat(R,R)→ Nat(L,L), t 7→ L
Lη−→ LRL

LtL−→ LRL
εL−→ L.

(ii) Nat(IA, RL)→ Nat(R,R), h 7→ R
hR−→ RLR

Rε−→ R,

Nat(R,R)→ Nat(IA, RL), k 7→ IA
η−→ RL

kL−→ RL.

Proof. The assertions can be shown by straightforward computations. tu

2.14. Special cases. Let (L,R, α, β) be an adjunction context.
(i) If β ◦α = I, then β ◦α ◦β = β and α ◦β ◦α = α, that is, α and β are regular.
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(ii) Similarly, α ◦ β = I implies that α and β are regular. This case is considered
in Medvedev [15] and L, R are then called semiadjoint functors.

(iii) In [17, 3.1], (L,R) is said to be a rational pairing if βA,B : MorA(A,R(B))→
MorB(L(A), B) is injective for all A ∈ A, b ∈ B. If, in addition, β is regular,
then clearly α ◦ β = I.

For categories and natural transformations allowing certain constructions, we can
relate regular adjunction contexts with proper adjunctions. Note that the condi-
tions employed are satisfied provided idempotents split in the respective categories.

2.15. Relation to semiadjoint functors. Let (L,R, α, β) be an adjunction con-
text with quasi-unit η and quasi-counit ε.

(1) Let α be regular and suppose that the idempotent natural transformation h :

L
Lη−→ LRL

εL−→ L splits, that is, there are a functor L̂ : A → B and natural
transformations

p̂ : L→ L̂, î : L̂→ L with î ◦ p̂ = h and p̂ ◦ î = IbL.

Then the natural transformations

η̂ : IA
η // RL

Rbp // RL̂ , ε̂ : L̂R
biR // LR ε // IB

as quasi-unit and quasi-counit, define an adjunction context (L̂, R, α̂, β̂) with
β̂ ◦ α̂ = IbL, where for A ∈ A and B ∈ B, the maps are given by

α̂A,B : L̂(A)
f−→ B 7−→ A

bηA−→ RL̂(A)
R(f)−→ R(B),

β̂A,B : A
g−→ R(B) 7−→ L̂(A)

bL(g)−→ L̂R(B) bεB−→ B.

If α is symmetric then so is α̂.

(2) Let β be regular and suppose that the idempotent natural transformation k :

R
ηR−→ RLR

Rε−→ R splits, that is, there are a functor R̃ : A→ B and natural
transformations

p̃ : R→ R̃, ĩ : R̃→ R with ĩ ◦ p̃ = k and p̃ ◦ ĩ = I eR.

Then the natural transformations

η̃ : IA
η // RL

epL // R̃L , ε̃ : LR̃
Lei // LR ε // IB

as quasi-unit and quasi-counit, define an adjunction context (L, R̃, α̃, β̃) with
α̃ ◦ β̃ = I eR, where for A ∈ A and B ∈ B, the maps are given by

α̃A,B : L(A)
f−→ B 7−→ A

eηA−→ R̃L(A)
eR(f)−→ R̃(B),

β̃A,B : A
g−→ R̃(B) 7−→ L(A)

L(g)−→ LR̃(B) eεB−→ B.

If β is symmetric then so is β̃.
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Proof. (1) In view of the properties of î and p̂, the commutative diagram

L̂
bLη //

bi
��

L̂RL
bLRbp //

biRL
��

L̂RL̂

biRbL
��

L
Lη //

bp
��

LRL
LRbp //

εL

��

LRL̂

εbL
��

L̂
bi // L

bp // L̂

implies ε̂L̂ ◦ L̂η̂ = IbL.
An easy computation shows that the symmetry of α implies that of α̂.
(2) In view of the properties of ĩ and p̃, the commutative diagram (dual to that

in (1))

R̃
η eR //

ei
��

RLR̃
epL eR //

RLei
��

R̃LR̃

eRLei
��

R
ηR //

ep
��

RLR
epLR //

Rε

��

R̃LR

eRε
��

R̃
ei // R

ep // R̃

implies R̃ε̃ ◦ η̃R̃ = I eR.
Again it is straightforward to show that β̃ is symmetric provided β is so. tu
So far we have modified the functors to have new adjunction contexts for the

same categories. We may also modify the categories to relate an adjunction context
with a proper adjunction.

2.16. Related adjoint functors. Let (L,R, α, β) be a regular and symmetric
adjunction context. Denote by Ã, B̃ the full subcategories of A and B, respectively,
with

Obj(Ã) = {A ∈ Obj(A) |L(A)
LηA−→ LRL(A) εLA−→ L(A) = IL(A)},

Obj(B̃) = {B ∈ Obj(B) |R(B)
ηRB−→ RLR(B) RεB−→ R(B) = IR(B)}.

Then restriction and corestriction of L and R yield functors

L̃ : Ã→ B̃, R̃ : B̃→ Ã,

and (L̃, R̃) is an adjoint pair of functors.

Proof. For every A ∈ Ã, we see that

RL(A)
RLηA−→ RLRL(A) RεLA−→ RL(A).

is the identity. By the symmetry of α, this implies L(A) ∈ Obj(B̃).
Similarly, for B ∈ Obj(B̃), we derive that

LR(B)
LηRB−→ LRLR(B) LRεB−→ LR(B)

is the identity map and by symmetry of β, this implies R(B) ∈ Obj(Ã).
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From the identities in 2.5 one easily sees that α ◦ β(IR̃) = IR̃ for any B ∈ B̃ and
β ◦ α(IL̃) = IL̃. This shows that (L̃, R̃) is an adjoint pair of functors. tu

3. Quasi-monads

Monads F on any category A are characterised by the fact that they induce a free
functor φF : A → AF which is left adjoint to the forgetful functor UF : AF → A,
where AF denotes the category of (unital) F -modules. In this section we consider,
for endofunctors F , a category of quasi-modules which allows for an adjunction
context and we study the interplay between properties of this context and the
monad properties. Throughout A and B denote any categories.

3.1. Quasi-monads. A triple (F, µ, η) is called a quasi-monad on A provided
F : A → A is an endofunctor with natural transformations µ : FF → F and
η : IA → F where µ is associative. µ is called the product and η the quasi-unit of
this quasi-monad. They (always) define natural transformations

ϑ : F
Fη−→ FF

µ−→ F, ϑ : F
ηF−→ FF

µ−→ F.

3.2. Morphisms of quasi-monads. Given two quasi-monads (F, µ, η), (F ′, µ′, η′)
on A, a natural transformation h : F → F ′ is called a morphism of quasi-monads
if it induces commutativity of the diagrams

FF
hh //

µ

��

F ′F ′

µ′

��
F

h // F ′,

IA
η //

η′
  B

BB
BB

BB
B F

h

��
F ′.

Similar to the situation for monads, quasi-monads are in close relation to ad-
junction contexts. For this we define:

3.3. Quasi-modules. Let F be an endofunctor on A and µ : FF → F an associa-
tive natural transformation. A quasi-F -module is an object A ∈ A with a morphism
% : F (A)→ A inducing commutativity of the left hand diagram

FF (A)
F% //

µA

��

F (A)

%

��
F (A)

% // A,

F (A)
F (f) //

%

��

F (A′)

%′

��
A

f // A′,

F -module morphisms between F -quasi-modules (A, %), (A′, %′) are A-morphisms
f : A → A′ for which the right hand diagram is commutative and the set of all
these is denoted by MorF (A,A′). With these morphisms, quasi-F -modules form a
category which we denote by A−→F .

By the associativity condition on µ, for every A ∈ A, F (A) is a quasi-F -module.

The data considered above lead to an adjunction context generalising the Eilenberg-
Moore construction.

3.4. Quasi-monads and adjunction contexts. Let (F, µ, η) be a quasi-monad.
Then the free functor

φF : A→ A−→F , A 7→ (F (A), µA : FF (A)→ F (A)),
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and the forgetful functor

UF : A−→F → A, (A, %) 7→ A,

form an adjunction context (φF , UF , αF , βF ) with the maps

αF : MorF (F (A), B)→ MorA(A,UF (B)), f 7→ f ◦ ηA,
βF : MorA(A,UF (B))→ MorF (F (A), B), g 7→ % ◦ F (g),

where A ∈ A and (B, %) ∈ A−→F .

A first example for quasi-monads is given by

3.5. Adjunction contexts and quasi-monads. Let L : A → B, R : B → A
be functors forming an adjunction context (L,R, α, β) with quasi-unit η and quasi-
counit ε (see 2.3).

(i) (RL,RεL, η) is a quasi-monad.

(ii) There is a (comparison) functor

K : B→ ARL, B 7→ (R(B), Rε : RLR(B)→ R(B)),

inducing commutativity of the diagram

A L //

φRL !!C
CC

CC
CC

C B

K
��

R // A

A−→RL

URL

=={{{{{{{{

Proof. This follows essentially from 2.3. tu

For convenience we record some values of the compositions of αF and βF .

3.6. Composing αF and βF . Let (F, µ, η) be a quasi-monad. Then the values of
αF and βF in 3.4 on identity transformations yield, for A ∈ A, (B, %) ∈ A−→F :

αF (IF (A)) = A
ηA−→ F (A),

βF ◦ αF (IF (A)) = F (A)
FηA−→ FF (A)

µA−→ F (A),

αF ◦ βF ◦ αF (IF (A)) = A
ηA−→ F (A)

FηA−→ FF (A)
µA−→ F (A),

βF (IUF (B)) = F (B)
%−→ B,

αF ◦ βF (IUF (B)) = B
ηB−→ F (B)

%−→ B,

βF ◦ αF ◦ βF (IUF (B)) = F (B)
FηB−→ FF (B)

µB−→ F (B)
%−→ B.

3.7. Monads and adjunctions. Let (F, µ, η) be a quasi-monad with related ad-
junction context (φF , UF , αF , βF ). The following are equivalent:

(a) βF ◦ αF = I and αF ◦ βF = I;

(b) (F, µ, η) is a monad;

(c) φF : A→ AF , UF : AF → A is an adjunction, where AF denotes the subcat-
egory of unital F -modules of A−→F .

Proof. These assertions are well-known. tu
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3.8. Definitions. Let (F, µ, η) be a quasi-monad. Then we call

η regular if IA
η−→ F = IA

η−→ F
Fη−→ FF

µ−→ F ;

η symmetric if F
Fη−→ FF

µ−→ F = F
ηF−→ FF

µ−→ F ;

µ regular if FF
µ−→ F = FF

FηF−→ FFF
µF−→ FF

µ−→ F ;

µ symmetric if FF
FηF−→ FFF

Fµ−→ FF = FF
FηF−→ FFF

µF−→ FF ;
(F, µ, η) regular if η and µ are regular;

(F, µ, η) symmetric if η and µ are symmetric.

In [10, Definition 2.3], the quasi-unit η is called a preunit provided it is regular
and symmetric. In [4, Definition 2.1], (F, µ, η) is called a premonad provided it
is regular and η is symmetric. In both papers, under the assumptions that idem-
potent morphisms split, adjoint functors are related to the quasi-monads under
consideration (similar to the constructions in 2.15).

From the observations in 2.7 we obtain:

3.9. Properties of regular quasi-units. Let (F, µ, η) be a quasi-monad with
related adjunction context (φF , UF , αF , βF ) (see 3.4).

(1) η is regular if and only if αF is regular.

(2) If η is regular, then

(i) ϑ : F
Fη−→ FF

µ−→ F and ϑ : F
ηF−→ FF

µ−→ F are idempotent;

(ii) ϑ ◦ η = η = ϑ ◦ η.

(3) η is symmetric if and only if αF is symmetric.

(4) If η is regular and symmetric, then ϑ is an idempotent quasi-monad mor-
phism.

Notice that in 3.9 no (additional) conditions on the quasi-F -modules are im-
posed. On the other hand, to get an adjunction for a monad F (see 3.7) we had
to refer to a subcategory (of unital modules) of A−→F . A similar procedure can be
applied under more general conditions.

3.10. Regular quasi-modules. Let (F, µ, η) be a quasi-monad. A quasi-F -
module (B,ϕ) is called

regular if F (B)
ϕ−→ B = F (B)

FηB−→ FF (B)
µB−→ F (B)

ϕ−→ B,

symmetric if F (B)
FηB−→ FF (B)

Fϕ−→ F (B) = F (B)
FηB−→ FF (B)

µB−→ F (B).

With ϑ = µ ◦ Fη (see 3.1), these conditions can be written as

ϕ = ϕ ◦ ϑB , Fϕ ◦ FηB = ϑB .

We denote by AF the full subcategory of A−→F whose objects are regular quasi-F -
modules.

(i) Clearly, (F (A), µA) is a regular (symmetric) quasi-F -module for all A ∈ A if
and only if the product µ is regular (symmetric).

(ii) If µ is regular, then with ϑ = µ ◦ ηF (see 3.1),

FF
ϑF−→ FF

µ−→ F = FF
µ−→ F = FF

Fϑ−→ FF
µ−→ F.
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(iii) If µ is regular and η is symmetric, then for any (A,ϕ) ∈ AF ,

F (A)
ϕ−→ A = F (A)

ϕ−→ A
ηA−→ F (A)

ϕ−→ A.

Assertion (iii) follows from the commutative diagram

F (A)
ηF (A) //

ϕ

��

FF (A)
µA //

Fϕ

��

F (A)

ϕ

��
A

ηA // F (A)
ϕ // A.

As an easy consequence of the definitions we mention that, for any (proper)
monad (F, µ, η), all quasi-F -modules are regular and symmetric (but not unital).

3.11. Regular quasi-monads and adjunction contexts. Let (F, µ, η) be a
regular quasi-monad.

(1) The (obvious) free and forgetful functors

φF : A→ AF , UF : AF → A,

form a regular adjunction context (φF , UF , αF , βF ).
(2) If η is symmetric, then the quasi-monad morphism ϑ : F → F induces the

identity functor on AF .

Proof. (1) is obvious from the observations in 3.9 and 3.10.
(2) The quasi-monad morphism ϑ transfers any quasi-module ϕ : F (A) → A to

F (A) ϑ−→ F (A)
ϕ−→ A which – by regularity – is equal to ϕ : F (A)→ A. tu

If µ or η is regular, the other one can be modified to be also regular.

3.12. Proposition. Let (F, µ, η) be a quasi-monad.
(1) If η is regular (see 3.8), then, for

µ̃ : FF
FηF−→ FFF

Fµ−→ FF
µ−→ F,

(F, µ̃, η) is a regular quasi-monad.
(2) If µ is regular, then, for

η̃ : IA
η−→ F

Fη−→ FF
µ−→ F,

(F, µ, η̃) is a regular quasi-monad.
(3) If (F, µ, η) is a regular quasi-monad, then for

µ̂ : FF
ηFFη−→ FFFF

µFF−→ FFF
µF−→ FF

µ−→ F,

(F, µ̂, η) is a regular quasi-monad with η symmetric.

Proof. (1) and (2) follow from Proposition 2.12, assertion (3) can be easily
verified. tu

As a special case we consider quasi-monads on the category RM of modules over
a commutative ring R with unit.

3.13. Quasi-algebras. A quasi-algebra (A,m, u) is an R-module A with asso-
ciative multiplication m : A ⊗R A → A and R-linear map u : R → A. Putting
e := u(1R) ∈ A we have:
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(1) u is regular if and only if e = u(1R) is an idempotent in A.
(2) u is regular and symmetric if and only if e is a central idempotent (then Ae

is a unital R-subalgebra of A).
(3) µ is regular if and only if ab = aeb for all a, b ∈ A.
(4) µ is symmetric if and only if A⊗R eA = Ae⊗R A.
(5) If u is regular, then m̃(a⊗b) = aeb, for a, b ∈ A, defines a regular quasi-algebra

(A, m̃, u).
(6) If u is regular, then m̂(a ⊗ b) = eaebe, for a, b ∈ A, defines a regular quasi-

algebra (A, m̃, u) with u symmetric.

Clearly, the quasi-algebras (A,m, u) over R correspond to the quasi-monads
(A⊗R −,m⊗−, u⊗−) on RM and thus we get:

3.14. Quasi-modules. Let (A,m, u) be a regular quasi-algebra over R. For the
category AM of regular quasi-A-modules, the free functor

φA : RM→ AM, X 7→ (A⊗R X,mA ⊗ IX),

together with the forgetful functor UA : AM → RM yield a regular adjunction
context (φA, UA, αA, βA) with the maps, for X ∈ RM, (M,ρ) ∈ AM,

αA : MorA(A⊗R X,M)→ MorR(X,M), f 7→ f ◦ (u⊗A),
βA : MorR(X,M)→ MorA(A⊗R X,M), g 7→ ρ ◦ (A⊗ g).

3.15. Quasi-monads acting on functors. Let T : A → B be a functor and
(G,µ′, η′) a quasi-monad on B. We call T a left quasi-G-module if there exists a
natural transformation % : GT → T such that

GGT
G%−→ GT

%−→ T = GGT
µ′T−→ GT

%−→ T,

and we call it a regular quasi-G-module if in addition

GT
%−→ T = GT

Gη′

−→ GGT
µ′T−→ GT

%−→ T.

Note that the quasi-monad G may be seen as quasi-monad on the category of
functors A → B and the (regular) quasi-G-module T is a (regular) quasi-module
for this quasi-monad.

3.16. Proposition. Let T : A → B be a functor and (G,µ′, η′) a regular quasi-
monad on B. Then there is a functor T : A→ BG with commutative diagram

BG
UG

��
A

T
//

T
>>}}}}}}}}
B

if and only if T is a regular quasi-G-module.

Proof. Given T as a regular quasi-G-module with % : GT → T the natural
transformation, the functor

T : A→ BG, A 7→ (T (A), %A : GT (A)→ T (A))

has the required property.
Now assume there exists a functor T making the diagram commutative. Then

for A ∈ A, the are morphisms ρA : GT (A) → T (A) and they define a natural
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transformation ρ : GT → T . For this we have to show that, for any morphism
f : A→ Â, the middle rectangle is commutative in the diagram

GGT (A)
µ′

T (A) // GT (A)

GT (f)

��

ρA

zzuuuuuuuuu

GT (A)

Gη′TA

OO

GT (f)

��

ρA // T (A)

T (f)

��
GT (Â)

Gη′T bA
��

ρ bA // T (Â)

GGT (Â)
µ′

T ( bA) // GT (Â).

ρ bA
ccHHHHHHHHH

The top and bottom diagrams are commutative by regularity of the quasi-G-
modules, and the right trapezium is commutative since T (f) is an G-morphism.
Thus the inner diagram is commutative showing naturality of ρ. tu

For an easy example of the notion introduced in Proposition 3.16, observe that
for any regular quasi-monad (G,µ′, η′), G is a regular quasi-G-module.

4. Quasi-comonads

Having seen how to extend the theory of monads to quasi-monads, it is quite
obvious how a similar step is to be done for quasi-comonads. Recall that a comonad
G on any category A induces a free functor φG : A→ AG which is right adjoint to
the forgetful functor UG : AG → A, where AG denotes the category of (counital)
G-comodules. Again A denotes any category.

4.1. Quasi-comonads. A triple (G, δ, ε) is called a quasi-comonad on A provided
G : A → A is an endofunctor with natural transformations δ : G → GG and
ε : G → IA where δ is co-associative. δ is called the coproduct and ε the quasi-
counit of this quasi-comonad. They always define natural transformations

γ : G δ−→ GG
Gε−→ G, γ : G δ−→ GG

εG−→ G.

4.2. Morphisms of quasi-comonads. Given two quasi-monads (G, δ, ε) and
(G′, δ′, ε′) on A, a natural transformation k : G → G′ is called a morphism of
quasi-comonads if it induces commutativity of the diagrams

G
k //

δ

��

G′

δ′

��
GG

kk // G′G′,

G
ε //

k

��

IA

G′
ε′

>>}}}}}}}
.

Similar to the situation for comonads, quasi-comonads are in close relation to
adjunction contexts. For this we define:

4.3. Quasi-comodules. Let G be an endofunctor on A and δ : G → GG a co-
associative natural transformation. A quasi-G-comodule is an object A ∈ A with a
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morphism υ : A→ G(A) such that

A
υ−→ G(A) Gυ−→ GG(A) = A

υ−→ G(A) δ−→ GG(A).

G-comodule morphisms between quasi-G-comodules (A, υ), (A′, υ′) are morphisms
g : A→ A′ with

A
g−→ A′

υ′

−→ G(A′) = A
υ−→ G(A)

G(g)−→ G(A′)

and the set of all these is denoted by MorG(A,A′). With these morphisms, quasi-
G-comodules form a category which we denote by A−→

G.
By the co-associativity condition on δ, for every A ∈ A, G(A) is a quasi-G-

module.

4.4. Quasi-comonads and adjunction contexts. Let (G, δ, ε) be a quasi-comonad.
Then the (cofree) functor

φG : A→ A−→
G, A 7→ (G(A), G(A) δA−→ GG(A)),

and the forgetful functor

UG : A−→
G → A, (A, ρA) 7→ A,

form an adjunction context (UG, φG, αG, βG) where, for A ∈ A and (B, υ) ∈ A−→
G,

αG : MorA(UG(B), A)→ MorG(B,G(A)), B
f−→ A 7→ B

υ−→ G(B)
G(f)−→ G(A),

βG : MorG(B,G(A))→ MorA(UG(B), A), B
g−→ G(A) 7→ G(B)

G(g)−→ G(A) εA−→ A.

Proof. All assertions are easily derived from the definitions (dual to 3.4). tu

As an interesting (motivating) example for comonads we obtain:

4.5. Adjunction contexts and quasi-comonads. Let (L,R, α, β) be an adjunc-
tion context betwen the categories A and B with quasi-unit η and quasi-counit ε (see
2.3). Then:

(i) (LR,LηR, ε) is a quasi-comonad.

(ii) There is a (comparison) functor

K̃ : A→ B−→
LR, A 7→ (L(A), Lη : L(A)→ LRL(A)),

inducing commutativity of the diagram

B R //

φLR !!B
BB

BB
BB

B A

eK
��

L // B

B−→
LR

ULR

==||||||||

Proof. This follows essentially from 2.3. tu

For convenience we record some values of the compositions of αG and βG.
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4.6. Composing αG and βG. Let (G, δ, ε) be a quasi-comonad. Then the values
of αG and βG in 4.4 on the identity transformations yield, for (B, υ) ∈ A−→

G,

αG(IUG(B)) = B
υ−→ G(B),

βG ◦ αG(IUG(B)) = B
υ−→ G(B) εB−→ B,

αG ◦ βG ◦ αG(IUG(B)) = B
υ−→ G(B) δB−→ GG(B) GεB−→ G(B),

βG(IG) = G
ε−→ IA,

αG ◦ βG(IG) = G
δ−→ GG

Gε−→ G,

βG ◦ αG ◦ βG(IG) = G
δ−→ GG

Gε−→ G
ε−→ IA.

4.7. Comonads and adjunctions. Let (G, δ, ε) be a quasi-comonad with related
adjunction context (UG, φG, αG, βG). The following are equivalent:

(a) αG is invertible with invers βG;

(b) (G, δ, ε) is a comonad;

(c) UG : AG → A, φG : A → AG is an adjunction, where AG denotes the
subcategory of counital G-comodules of A−→

G.

Proof. These are well-known characterisations of comonads. tu

4.8. Definitions. Let (G, δ, ε) be a quasi-comonad with related adjunction context
(UG, φG, αG, βG). Then we call

ε regular if G
ε−→ IA = G

δ−→ GG
Gε−→ G

ε−→ IA;
ε symmetric if G

δ−→ GG
Gε−→ G = G

δ−→ GG
εG−→ G;

δ regular if G
δ−→ GG = G

δ−→ GG
δG−→ GGG

GεG−→ GG;
δ symmetric if GG

Gδ−→ GGG
GεG−→ GG = GG

δG−→ GGG
GεG−→ GG;

(G, δ, ε) regular if ε and δ are regular;
(G, δ, ε) symmetric if ε and δ are symmetric.

In [10, Definition A.3], the quasi-counit ε is called a pre-counit provided it is
regular and symmetric.

The observations in 2.9 read here as follows.

4.9. Properties of regular quasi-counits. Let (G, δ, ε) be a quasi-comonad with
related adjunction context (UG, φG, αG, βG) (see 4.4). Then:

(1) ε is regular if and only if βG is regular.

(2) If ε is regular, then

(i) γ : G δ−→ GG
Gε−→ G and γ : G δ−→ GG

εG−→ G are idempotent;

(ii) ε ◦ γ = ε = ε ◦ γ.

(3) ε is symmetric if and only if βG is symmetric.

(4) If ε is regular and symmetric, then γ is an idempotent quasi-comonad mor-
phism.

Similar to the case of quasi-modules (see 3.9), in 4.9 no (additional) conditions
on the quasi-G-comodules are imposed. To get an adjunction context with better
properties we have to select a subcategory of A−→

G.
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4.10. Regular quasi-comodules. Let (G, δ, ε) be a quasi-comonad. A quasi-G-
comodule (B, υ) is called

regular if B
υ−→ G(B) = B

υ−→ G(B) δB−→ GG(B) GεB−→ G(B);

symmetric if G(B) Gυ−→ GG(B) GεB−→ G(B) = G(B) δB−→ GG(B) GεB−→ G(B).

With γ = Gε ◦ δ (see 4.1) this conditions are written as

υ = γB ◦ υ, GεB ◦Gυ = γB .

We denote by AG the full subcategory of A−→
G whose objects are regular quasi-G-

comodules.
(i) Clearly, (G(A), δA) is a regular (symmetric) quasi-G-comodule for each A ∈ A

if and only if the product δ is regular (symmetric).
(ii) If δ is regular, then with γ = εG ◦ δ,

G
δ−→ GG

γG−→ GG = G
δ−→ GG = G

δ−→ GG
Gγ
−→ GG.

(iii) If δ is regular and ε is symmetric, then for any (B, υ) ∈ AG,

B
υ−→ G(B) = B

υ−→ G(B) ε−→ B
υ−→ G(B).

Similar to the situation for quasi-modules, for any (proper) comonad (G, δ, ε),
all quasi-comodules are regular and symmetric.

4.11. Regular quasi-comonads and adjunction contexts. Let (G, δ, ε) be a
regular quasi-comonad.

(1) The (obvious) cofree and forgetful functors

φG : A→ AG, UG : AG → A,

form a regular adjunction context (UG, φG, αG, βG).
(2) If ε is symmetric, then the quasi-comonad morphism γ : G → G induces the

identity functor on AG.

Proof. In view of 4.9 and 4.10, the proof is dual to that of 3.11. tu
If δ or ε is regular, the other one can be modified to be regular, too.

4.12. Proposition. Let (G, δ, ε) be a quasi-comonad with related adjunction con-
text (UG, φG, αG, βG).

(1) If ε is regular (see 4.9), then, for

δ̃ : G δ−→ GG
Gδ−→ GGG

GεG−→ GG,

(G, δ̃, ε) is a regular quasi-comonad.
(2) If δ is regular, then, for

ε̃ : G δ−→ GG
Gε−→ G

ε−→ IA,

(G, δ, ε̃) is a regular quasi-comonad.
(3) If (G, δ, ε) be a regular quasi-comonad, then, for

δ̂ : G δ−→ GG
Gδ−→ GGG

GGδ−→ GGGG
εGGε−→ GG,

(G, δ̂, ε) is a regular quasi-comonad with ε symmetric.
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Proof. (dual to Proposition 3.12) (1) and (2) follow from Proposition 2.12, and
assertion (3) can be directly verified. tu

As a special case we consider quasi-comonads on the category RM of modules
over a commutative ring R with unit.

4.13. Quasi-coalgebras. A quasi-coalgebra (C,∆, ε) is an R-module C with R-
linear maps ∆ : C → C ⊗R C and ε : C → R, where the comultiplication ∆ is
coassociative. Writing for c ∈ C, ∆(c) =

∑
c1 ⊗ c2 we have:

(1) ε is regular if and only if for any c ∈ C, ε(c) =
∑
ε(c1)ε(c2).

(2) ε is symmetric if and only if
∑
c1ε(c2) =

∑
ε(c1)c2.

(3) ∆ is regular if and only if ∆(c) =
∑
c1 ⊗ c2ε(c3).

(4) ∆ is symmetric if and only if
∑
c⊗ ε(d1)d2 =

∑
c1ε(c2)⊗ d.

(5) If ε is regular, then ∆̃(c) :=
∑
c1 ⊗ ε(c2)c3 defines a regular quasi-coalgebra

(C, ∆̃, ε).

(6) If (C,∆, ε) is a regular quasi-comonad, then ∆̂(c) :=
∑
ε(c1)c2 ⊗ c3ε(c4)

defines a regular quasi-coalgebra (C, ∆̂, ε) with ε symmetric.

Clearly, the quasi-coalgebras (C,∆, ε) over R correspond to the quasi-comonads
(C ⊗R −,∆⊗−, ε⊗−) on RM and thus we get:

4.14. Quasi-comodules. Let (C,∆, ε) be a regular quasi-coalgebra over R. For
the category CM of regular left quasi-C-comodules, the cofree functor

φC : RM→ CM, X 7→ (C ⊗R X,∆⊗ IX),

together with the forgetful functor UC : CM → RM yield a regular adjunction
context (UC , φC , αC , βC) with the maps, for X ∈ RM, (M,υ) ∈ CM,

αC : MorR(M,X)→ MorC(M,C ⊗R X), f 7→ (C ⊗ f) ◦ υ,
βC : MorC(M,C ⊗R X)→ MorR(M,X), g 7→ (ε⊗ IX) ◦ (C ⊗ g).

4.15. Weak corings and pre-A-corings. Let A be a ring with unit 1A and C a
quasi-(A,A)-bimodule which is unital as right A-module. Assume there are given
(A,A)-bilinear maps

∆ : C → C ⊗A C, ε : C → A,

where ∆ is coassociative.
(C,∆, ε) is called a right unital weak A-coring in [19], provided for all c ∈ C,

(ε⊗ IC) ◦∆(c) = 1A · c = (IC ⊗ ε) ◦∆(c),

which reads in (obvious) Sweedler notation as∑
ε(c1)c2 = 1A · c =

∑
c1ε(c2).

From the equations

(IC ⊗ ε⊗ IC) ◦ (IC ⊗∆) ◦∆(c) =
∑
c1 ⊗ 1A · c2 =

∑
c1 ⊗ c2 = ∆(c),

(IC ⊗ ε⊗ IC) ◦ (∆⊗ IC) ◦∆(c) =
∑

1A · c1 ⊗ c2 = 1A ·∆(c),

it follows by coassociativity that 1A · ∆(c) = ∆(c). Summarising we see that, in
this case, (C,∆, ε) is a regular and symmetric quasi-comonad on the category AM−→
of left quasi-A-modules (=AM since A has a unit).
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(C,∆, ε) is called an A-pre-coring in [7, Section 6], if

(ε⊗ IC) ◦∆(c) = c, (IC ⊗ ε) ◦∆(c) = 1A · c,
which reads in Sweedler notation as

c =
∑

ε(c1)c2, 1A · c =
∑

c1ε(c2).

Similar to the computation above we obtain that 1A ·∆(c) = ∆(c). Now (C,∆, ε)
is a regular quasi-comonad on AM−→ but neither ε nor ∆ are symmetric.

Notice that in both cases considered above, restriction and corestriction of ∆
and ε yield an A-coring (AC,∆, ε) (e.g. [19, Proposition 1.3], compare also 2.16).

Dual to 3.15, the notion of comodule functors (as considered in [16, 3.3]) can be
extended to

4.16. Quasi-comonads acting on functors. Let T : A → B be a functor and
(G, δ, ε) a quasi-comonad on B. We call T a left quasi-G-comodule if there exists a
natural transformation υ : T → GT such that

T
υ−→ GT

υG−→ GGT = T
υT−→ GT

δ−→ GGT,

and we call it a regular quasi-G-comodule if in addition

T
υ−→ GT = T

υ−→ GT
δ−→ GGT

Gε−→ GT.

A quasi-comonad G may be seen as quasi-comonad on the category of functors
A→ B and the (regular) quasi-G-comodule T is a (regular) quasi-comodule for this
quasi-monad.

4.17. Proposition. Let T : A → B be a functor and (G, δ, ε) a regular quasi-
comonad on B. Then there is a functor T : A→ BG with commutative diagram

BG

UG

��
A

T
//

T
??~~~~~~~
B

if and only if T is a regular quasi-G-comodule.

Proof. The proof is dual to that of 3.15. tu

5. Entwinings with quasi-monads

5.1. Lifting of functors to quasi-modules. Let (F, µ, η) and (G,µ′, η′) be quasi-
monads on the categories A and B, respectively. Denote by A−→F , B−→G the categories
of the corresponding quasi-modules and by AF , BG the categories of the regular
quasi-modules provided the quasi-monads are regular (see 3.3). Given functors

T : A→ B,
−→
T : A−→F → B−→G, T : AF → BG

we say that
−→
T or T is a lifting of T provided the corresponding diagram

(5.1) A−→F

−→
T //

UF

��

B−→G

UG

��
A T // B

or AF
T //

UF

��

BG
UG

��
A T // B
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is commutative, where the U ’s denote the forgetful functors (see 3.4).
The natural transformations ϑ = µ ◦Fη : F → F and ϑ′ = µ′ ◦Gη′ : G→ G are

quasi-module morphism (see 3.1) and we put

κ := Tϑ : TF → TF.

5.2. Proposition. With the data given in 5.1, consider the pair of functors
TF, GT : A→ B and a natural transformation λ : GT → TF . The quasi-F -module
(F, µ) induces a G-action on TF ,

χ : GTF λF−→ TFF
Tµ−→ TF.

(1) If (TF, χ) is a quasi-G-module, then we get the commutative diagram

(5.2) GGT
Gλ //

µ′T

��

GTF
Gκ // GTF

λF // TFF

Tµ

��
GT

λ // TF
κ // TF.

(2) If G is regular and (TF, χ) is a regular quasi-G-module, then we have

(5.3) GT
ϑ′T // GT

λ // TF
κ // TF = GT

λ // TF
κ // TF.

(3) If F is regular and (A,ϕ) is a regular F -module, then in the diagram

(5.4) GTF (A)
λFA // TFF (A)

TµA

��

TFϕ // TF (A)

Tϕ

��
GT (A)

GTηA

OO

λA // TF (A)
Tϕ //

TFη

OO

T (A).

the outer paths commute and

(5.5) Tϕ ◦ λA = Tϕ ◦ λA ◦GTϕ ◦GTηA.

Proof. (1) To make T a left quasi-G-module, associativity of the G-action is
required, that is, commutativity of the inner rectangle in the diagram

GGT
Gλ //

µ′T

��

GGTη

%%JJJJJJJJJ GTF

GTFη

��

Gκ

%%JJJJJJJJJ

GGTF
GλF

//

µ′TF

��

GTFF
GTµ
// GTF

λF

��
TFF

Tµ

��
GT

GTη //

λ
**UUUUUUUUUUUUUUUUUUUUU GTF

λF // TFF
Tµ // TF

TF

TFη

OO

κ

99ttttttttt
.

The other inner diagrams are commutative by functoriality of composition or defi-
nition and hence the outer paths yields commutativity of the diagram (5.2).
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(2) The regularity condition for the quasi-G-module structure (see 3.10) is com-
mutativity of the inner rectangle in the diagram

GGT
GGTη

%%JJJJJJJJJ
µ′T // GT

λ //

GTη

��

TF

TFη

��
GGTF

µ′TF

// GTF
λF // TFF

Tµ

��
GTF

λF //

Gη′TF

OO

TFF
Tµ // TF

GT

GTη
99ttttttttt

Gη′T

OO

λ // TF

TFη

OO

κ

::uuuuuuuuu
,

while the other subdiagrams are commutative by naturality or definition. Now, by
the definition of ϑ′, the outer commutative diagram is just equation (5.3).

(3) Commutativity of the partial diagrams in (5.4) is clear by naturality and the
definition of quasi-F -modules. Commutativity of the outer diagram follows from
regularity of ϕ, that is, ϕ = ϕ ◦ µA ◦FηA. Now the final equation is a consequence
of the equality λA ◦GTϕ = TFϕ ◦ λF (A). tu

5.3. Proposition. Let (F, µ, η) and (G,µ′, η′) be regular quasi-monads on the
categories A and B, respectively, and T : A → B any functor. Then a natural
transformation λ : GT → TF induces a lifting

T : AF → BG, (A,ϕ) 7→ (T (A), Tϕ ◦ λA : GT (A)→ T (A))

to the regular modules if and only if the diagram (5.2) is commutative and equation
(5.3) holds.

Proof. The necessity of the conditions follows from Proposition 5.2.
Now assume the diagrams addressed to be commutative. Let ϕ : F (A) → A be

a regular quasi-F -module, that is, ϕ ◦ ϑA = ϕ and Tϕ ◦ κA = Tϕ.
Attaching F to the commutative diagram (5.2) and applying regularity of µ

yields the commutative diagram

GGTF
GλF //

µ′TF

��

GTFF
GTϑF //

GTµ %%LLLLLLLLLL GTFF
λFF //

GTµ

��

TFFF

TµF

��
GTF

λF // TFF

Tµ

��
GTF

λF // TFF

TϑF

99rrrrrrrrrr

Tµ
// TF.
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From this we get commutativity of the heptagon in the diagram

GGT (A)
GGTη

&&MMMMMMMMMM

µ′T

��

Gλ // GTF (A)

GTFη

��

Gκ // GTF (A)
GTϕ //

λF

��

GT (A)

λ

��
GGTF (A)

GλF
//

µ′TF (A)

��

GTFF (A)

GTµ
88qqqqqqqqqq
TFF (A)

TFϕ //

Tµ

��

TF (A)

Tϕ

��
GTF (A) λF // TFF (A)

Tµ // TF (A)
Tϕ // T (A)

GT (A)

GTη
88qqqqqqqqqq

λ
// TF (A)

TFη

OO
κ

88qqqqqqqqqq Tϕ

44hhhhhhhhhhhhhhhhhhhhhh ,

in which all the other subdiagrams are commutative by naturality or definition.
This shows that Tϕ ◦ λA defines a quasi-G-module structure on T (A).

Regularity of the quasi-G-module T (A) means commutativity of the outer paths
in the diagram

GGT (A)
µ′T // GT (A) λ // TF (A)

κ

��

Tϕ

$$I
IIIIIIII

GT (A)
λ
//

Gη′T

OO
ϑ′T

99ssssssssss
TF (A)

κ
// TF (A)

Tϕ
// T (A);

this holds since the pentagon is just equation (5.3) (hence commutative by assump-
tion) and (A,ϕ) is regular. tu

These observations allow us to extend Applegate’s lifting theorem for monads
(e.g. [12, Lemma 1]) to quasi-monads and quasi-modules with regularity conditions.

5.4. Theorem. Let (F, µ, η) and (G,µ′, η′) be regular quasi-monads on A and B,
and AF and BG the categories of the regular quasi-modules, respectively. For any
functor T : A→ B, there are bijective correspondences between

(i) liftings of T to T : AF → BG, such that for any (A,ϕ) ∈ AF , the regular
quasi-G-module structure map % : GTUF → TUF induces commutativity of
the diagram

(5.6) GTF (A)
%F (A) // TF (A)

Tϕ

��
GT (A)

GTηA

OO

%A // T (A);

(ii) regular quasi-G-module structures % on TUF : AF → B inducing commutativ-
ity of the diagram corresponding to (5.6);

(iii) natural transformations λ : GT → TF with

λ ◦ ϑ′T = λ = κ ◦ λ
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and commutative diagram

(5.7) GGT
Gλ //

µ′T

��

GTF
λF // TFF

Tµ

��
GT

λ // TF.

Proof. (i)⇔(ii) This follows from the right hand diagram in (5.1) and Pro-
position 3.16.

(ii)⇒(iii) With % (as in (i)), put

λ := %F ◦GTη : GT
GTη−→ GTF

%F−→ TF.

By regularity of η and naturality, we get the commutative diagram

GT
GTη //

GTη

��6
66

66
66

66
66

66
66

GTF
%F //

GTFη

��

TF

TFη

��
GTFF

GTµ

��

%FF // TFF

Tµ

��
GTF

%F // TF

from which we obtain
κ ◦ %F = %F ◦Gκ and κ ◦ λ = λ.

In the diagram
GT

GTη

%%JJJJJJJJJ

GGT
GGTη

//

µ′T
99ttttttttt
GGTF

µ′TF

// GTF

%F

��
GT

Gη′T

OO

GTη
// GTF

%F
//

Gη′TF

OO

TF,

the right square is commutative by regularity of % while the other partial diagrams
are commutative by naturality. This shows that λ ◦ ϑ′T = λ.

Consider the diagram

GGT

µ′T

��

GGTη// GGTF

µ′TF

��

G%F // GTF
GTηF//

%F

��

GTFF

%FF

��
GT

GTη
// GTF

%F
// TF TFF,

Tµ
oo

in which the left two squares are commutative by naturality and associativity,
respectively, while the right square is commutative as a special case of the diagram
(5.6). Reading the diagram in terms of λ we see that (5.7) is commutative.

(iii)⇒(i) By Proposition 5.3 and 3.16, %A := Tϕ ◦ λA may be considered as
regular quasi-G-module structure on TUF . Commutativity of (5.6) can be written
as

%A = Tϕ ◦ %F ◦GTηA = % ◦GTϕ ◦GTηA.



ADJUNCTION CONTEXTS 27

Now the equation (5.5) implies commutativity of (5.6).

To show uniqueness of the correspondence, let % : GTUF → TUF be a quasi-G-
module structure morphism with commutative diagram (5.6) (in (ii)). With the λ
defined in the proof (ii)⇒(iii), we obtain a quasi-G-module structure on TF (see
5.2),

%̃ : GTF
GTηF−→ GTFF

%FF−→ TFF
Tµ−→ TF.

This fits into the (obviously) commutative diagram

GT
GTη //

GTη

��

GTF
%F //

GTFη

��

TF

TFη

��
GTF

GTηF// GTFF
%FF

//

GTµ

��

TFF

Tµ

��
GTF

%F // TF

which shows that %̃ ◦ GTη = κ ◦ %F ◦ GTη = λ. Now commutativity of (5.6) just
means %A = Tϕ ◦ λA. tu

Clearly the morphism κ = Tϑ (see 5.1) shows the deviation of the quasi-unit
from unitality. We list some properties and relations for this entity.

5.5. Lemma. Let (F, µ, η), (G,µ′, η′) be quasi-monads and T : A → B a functor
with (any) natural transformation λ : GT → TF and consider

κ̂ : TF
η′TF // GTF

λF // TFF
Tµ // TF.

(1) κ̂ ◦ κ = κ ◦ κ̂.

(2) If λ ◦ η′T = Tη, then κ̂ = Tϑ.

(3) If the diagram (5.7) is commutative, then λ ◦ ϑ′T = κ̂ ◦ λ.

(4) If (5.7) is commutative and η′ is regular, then κ̂ is idempotent.

Proof. (1) follows by commutativity of the diagram

TF

TFη

��

η′TF // GTF

GTTη

��

λF // TFF
Tµ //

TTFη

��

TF

TFη

��
TFF

η′TFF //

Tµ

��

GTFF
λFF //

GTµ

��

TFFF
TµFF //

TFµ

��

TFF

Tµ

��
TF

η′TF

// GTF
λF

// TFF
TµF

// TF,

in which the top and the bottom row both yield κ̂ and the left and right vertical
morphisms are κ = Tϑ.

(2) is obvious, for (3) see lower part of the diagram in the proof of (4).
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(4) The diagram

T

η′T

��

η′T

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

GT
η′GT //

λ

��

GGT
µ′T

//

Gλ

��

GT

λ

��
TF

η′TF // GTF
λF // TFF

Tµ // TF,

is commutative by assumption and naturality. Applying the outer morphisms to F
yields the upper part commutative in the diagram

TF

η′TF

��

η′TF // GTF

λF

��
GTF

λF // TFF
bκF //

Tµ

��

TFF

Tµ

��
TF

bκ // TF,

while the lower part is commutative by associativity of µ. This shows that κ̂ is
idempotent. tu

As a special case of Theorem 5.4 we consider regular quasi-algebras.

5.6. Regular quasi-modules of quasi-algebras. Let A be an R-module with
multiplication m : A ⊗R A → A and idempotents e, f . Then (A,me, e) and
(A,mf , f) are regular quasi-algebras with multiplications

me(a⊗ b) := m(a⊗m(e⊗ b)) and mf (a⊗ b) := m(a⊗m(f ⊗ b)),
for a, b ∈ A (see 3.13).

For any R-module T , the twist map tw : A⊗R T → T ⊗RA satisfies the equality
m ◦ (tw⊗A) ◦ (A⊗ tw) = tw ◦m but this does no longer hold when replacing m by
me and mf , respectively.

Composing tw with − · f ⊗ T and T ⊗ − · e from the left and right hand side,
respectively, we define

λ : A⊗R T → T ⊗R A, a⊗ t 7−→ t⊗ afe,

and the diagram

A⊗R A⊗R T
A⊗λ //

mf⊗T
��

A⊗R T ⊗R A
λ⊗A // T ⊗R A⊗R A

me⊗T
��

A⊗R T
λ // T ⊗R A,

is commutative, provided for a, b ∈ A and t ∈ T ,

t⊗ afbfe = t⊗ afebfe.

This obviously holds, for example, if fe = f or also if e is a central element. In this
case the functor T ⊗R − : MR →MR can be lifted to T : M(A,m,e) →M(A,m,f).
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Indeed, for a regular (A,me, e)-module A ⊗R M → M we have am = aem for
any a ∈ A, m ∈M . On T ⊗RM , λ induces the left A-module structure

A⊗R T ⊗RM → T ⊗RM, a⊗ t⊗m 7→ t⊗ afem = t⊗ afm,

which clearly is (A,mf , f)-regular.
This example shows that centrality of e (that is, symmetry of η in Theorem 5.4)

simplifies the situation but is not necessary for the lifting.

6. Entwinings with comonads

6.1. Lifting of functors to quasi-comodules. Let (F, δ, ε) and (G, δ′, ε′) be
quasi-comonads on the categories A and B, respectively. Denote by A−→

F , B−→
G the

categories of the corresponding quasi-comodules and by AF , BG the categories of
the regular quasi-comodules provided the quasi-comonads are regular (see 4.3).
Given functors

T : A→ B,
−→
T : A−→

F → B−→
G, T̂ : AF → BG,

we say that
−→
T or T̂ is a lifting of T if the corresponding diagram

A−→
F

−→
T //

UF

��

B−→
G

UG

��
A T // B

or AF
bT //

UF

��

BG

UG

��
A T // B

is commutative, where the U ’s denote the forgetful functors (see 3.4).
The natural transformations γ = Fε ◦ δ and γ′ = Gε′ ◦ δ′ are quasi-comodule

morphism (see 4.1) and we put

τ := Tγ : TF → TF.

6.2. Proposition. With the data given in 6.1, consider the pair of functors
TF, GT : A → B and a natural transformation ψ : TF → GT . The quasi-F -
comodule (F, δ) induces a G-coaction on TF ,

ζ : TF Tδ−→ TFF
ψF−→ GTF.

(1) If (TF, ζ) is a quasi-G-comodule, then we get the commutative diagram

(6.1) TF
τ //

Tδ

��

TF
ψ // GT

δ′

��
TFF

ψF // GTF
Gτ // GTF

Gψ // GGT.

(2) If G is regular and (TF, ζ) is a regular quasi-G-module, then

(6.2) TF
τ // TF

ψ // GT
γ′T // GT = TF

τ // TF
ψ // GT.

Proof. The proof is dual to that of Proposition 6.2. To illustrate the situation
and for convenient reference we write out some of the diagrams involved.



30 ROBERT WISBAUER

(1) Coassociativity of the coaction means commutativity of the inner rectangle
in the diagram

TF
ψ

**UUUUUUUUUUUUUUUUUUUUU

TF

τ

99ttttttttt

Tδ
//

Tδ

��

TFF

TFε

OO

ψF
// GTF

GTε
//

δ′TF

��

GT

δ′T

��

TFF

ψF

��
GTF

GTδ //

τ
$$J

JJJJJJJJ GTFF

GTFε

��

GψF // GGTF
GGTε

%%JJJJJJJJJ

GTF
Gψ // GGT,

and all the other inner diagrams are commutative by definition or naturality. Thus
the outer path is commutative and yields (6.1).

(2) Regularity of (TF, ζ) means commutativity of the inner rectangle in the
diagram

TF
ψ // GT

δ′T // GGT

Gε′T

��

TFF
ψF //

TFε

OO

GTF

GTε

OO

δ′TF // GGTF

Gε′TF

��

GGTε

99ttttttttt

TF

Tδ

OO

Tδ //

τ
$$H

HHHHHHHH TFF
ψF //

TFε

��

GTF
GTε

$$J
JJJJJJJJ

TF
ψ // GT,

where all the other inner diagrams are commutative by definition or naturality. The
outer path now gives commutativity of (6.2). tu

6.3. Proposition. Let (F, δ, ε) and (G, δ′, ε′) be regular quasi-comonads on the
categories A and B, respectively, and T : A → B any functor. Then a natural
transformation ψ : TF → GT induces a lifting

T̂ : AF → BG, (F, υ) 7→ (T (A), ψ ◦ Tυ : T (A)→ GT (A))

to the regular quasi-comodules if and only if the diagrams (6.1) and (6.2) are com-
mutative.

Proof. The proof is dual to that of Proposition 5.3. tu
Dualising Theorem 5.4, Applegate’s lifting theorem for comonads extends to

quasi-monads and quasi-modules.

6.4. Theorem. Let (F, δ, ε) and (G, δ′, ε′) be regular quasi-comonads on A and B,
and AF and BG the categories of the regular quasi-comodules, respectively. For any
functor T : A→ B, there are bijective correspondences between
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(i) liftings of T to T̂ : AF → BG, such that for any (A, υ) ∈ AF , the regular
quasi-G-comodule structure map υ : TUF → GTUF induces commutativity
of the diagram

TF (A)
υFA // GTF (A)

GTε

��
T (A)

Tυ

OO

υA // GT (A);

(ii) regular quasi-G-comodule structures υ : TUF → GTUF inducing commuta-
tivity of the diagram corresponding to that in (i);

(iii) natural transformations ψ : TF → GT with

ψ ◦ τ = ψ = γ′T ◦ ψ

and commutative diagram

TF

Tδ

��

ψ // GT

δ′T

��
TFF

ψF // GTF
Gψ // GGT.

Proof. In view of 6.2 and 6.3 the proof is dual to that of Theorem 5.4. Here
we take ψ as the composition ψ ◦ τ (with ψ from 6.2). tu

7. Lifting of endofunctors to quasi-modules

In this section we consider the

7.1. Liftings of endofunctors to quasi-modules. Let (F, µ, η) be a regular
quasi-monad and T any endofunctor on the category A. A functor T : AF → AF
and T̂ : AG → AG is a lifting of T provided it induces commutativity of the diagram

AF
T //

UF

��

AF
UF

��
A T // A.

As an application of Theorem 5.4 we get

7.2. Proposition. Let (F, µ, η) be a regular quasi-monad, AF the category of
regular quasi-modules, and T : A → A any endofunctor on A. There are bijective
correspondences between

(i) liftings of T to T : AF → AF , such that for any (A,ϕ) ∈ AF , the regular
quasi-F -module % : FTUF → TUF satisfies

%A = Tϕ ◦ %F ◦ FTηA = % ◦ FTϕ ◦ FTηA.

(ii) regular quasi-F -module structures % : FTUF → TUF satisfying the equalities
in (i);
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(iii) natural transformations λ : FT → TF with

λ ◦ ϑT = λ = Tϑ ◦ λ

and commutative diagram

(7.1) FFT
Fλ //

µT

��

FTF
λF // TFF

Tµ

��
FT

λ // TF.

From Lemma 5.5 we get the

7.3. Lemma. Let (F, µ, η) be a quasi-monad and T : A→ B a functor with (any)
natural transformation λ : FT → TF and consider

κ̂ : TF
ηTF // FTF

λF // TFF
Tµ // TF.

(1) κ̂ ◦ κ = κ ◦ κ̂.

(2) If λ ◦ ηT = Tη, then κ̂ = Tϑ.

(3) If the diagram (7.1) is commutative, then λ ◦ ϑT = κ̂ ◦ λ.

(4) If (7.1) is commutative and η is regular, then κ̂ is idempotent.

Besides the questions considered in the general case (e.g. 5.4), we may now ask
when the liftings are quasi-monads.

7.4. Proposition. Let (F, µ, η) and (T, µ̌, η̌) be regular quasi-monads and assume
T can be lifted to T : AF → AF by λ : FT → TF (see 7.2). Then, on TF , product
and quasi-unit are defined by

µ : TFTF TλF−→ TTFF
TTµ−→ TTF

µ̌F−→ TF, η : IA
η−→ F

F η̌−→ FT
λ−→ TF.

(1) If µ̌F : TTF → TF is a quasi-F -module, then we get the commutative dia-
gram

(7.2) FTT

Fµ̌

��

λT // TFT
Tλ // TTF

µ̌F

��
FT

λ // TF.

(2) If (7.2) is commutative, then (TF, µ, η) is a quasi-monad with η regular.

(3) In (2), µ is regular if and only if, in addition,

(7.3) FT
Fϑ̌ // FT

λ // TF
ϑ̌F // TF = FT

λ // TF
ϑ̌F // TF,

where ϑ̌ = µ̌ ◦ η̌T . In this case (TF, µ, η) is a regular quasi-monad.
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Proof. (1) The condition on µ̌F : TTF → TF means commutativity of the
large inner rectangle in the diagram

FTT

Fµ̌

��

FTTη

%%JJJJJJJJJ
λT // TFT

TFTη

��

Tλ // TTF

TTFη

��

Tκ

%%JJJJJJJJJ

FTTF

Fµ̌F

��

λTF
// TFTF

TλF
// TTFF

TTµ
// TTF

µ̌F

��
FTF

λF // TFF
Tµ // TF

FT

FTη
99ttttttttt λ // TF

TFη
99ssssssssss
κ

44iiiiiiiiiiiiiiiiiiii .

Since all the other subdiagrams are commutative by naturality or definition, and
κ ◦ λ = λ (see 7.2), the outer path yields commutativity of (7.2).

(2) Associativity of the product µ is obtained by standard diagram manipula-
tions. It is a special case of the corresponding part of the proof of 7.7.

The condition for regularity of the quasi-unit η is commutativity of the outer
path of the diagram

IA
ηη̌ //

ηη̌

��

FT
λ //

λ

��

TF

TFη

��

κ

yyssssssssss

FT

λ

��

TF

TF η̌

��

eκ
yyttttttttt

TFF
µoo

TF η̌

��
TF TFT

Tλzzuuu
uuu

uuu
u

TFFT
TµT
oo

TFλ

��
TTF

µ̌F

OO

TTFF
TTµ
oo TFTF,

TλF
oo

where the inner quadrangle is commutative by naturality, the pentagon on the
bottom is so by commutativity of (7.1) where

κ̃ : TF
TF η̌ // TFT

Tλ // TTF
µ̌F // TF.

Recalling that ϑ̌ = µ̌ ◦ T η̌ (see 3.1), commutativity of the diagram

FT
λ //

FT η̌

��

TF

TF η̌

��
FTT

λT //

Fµ̌

��

TFT
Tλ // TTF

µ̌F

��
FT

λ // TF

implies

(7.4) FT
Fϑ̌−→ FT

λ−→ TF = FT
λ−→ TF

eκ−→ TF,



34 ROBERT WISBAUER

and thus

IA
ηη̌−→ FT

λ−→ TF
eκ−→ TF = IA

ηη̌−→ FT
Fϑ̌−→ FT

λ−→ TF

= IA
ηη̌−→ FT

λ−→ TF,

where the last equality follows by regularity of η̌ (see 3.9). This means that the left
hand pentagon - and hence the whole diagram - is commutative.

(3) To show that the product µ is regular, consider the commutative diagram

TF
TF η̌ // TFT

TFηT //

TϑT %%JJJJJJJJJ TFFT
TFλ //

TµT

��

TFTF
TλF // TTFF

TTµ

��
TFT

Tλ // TTF
µ̌F // TF.

Since λ◦ϑT = λ (see 7.2) we see that µ◦TFη = κ̃. Thus the condition for regularity
of µ means commutativity of the diagram

TFT
Tλ // TTF

µ̌F

##G
GG

GG
GG

GG

TFT

eκT
OO

Tλ // TTF
µ̌F // TF.

The upper path in this fits in the commutative diagram

TFT
TF η̌T //

TFϑ̌ $$JJJJJJJJJ TFTT
TλT //

TFµ̌

��

TTFT

TTλ

��

µ̌FT // TFT

Tλ

��
TFT

Tλ %%KKKKKKKKKK TTTF

T µ̌F

��

µ̌TF // TTF

µ̌F

��
TTF

µ̌F
// TF

and hence the regularity condition reads as commutativity of the bottom rectangle
in the diagram

FT
λ //

η̌FT

��

TF

η̌TF

��
FT

η̌FT
//

λ

��

Fϑ̌

55kkkkkkkkkkkkkkkkkk
TFT

TFϑ̌ //

Tλ

��

TFT
Tλ
// TTF

µ̌F

��
TF

η̌TF // TTF
µ̌F // TF,

while the other subdiagrams are commutative by naturality. This yields (7.3).
On the other hand, equality (7.3) implies

TFT
TFϑ̌−→ TFT

Tλ−→ TTF
µ̌F−→ TF = TFT

Tλ−→ TTF
T ϑ̌F−→ TTF

µ̌F−→ TF

= TFT
Tλ−→ TTF

µ̌F−→ TF

where the last equality follows by regularity of µ̌ (see 3.10). This shows that µ is
regular. tu
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7.5. Weak distributive laws. Note that Proposition 7.4 generalises the weak
distributive laws as considered by Street in [18], where a lifting of a (proper) monad
(T, µ̌, η̌) to (regular) quasi-modules over a monad (F, µ, η) is considered. The con-
dition (3) in [18, Definition 2.1] means κ̃ = κ̂. For regular quasi-monads F , T , this
implies (see Lemma 7.3, (7.4))

λ ◦ ϑT = κ̂ ◦ λ = κ̃ ◦ λ = λ ◦ Fϑ̌.
Since λ ◦ϑT = λ (see 7.2), imposing the symmetry condition ϑ = ϑ implies that all
these expressions are equal to λ.

7.6. Quasi-monad entwinings. For regular monads F , T , and a natural trans-
formation λ : FT → TF , the following are equivalent:

(a) (TF, µ, λ ◦ ηη̌) is a regular quasi-monad on A;
(b) λ satisfies

(7.5) λ = λ ◦ ϑT = Tϑ ◦ λ = λ ◦ Fϑ̌ = ϑ̌F ◦ λ
and induces commutativity of the diagram (7.1) and the diagram

(7.6) FTT
Fµ̌ //

λT

��

FT

λ

��
TFT

Tλ // TTF
µ̌F // TF ;

(c) λ satisfies the equations (7.5), induces commutativity of the diagram (7.1),
and we have natural transformations

µ̌F : TTF → TF and λ ◦ F η̌ : F → TF

where µ̌F is (F, F )-bilinear and λ ◦ F η̌ is left F -linear.
If these conditions hold, we call (T, F, λ) a regular quasi-monad entwining, and

ξ := λ ◦ F η̌ : F → TF and λ ◦ ηT : T → TF

are quasi-monad morphisms.

Proof. (b)⇒(a) follows from Proposition 7.4 by taking for λ the composition
ϑ̌F ◦ λ (with λ from 7.4).

(c)⇒(a) is a special case of 7.7 (see below).
To show that ξ is a monad morphism observe that the diagram

FF
FF η̌ //

µ

��

FFT

µT

��

Fλ // FTF

λF

�� Fϑ̌F %%JJJJJJJJJ
F η̌TF // FTTF

Fµ̌F

��

λTF // TFTF

TλF

��

TFF

Tµ

��

FTF

λF

��
F

F η̌ // FT
λ // TF TFF

Tµ
oo TTFF

µ̌FF
oo

is commutative: the rectangles are commutative by naturality and commutativity
of (7.6) and (7.1), and the pentagon is commutative since Fϑ̌ ◦ λ = λ (see (7.5)).
This shows that ξ respects the product of the quasi-monads. The condition η = ξ◦η
is clear by the definition of η and hence ξ is a quasi-monad morphism.

Similar arguments show that λ ◦ ηT is also a quasi-monad morphism. tu
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Given (F, µ, η) and T : A→ A, the composition TF may have a (regular) quasi-
module structure without requiring such a structure on T . For this some other
morphisms and conditions are needed.

7.7. Liftings as quasi-monads. Let (F, µ, η) be a regular quasi-monad, T any
endofunctor on A that can be lifted to T : AF → AF by the entwining λ : FT → TF
(see 7.2). Assume there are natural transformations

ν : TTF → TF, ξ : F → TF

such that ν is (F, F )-bilinear and ξ is left F -linear. The lifting T induces a multi-
plication and a quasi-unit on TF ,

µ̃ : TFTF TλF−→ TTFF
TTµ−→ TTF

ν−→ TF, η̃ : IA
η−→ F

ξ−→ TF.

(1) (TF, µ̃, η̃) is a quasi-monad if and only if the data induce commutativity of
the diagrams

(7.7) TTFT
νT //

TTλ

��

TFT
Tλ // TTF

ν

��
TTTF

Tν // TTF
ν // TF.

(2) η̃ is regular provided κ ◦ ξ = ξ and ξ induces commutativity of the diagram

(7.8) IA
η //

η

��

F
ξ // TF

Tξ

��
F

ξ // TF TTF.
νoo

(3) µ̃ is regular if we have commutativity of the diagram

(7.9) TFT
TξT //

Tλ

��

TTFT
νT // TFT

Tλ

��
TTF

ν // TF TTF
νoo

Proof. (1) Left F -linearity of ν is equivalent to commutativity of the diagram

(7.10) FTTF

Fν

��

λTF // TFTF
TλF // TTFF

TTµ // TTF

ν

��
FTF

λF // TFF
Tµ // TF,

whereas right F -linearity of ν corresponds to commutativity of the diagram

(7.11) TTFF
νF //

TTµ

��

TFF

Tµ

��
TTF

ν // TF.
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To prove associativity of the product µ̃ on TF , consider the diagram

TFTFTF

TFTλF

��

TλFTF// TTFFTF

TTFλF

��

TTµTF //

(1)

TTFTF

TTλF

��

νTF //

(2)

TFTF

TλF

��
TFTTFF

TλTFF
//

TFνF

��

TTFTFF
TTλFF// TTTFFF

TTTµF// TTTFF

TνF

��

TTFF

νF

��
TFTFF

TλFF //

TFTµ

��

(??)

TTFFF
TTµF //

TTFµ

��

TTFF

TTµ

��

νF //

(3)

TFF

Tµ

��
TFTF

TλF // TTFF
TTµ // TTF

ν // TF.

Diagram (1) is commutative by (7.1), diagram (??) is commutative by (7.10) (added
T from the left and F from the right), diagram (2) is commutative by assumption
(7.7) (applied to F ), and commutativity of diagram (3) follows from (7.11). The
remaining inner diagrams are commutative by naturality or associativity of multi-
plication of F . Thus the outer diagram is commutative and this shows associativity
of the multiplication µ̃.

(2) Regularity of η̃ means commutativity of the outer paths in the diagram

IA
ξ◦η //

ξ◦η

��

TF
TFη //

Tξ

��4
44

44
44

44
44

44
44

κ

##F
FF

FF
FF

FF
TFF

TFξ //

Tµ

��

TFTF

TλF

��

TF

Tξ

��
TF TTFν
oo TTFF.

TTµ
oo

Herein the trapezium is just the diagram (7.8) and hence commutative by assump-
tion, the rectangle is commutative since ξ is left F -linear, the upper triangle is com-
mutative by definition, and commutativity of the lower triangle is a consequence of
the condition κ ◦ ξ = ξ in (2).

(3) Referring to (7.7) we can follow the proof of Proposition 7.4(3). Notice that
κ̃ corresponds to ν ◦ Tξ from there. tu

Note that under the conditions of section 7.6, the maps ν := µ̌F and ξ := λ◦F η̌
satisfy the conditions required in 7.7. Hence the proof of (c)⇒(a) in 7.6 follows
from 7.7.

7.8. Weak crossed products. Given the morphisms ν : TTF → TF and ξ :
F → TF in 7.7, we may form

ν̄ : TT
TTη // TTF

ν // TF, η : IF
η // F

ξ // TF.

From the commutative diagrams

TTF
TTηF //

TTϑ $$II
III

III
II

TTFF

TTµ

��

νF // TFF

Tµ

��
TTF ν

// TF,

F
ηF //

ϑ !!B
BB

BB
BB

B FF
ξF //

Tµ

��

TFF

µ

��
F

ξ // TF,
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we obtain
ν ◦ TTϑ = Tµ ◦ ν̄F and ξ ◦ ϑ = Tµ ◦ ηF .

If η is regular (see 3.9), we obtain ξ ◦ ϑ ◦ η = ξ ◦ η and ν ◦ TTϑ defines the same
product on TF as ν.

Thus ν̄ and η may be used to define a (regular) quasi-monad structure on TF .
This gives another version for the wreath product of a regular quasi-monad with
an endofunctor. In this context the conditions for a weak monad structure on TF
come out as cocycle and twisted conditions. For more details we refer, e.g., to [1],
[10, Section 3].

8. Lifting of endofunctors to quasi-comodules

Dual to the material in the preceding section we sketch the lifting of endofunctors
to the category to quasi-comodules.

8.1. Lifting of endofunctors to quasi-comodules. Let (G, δ, ε) be a regular
quasi-comonad and T any endofunctor on the category A. We now consider liftings
T̂ : AG → AG to the category of regular quasi-G-comodules, that is, functors which
induce commutativity of the diagram

AG
bT //

UG

��

AG

UG

��
A T // A.

As a special case of Theorem 6.4 we have the

8.2. Proposition. Let (G, δ, ε) be a regular quasi-comonad on A and AG the
category of regular quasi-G-comodules. For any endofunctor T : A → A, there are
bijective correspondences between

(i) liftings of T to T̂ : AG → AG, such that for any (A, υ) ∈ AG, the regular
quasi-G-comodule structure map υ : TUG → GTUG induces commutativity
of the diagram

(8.1) TG(A)
υG(A) // GTG(A)

GTεA

��
T (A)

TυA

OO

υA // GT (A);

(ii) regular quasi-G-comodule structures υ : TUG → GTUG inducing commuta-
tivity of the diagram corresponding to that in (i);

(iii) natural transformations ψ : TG→ GT with

ψ ◦ Tγ = ψ = γT ◦ ψ
and commutative diagram

(8.2) TG

Tδ

��

ψ // GT

δT

��
TGG

ψG // GTG
Gψ // GGT.
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Now one may ask under which conditions the lifting is again a comonad.

8.3. Proposition. Let (G, δ, ε) and (T, δ̌, ε̌) be regular quasi-comonads and assume
that T can be lifted to T̂ : AG → AG by ψ : TG → GT (see 8.2). Then, on TG,
coproduct and quasi-counit are defined by

δ̂ : TG δ̌G−→ TTG
TTδ−→ TTGG

TψG−→ TGTG, ε̂ : TG
ψ−→ GT

Gε̌−→ G
ε−→ IA.

(1) If δ̌G : TG→ TTG is G-colinear, then we get the commutative diagram

(8.3) TG
ψ //

δ̌G

��

GT

Gδ̌
��

TTG
Tψ // TGT

ψT // GTT ;

(2) If (8.1) is commutative, then (TG, δ̂, ε̂) is a quasi-comonad with ε̂ regular.

(3) In (2), δ̂ is regular if and only if, in addition,

(8.4) TG
γ̌G
// TG

ψ // GT
Gγ̌
// GT = TG

γ̌G
// TG

ψ // GT,

where γ̌ = ε̌T ◦ δ̌. In this case (TG, δ̂, ε̂) is a regular quasi-comonad.

Proof. The situation is dual to that of Proposition 7.4. tu

8.4. Quasi-comonad entwinings. For regular comonads (F, δ, ε), (T, δ̌, ε̌), and
a natural transformation ψ : TG→ GT , the following are equivalent:

(a) (TG, δ̂, εε̌ ◦ ψ) is a regular quasi-comonad on A;

(b) ψ satisfies

(8.5) ψ = ψ ◦ τ = γ′T ◦ ψ = Gγ̌ ◦ ψ = ψ ◦ γ̌G

and induces commutativity of the diagrams (8.2) and (8.3);

(c) ψ satisfies the equations (8.5), induces commutativity of the diagram (8.2),
and we have natural transformations

δ̌G : TG→ TTG, Gε̌ ◦ ψ : TG→ G,

where δ̌G is (G,G)-bicolinear and Gε̌ ◦ ψ is left G-colinear.
If these conditions hold, we call (T,G, ψ) a regular quasi-comonad entwining and

Gε̌ ◦ ψ : TG→ G and εT ◦ ψ : TG→ T

are quasi-comonad morphisms.

Proof. The proof is dual to 7.6. tu

8.5. Weak crossed coproduct. Similar to the situation for monads, in 8.4 the
coproduct on TG can also be expressed by replacing the natural transformations
δ̌G and Gε̌ ◦ ψ by any natural transformations

ν : TG→ TTG and ζ : TG→ G.
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These have to be subject to certain conditions to make the coprocuct on TG coas-
sociative and regular and ε ◦ ζ : TG → IA a regular quasi-counit on TG (dual to
the case considered in 7.7).

Given ν and ζ as above, we may form

ν̂ : TG
ν // TTG

TTε // TT , ζ̂ : TG
ζ // G

ε // IA ,

and (dual to 7.8) one can see that these may also be used to define the coproduct
and quasi-counit on TG. This leads to the weak crossed coproduct as considered
(for coalgebras) in [10] and [11], for example.

9. Mixed entwinings and liftings

Throughout this section let (F, µ, η) denote a regular quasi-monad and (G, δ, ε)
a regular quasi-comonad on any category A.

9.1. Liftings of monads and comonads. In the diagrams in 7.1 and 8.1, we
may consider T = G or T = F yielding the diagrams

AF
G //

UF

��

AF

UF

��
A G // A,

AG
bF //

UG

��

AG

UG

��
A F // A.

In both cases the lifting properties are related to a natural transformation

ω : FG→ GF.

The lifting in the left hand case requires commutativity of the diagrams (see Propo-
sition 5.3)

(9.1) FFG
Fω //

µG

��

FGF
ωF // GFF

Gµ

��
FG

ω // GF,

FG
ω //

ϑG

��

ω

""E
EE

EE
EE

E GF

Gϑ

��
FG

ω // GF,

whereas the lifting to AG needs commutativity of the diagrams (see Proposition
6.3)

(9.2) FG

Fδ

��

ω // GF

δF

��
FGG

ωG // GFG
Gω // GGF,

FG
ω //

Fγ

��

ω

""F
FFFFFFF GF

γF

��
FG

ω // GF.

To make G a quasi-comonad with coproduct δ, the latter has to be a quasi-F -
module morphism, in particular, δF : GF → GGF has to be F -linear and this
follows by commutativity of the rectangle in (9.2) provided the square in (9.1) is
commutative.

To make the lifting F̂ a quasi-monad with multiplication µ, the latter has to be a
quasi-G-comodule morphism, in particular, µG : FFG→ FG has to be G-colinear
and this follows by commutativity of the rectangle in (9.1) provided the square in
(9.2) is commutative.



ADJUNCTION CONTEXTS 41

9.2. Natural transformations. The data given in 9.1 allow for natural transfor-
mations

ξ : G
ηG // FG

ω // GF
εF // F ,

κ̂ : GF
ηGF // FGF

ωF // GFF
Gµ // GF ,

τ̂ : FG
Fδ // FGG

ωG // GFG
εFG // FG,

with the properties

Gµ ◦ κ̂F = κ̂ ◦Gµ, τ̂G ◦ Fδ = Fδ ◦ τ̂ ,
µ ◦ ξF = εF ◦ κ̂, ξG ◦ δ = τ̂ ◦ ηG.

(i) If the rectangle in (9.1) is commutative, then κ̂ is idempotent.

(ii) If the rectangle in (9.2) is commutative, then τ̂ is idempotent.

Note that (i) is a special case of Lemma 7.3(4) and the proof of (ii) is dual to
that for (i).

To make the liftings (regular) quasi-comonads or quasi-monads, respectively, we
have to find (regular) quasi-units and quasi-counits. In what follows we consider
these questions.

9.3. Quasi-counits for G. Assume the diagrams in (9.1) to be commutative.
Then the following are equivalent:

(a) For any (A,ϕ) ∈ AF , εA : G(A)→ A is a quasi-F -module morphism;

(b) εF : GF → F is F -linear;

(c) ϑ = µ ◦ Fη induces commutativity of the diagram

(9.3) FG
Fε //

ω

��

F

ϑ

��
GF

εF // F.

If these conditions are satisfied, then (with ϑ and γ from 3.1, 4.1)

µG ◦ F τ̂ = τ̂ ◦ µG and τ̂ = ϑγ.

Proof. (a)⇒(b) is obvious.
(b)⇒(c) Condition (b) requires commutativity of the right rectangle in the dia-

gram

FG
FGη //

ω

��

FGF
FεF //

ωF

��

FF

µ

��

GF
GFη //

Gϑ ##G
GG

GG
GG

GG
GFF

Gµ

��
GF

εF // F,

in which the square and the triangle are obviously. By the properties of ω the outer
paths show commutativity of the diagram (9.3).
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(c)⇒(a) Since ϕ is regular, F -linearity of ε means commutativity of the outer
paths in the diagram

FG

Fε

��

ω // GF (A)

εF

��

Gϕ // G(A)

ε

��
F (A) ϑ // F (A)

ϕ // A;

herein the right hand square is commutative by naturality and the left hand square
is commutative by assumption. tu

9.4. Lifting to regular quasi-comonads. Let ε be symmetric (see 4.8) and
assume the diagrams in (9.1), (9.2) and (9.3) to be commutative. Then (G, δ, ε) is
a regular quasi-comonad on AF .

Proof. As mentioned in 9.1, G exists and is a quasi-monad. Now consider the
diagrams

GF
δF // GGF

GδF //

GγF $$JJJJJJJJJ GGGF

GεGF

��
GGF,

GF
δF //

γF ##G
GG

GG
GG

GG
GGF

GεF //

εGF

��

GF

εF

��
GF

εF // F.

Since Gγ ◦ δ = δ and ε ◦ γ = ε (see 4.10, (4.9)), these diagrams show that δ and ε
are regular. tu

Similar to the quasi-counits for G we can ask for quasi-units for F̂ .

9.5. Quasi-units for F̂ . Assume the diagrams in (9.2) to be commutative. Then
the following are equivalent:

(a) for any (A, υ) ∈ AG, ηA : A→ F (A) is a quasi-G-comodule morphism;
(b) ηG : G→ FG is G-colinear;
(c) γ = Gε ◦ δ induces commutativity of the diagram

(9.4) G

γ

��

ηG // FG

ω

��
G

Gη // GF.

If these conditions are satisfied, then

Gκ̂ ◦ δF = δF ◦ κ̂ and κ̂ = γϑ.

Proof. The proof is dual to that of 9.3. Let us just mention that the crucial
diagram here is of the form

G
ηG //

δ

��

FG

Fδ

��

γ

##H
HH

HH
HH

HH

FGG
FGε

//

ωG

��

FG

ω

��
GG

GηG // GFG
GFε // GF.
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tu

9.6. Lifting to regular quasi-monads. Let η be symmetric (see 3.8) and assume
the diagrams in (9.1), (9.2) and (9.4) to be commutative. Then (F̂ , µ, η) is a regular
quasi-monad on AG.

Proof. This is dual to 9.4. tu

One may consider other choices for a counit for G or a unit for F̂ .

9.7. Alternative quasi-counits for G. Assume η to be symmetric (see 3.8) and
the diagrams in (9.1) to be commutative. With the notations from 9.2, the following
are equivalent:

(a) for any (A,ϕ) ∈ AF ,

εA : G(A)
ξA // F (A)

ϕ // A

is a quasi-F -module morphism;

(b) εF : GF
ξF // FF

µ // F (= GF
bκ // GF

εF // F ) is F -linear;

(c) commutativity of the diagram

(9.5) FFG
Fω // FGF

FεF // FF

µ

��
FG

FηG

OO

ω // GF
εF // F.

If these conditions are satisfied, then

τ̂ = µG ◦ F τ̂ ◦ FηG.

Proof. (a)⇒(b) is obvious.
(b)⇒(c) Condition (b) on εF means commutativity of the big rectangle in the

diagram

FFG
Fω //

FFGη

��

FGF
FεF // FF

FFη

��

µ

��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,

FG
FGη
//

FηG

55jjjjjjjjjjjjjjjjjj

ω

��

FGF
FηGF//

ωF

��

FFGF
FωF

// FGFF
FεFF

// FFF

Fµ

��

GF
GFη //

Gϑ ##G
GG

GG
GG

GG
GFF

Gµ

��
GF

ηGF // FGF
ωF // GFF

εFF // FF
µ // F

where the bottom line can be written as GF bκ−→ GF
εF−→ F . From Lemma 7.3(3)

we know that κ̂ ◦ω = ω ◦ϑG. By symmetry of η, that is, ϑ = ϑ, the left outer path
reads

κ̂ ◦ κ ◦ ω = κ̂ ◦ ω = ω ◦ κ = ω.

Moreover, the right hand triangle is commutative since here µ ◦Fϑ = µ (see 3.10).
This means commutativity of the diagram (9.5).
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(c)⇒(a) The assertion requires commutativity of the outer paths in the diagram

FG(A)

ωA

��

FηGA// FFG(A)
FωA // FGF (A)

FεFA // FF (A)

µA

��
GF (A)

Gϕ

��

GF (A)
εFA //

Gϕ

��

F (A)

ϕ

��
G(A)

ηGA // FG(A)

ωA

88rrrrrrrrrr
G(A)

εA // A.

By regularity (see 3.10) the lower path reads as

εA ◦Gϕ ◦ ωA ◦ ηGA ◦Gϕ ◦ ωA = εA ◦Gϕ ◦ ωA = ϕ ◦ εA ◦ ωA
and - by commutativity of (9.5) - this is equal to the upper path. This shows
commutativity of the diagram as claimed. tu

Notice that commutativity of (9.3) implies commutativity of (9.5).

9.8. Alternative quasi-units for F̂ . Assume ε to be symmetric (see 4.8) and
the diagrams in (9.2) to be commutative. Then the following are equivalent:

(a) For any (A, υ) ∈ AG,

η̂ : A
υ // G(A)

ξA // F (A)

is a quasi-G-comodule morphism;

(b) η̂G : G
ηG // FG

bτ // FG (= G
δ // GG

ξG // FG ) is G-colinear;
(c) commutativity of the diagram

(9.6) G

δ

��

ηG // FG
ω // GF

GG
GηG // GFG

Gω // GGF.

GεF

OO

If these conditions are satisfied, then

κ̂ = GεF ◦Gκ̂ ◦ δF.

Proof. The situation is dual to 9.7. tu
Notice that commutativity of (9.4) implies commutativity of (9.6).

9.9. Theorem. With the data given in 9.1, assume ε to be symmetric and the
diagrams in (9.1), (9.2) and (9.5) to be commutative.

(1) If (9.6) is commutative, then ε in 9.7 is a regular quasi-counit for δ, and for
δ : G→ GG with

δF : GF
δF // GGF

Gbκ // GGF,
(G, δ, ε) is a regular quasi-comonad.

(2) If (9.4) is commutative, then

(i) δ = Gκ̂ ◦ δF = δF ◦ κ̂ and ε is symmetric;
(ii) if γ and ϑ are the identities, then (G, δ, ε) is a comonad on AF .
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Proof. (1) Recall that εF = εF ◦ κ̂ and consider the diagram

GGF
Gbκ // GGF

GεF

��
GF

δF

OO

bκ // GF
bκ // GF

εF // F

in which the square is commutative (see 9.8). Now regularity of ε follows by the
fact that κ̂ is idempotent (see 9.2).

Since ε is a regular quasi-counit, by Proposition 4.12, a regular quasi-coproduct
can be defined by δ = GεG ◦ Gδ ◦ δ. Writing this out we obtain the commutative
diagram

GGG
GηG // GFGG

GωG // GGFG
GεFG //

GGω

��

GFG

Gω

��
G

δ // GG
GηG //

Gδ

OO

GFG
Gω //

GFδ

OO

GGF
GδF // GGGF

GεGF // GGF
GGϕ // GG,

where ϕ : F (−)→ − stands for any F -module structure map. By the symmetry of
ε, ω = εGF ◦ δF ◦ ω and we obtain

δ : G
δ // GG

GηG // GFG
Gω // GGF

GGϕ // GG.

This yields δF as given in (1).
(2)(i) In the diagram

GF
ηGF //

δF

��

FGF
ωF //

FδF

��

GFF
Gµ //

δF

��

GF

δF

��

FGGF

ωGF

��
GGF

GηGF// GFGF
GωF // GGFF

GGµ // GGF,

the first rectangle is commutative by commutativity of (9.4) (see 9.5), the second
one by commutativity of (9.2) and the third one by naturality. This shows the first
equality in (i). The second one is shown in 9.5.

Symmetry of ε requires Gε ◦ δ = εG ◦ δ. The left side means (see diagram in the
proof of (1))

GεF ◦Gκ̂ ◦Gκ̂ ◦ δF = GεF ◦Gκ̂ ◦ δF = κ̂.

The right hand side is the upper path in the diagram

GF
δF //

ηGF ##G
GG

GG
GG

GG
GGF

ηGGF// FGGF
ωGF // GFGF

εFGF //

GωF

��

FGF

ωF

��
FGF

FδF

::tttttttttt

ωF
// GFF

δFF
// GGFF

εGFF
// GFF

Gµ
// GF,

where the left triangle and the right square are commutative by naturality and the
pentagon is commutative since so is (9.2). Since γF ◦ ω = ω, the lower path reads
as Gµ ◦ ωF ◦ ηGF = κ̂. This proves the symmetry of ε.
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(ii) Since κ̂ = γϑ = IG (see 9.5), the computations in the proof of (ii) show that
Gε ◦ δ = εG ◦ δ = IG, that is, ε is indeed a counit for δ. tu

9.10. Theorem. With the data given in 9.1, assume η to be symmetric and the
diagrams in (9.1), (9.2), and (9.6) to be commutative.

(1) If (9.5) is commutative, then η̂ in 9.8 is a regular quasi-unit for µ, and for
µ̂ : FF → F with

µ̂G : FFG
Fbτ // FFG µG // FG,

(F̂ , µ̂, η̂) is a regular quasi-monad.
(2) If (9.3) is commutative, then

(i) µ̂ = µG ◦ F τ̂ = τ̂ ◦ µG;
(ii) η̂ is symmetric;

(iii) if ϑ and γ are the identities, then (F̂ , µ̂, η̂) is a monad on AG.

Proof. This is dual to Theorem 9.9. tu

As mentioned after Definition 3.8, a regular quasi-monad (F, µ, η) with η sym-
metric is called a premonad by Böhm in [4] and the preceding theorems may be
compared with results there. Here we have shown that regularity of η and ε together
with commutativity of (9.1), (9.2), (9.3), and (9.4) imply that (G, δ, ε) is a regu-
lar quasi-comonad on AF whereas (F̂ , µ̂, η̂) is a regular quasi-monad on AG. For
this, the given conditions are sufficient but not necessary. Equivalent conditions for
these assertions are considered in the Corollaries 5.1 and 5.6 in [4] for the case that
(G, δ, ε) is a comonad and (F, µ, η) is a monad and the liftings are to the counital
G-comodules and unital F -modules AF , respectively. The latter conditions are also
assumed in a recent paper on the subject by Böhm, Lack and Street [5].

Specialising the situation considered in 9.1 to the case F = G suggests the
definition of weak bimonads and eventually of weak Hopf monads on arbitrary cat-
egories generalising the notions studied in [16]. Details should be worked out in a
subsequent article.
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[1] Alonso Álvarez, J.N.; Fernández Vilaboa, J.M.; González Rodŕıguez, R.; Rodŕıguez Raposo,
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