ADJUNCTION CONTEXTS AND REGULAR QUASI-MONADS
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ABSTRACT. Generalising the unit element in a ring, one may consider (central)
idempotents in the ring. Similarly, the unitality condition required for a monad
(F,u,n) on any category was released (by G. Bohm et al.) to define pre-
monads by imposing weaker requirements on 7. Doing so, the adjointness
of the free functor from A to the category of unital F-modules Ap and the
forgetful functor is lost. In this paper we establish, for a premonad (F, pu,7), a
weakened form of adjointness between the free functor from A to the category
Ap of regular quasi-F-modules with the forgetful functor.

For this we consider, for functors L : A — B and R : B — A between any
categories A and B, an adjunction context given by maps

Morg(L(A), B) # Mor, (A, R(B)),

natural in A € A and B € B. We call this a regular adjunction context if both
« and 3 are regular, that isa =aofBoa and 8= Foao 3.

From this configuration we derive the notion of a regular quasi-monad and
a regular quasi-comonad leading to pre-units and pre-monads (as considered
by G. Bohm, J.N. Alonso Alvarez, and others). The notions allow to study
the lifting of functors between categories to the corresponding categories of
regular quasi-modules. Hereby also the notion of a wreath product between
a monad F and an endofunctors 7" (in the sense of Lack and Street) can be
extended to regular quasi-monads.

Along the way, the corresponding notions for quasi-comonads are formu-
lated. The entwinings of regular quasi-monads and quasi-comonads considered
in the final section provide the techniques to handle weak bialgebras and weak
Hopf algebras on arbitrary categories but this aspect is not exploited in the
present paper.
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1. INTRODUCTION

Among other needs, the investigation of weak Hopf-algebras (e.g. Bohm et al.
[6], [3]) motivated the study of generalised forms of monads by weakening the
unitality condition. This lead to weak entwining structures studied by Caenepeel
and De Groot in [8] which were put in a more general context by Alonso Alvarez et
al. [1] and eventually were interpreted in 2-categories in Béhm [4]. We do approach
the questions behind from a different perspective thus attempting to gain a deeper
understanding of these structures.

For functors L : A — B and R : B — A between categories A and B, we consider
maps, natural in A € A and B € B,

Mors (L(A), B) % Mor, (A, R(B)),

requiring that a or 3 are regular, that is,

a=aofoa or [B=pfoaof.
Clearly this describes an adjunction provided o and g are inverse to each other.
Thus our setting extends the theory of adjunctions and triples (as considered by
Eilenberg an Moore in [9]) to more general pairs of functors.

In Section 3, a triple (F, u,n) is named a quasi-monad on A provided F : A — A
is an endofunctor with natural transformations u : FF — F and n : Iy — F (quasi-
unit) and the sole condition that p is associative. Quasi-F-modules are defined by
morphisms g : F'(A) — A which are compatible with the product p of F, and the
category of all quasi-F-modules is denoted by Ap. For these data the free and
forgetful functors,

¢F:A—>;A>F and UF:;A)FHA,

give rise to an adjunction context and the properties of the resulting o’s and (’s lead
to the definition of 7, u, and (F, i, n) to be regular, and eventually to the category
Ap of regular quasi-F-modules. For a regular quasi-monad (F, u,n), the relation
between A and A yields a regular adjunction context and leads to a generalisation
of pre-units and pre-monads (as considered by Alonso Alvarez, Bo6hm and others).
Dual to the quasi-monads, in Section 4, quasi-comonads are introduced and the
basic relationships are outlined. Examples for these are weak corings (from [19])
and pre-A-corings from [7] (see 4.15).

The notions allow to study the lifting of functors between categories to the
corresponding categories of regular quasi-modules and this is done in Section 5.
They are described by generalising Beck’s distributive laws (see [2]), also called
entwinings, and it turns out that most of the diagrams are the same as for the lifting
to (proper) modules but to compensate the missing unitality extra conditions are
imposed on the entwining (e.g. Proposition 5.2). Again we have a dual theory for
quasi-comonads and this is the subject of Section 6.

Lifting an endofunctors T of A to an endofunctor T of A leads to the question
when T is a (regular) quasi-monad and in Section 7 we provide conditions to make
this happen. Then T'F allows for the structure of a regular quasi-monad (see 7.6).
Hereby also the notion of a wreath product between a monad F' and an endofunctors
T (in the sense of Lack and Street [14]) can be extended to regular quasi-monads
(see 7.7, 7.8). The corresponding questions for quasi-comonads are handled in
Section 8.
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The final Section 9 is concerned with a regular quasi-monad (F,u,n) and a
regular quasi-comonad (G, d,¢) on any category A and the interplay between the
respective lifting properties. Hereby properties of the lifting G to A, and the lifting
F to A® are investigated (see Theorems 9.9 and 9.10).

In case F' = G the results in the last section provide the basics for a theory of
weak bimonads and Hopf bimonads on arbitrary categories. We will not persue the
resulting questions here.

2. ADJUNCTION CONTEXTS

Throughout A and B will denote arbitrary categories. By 14, A or just by I, we
denote the identity morphism of an object A € A, Ir or F stands for the identity
on the funtor F, and Iy means the identity functor of a category A. Recall that
any covariant functor F': A — B induces a map

Fy ar: Mory (A, A") — Morg(F(A), F(4"))
which is natural in A, A" € A.

2.1. Regular morphism. Let A, A’ be any objects in a category A. Then a
morphism f : A — A’ is called reqular provided there is a morphism g : A’ — A
with fgf = f. Clearly, in this case gf : A — A and fg: A’ — A’ are idempotent
endomorphisms.

Such a morphism g is not necessarily unique. In particular, for gfg we also have
flgfg)f = fgf = f, and the identity (9fg)f(9fg) = gfg shows that gfg is again
a regular morphism.

We call (f,g) a regular pair of morphisms provided fgf = f and g = gfg.

If idempotents split in A, then every idempotent morphism e : A — A determines
a subobject of A, we denote it by eA.

If f is regular with fgf = f, then the restriction of fg is the identity morphism
on fgA’ and gf is the identity on gfA.

Examples for regular morphisms are retractions, coretractions, and isomorphisms.
For modules M, N over any ring, a morphism f : M — N is regular if and only if
the image and the kernel of f are direct summands in N and M, respectively.

This notion of regularity is derived from von Neumann regularity of rings. For
modules (and in preadditive categories) it was considered by Nicholson, Kasch,
Mader and others (see [13]).

We use the terminology also for natural transformations and functors with ob-
vious interpretations.

2.2. Adjunction context. Let L : A — B and R : B — A be covariant functors.
Assume there are morphisms, natural in A € A and B € B,

aa,p : Morg(L(A), B) — Mora (4, R(B)),
Ba,B : Morg (A, R(B)) — Morg(L(A), B).
These maps correspond to natural transformations a and 3 between the obvious
functors A% x B — Set. The quadruple (L, R, «, 8) is called an adjunction context.
2.3. Quasi-unit and quasi-counit. Given an adjunction context (L, R, «, (3),
the morphisms, for A € A, B € B,
na = aA,L(A)(I) A — RL(A) and EB = 5R(B),B(I) : LR(B) — B
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yield natural transformations
n:Iy— RL, e:LR— I,
called quasi-unit and quasi-counit of (L, R, a, ), respectively.

By naturality, for f : L(A) — B and g : A — R(B), there are commutative
diagrams

QXA L(A)

Morg(L(A), L(A)) Mory (A, RL(A))

MorB(L(A),f)i lMorA&(AR(f))

*A B

Morg(L(A), B) ———————— Mors (4, R(B)),

Br(B),B

Mora (R(B), R(B))) Morg(LR(B), B)

MorA(g,R(B))l iMorB(L(gLB)
Mory (A4, R(B)) Morg(L(A), B),

which show that the transformations o and 3 are given by

anp: L(A) LB — A" Rrr(a) 2 R(B),

Bap: AL R(B) — L(A) L) LR(B) <& B.

Naturality of € and 7 induces an associative product on RL and a coassociative
coproduct on LR,

ReL : RLRL — RL, ILnL : LR — LRLR.

Ba,B

2.4. Natural endomorphisms. With the notions from 2.3, consider the natural
transformations

9: RL—22 pLrL 5 RL, 9 RL —"% RLRL L~ RL,

LnR LnR
v: LR— LRLR ™~ LR, ~: LR—"> LRLR "> LR.

(1) ¥ respects left RL-action and ¥ respects right RL-action, that is,
ReLoRLY =190 RelL, ReLodyRL =190 ReL.
(2) o =¥ od.
(3) ~ respects left LR-coaction and  respects right LR-coaction, that is,
LRyoLnR = LnRov, ZLR oInR=ILnRo -
(4) yoy=7v07.
Proof. In the diagram

RLn ReL

RL RLRL RL
nRLl \LnRLRL lnRL
RLRL — "~ RrRLRL —EEEL o RIRL
REL\L \LRELRL leL
RL ™ . prrp — Bt RL
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all partial rectangles are commutative by naturality.

The lower part shows that ¢ respects left RL-action and the right part shows
that ¥ respects right RL-action. The outer rectangle shows that ¥ and ¥ commute.

Dual to the above, we have the commutative diagram

LR . LRLR—E LR
Lan \LLRLnR anR
LRLR —"""~ [ RLRLR —""" ~ [RLR
LRal \LLRLRE lLRa
LR M LRLR — LR.
From this the assertions (3) and (4) are derived. O

For later use we record some elementary computations.

2.5. Composing a and 3. Let (L, R, «, 3) be an adjunction context with quasi-
unit 7 and quasi-counit €. The descriptions of a and 3 in 2.3 yield, for the identity
transformations Iy, : L — L, Ir : R — R,

a(I) = Iy —5RL,
Boa(I;) = L% LRL=L L,
aofoa(ly) = In-5 RL™?RLRL L R,
B(Ir) = LR— Iy,
aofB(lx) = R RLR TSR,
BoaoB(In) = LRYSLRLRYS LR = I

As special cases of this setting we observe:
2.6. Adjoint pair of functors. Let (L, R, «, ) be an adjunction context with
quasi-unit 7 and quasi-counit & (see 2.2, 2.4).
(1) Boa=1Ip if and only if eL o Ly = I.
(2) aof =Igif and only if Re onR = Ij.
(3) (L, R, «, B) is an adjunction if and only if Soa =T and awo 8 = I and this
implies
ReLoRLn=1Iry, = ReLonRL, LReolnR=1Ipr=¢cLRolLnR.
We generalise adjoint pairs of functors by modifying the conditions on a and /.
2.7. « regular. Let (L, R, «,3) be an adjunction context (see 2.2).
(1) The following are equivalent:
(a) aofoa=a;
(b) n induces commutativity of the diagram

Iy — "

RL
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If these conditions hold, we say that « is regular, and then
(i) Boa(ly) =L =% LRL <=L L is idempotent;
(ii) ¥ and ¥ are idempotent and on=n="1Yon.
(2) The following are equivalent:
(a) R._ofoa=aofoR__, that is commutativity of the diagram

aAB Ba,B

Mor, (A, R(B)) Mors(L(A), B)
\LRL(A),B

Mora(RL(A), R(B));

Morg(L(A), B)
RL(A),Bi

Mors (RL(A), R(B)) Morg(LRL(A), B)
(b) ¥ =4, that is, commutativity of the diagram

BRrL(A),B QRL(A),B

RLn
RL RLRL
nRL\L \LREL
RLRL ——— RL.

If these conditions are satisfied we say that « is symmetric.
(3) If « is regular and symmetric, then 9 respects the product of RL (in fact, is
a quasi-monad morphism, see 3.2).
Proof. (1) (a)<(b) This follows from the list in 2.5.

(i) can be seen from the commutative diagram

L
L— R —L >

LRLn an

1\ LRLRL™™ LRI,

\LLREL \L eL

LRL“ZZA%>L.

(ii) The idempotency of ¥ follows from (i).
The idempotency of ¢ follows from the commutative diagram

RL
nRL\L kL
nRLRL
RLRL —— > RLRLRL —————> RLRL
ReLRL
REL\L RLREL\L \LREL
RL TR RLRL el RL.

(2) (a)=-(b) Applying R to o a(IL) (see 2.5) yields

RL
RL — RLRL £~ RL,
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and « o B(Igy) produces the sequence

RL -
RL —5% RLRL &~ RI.

(b)=(a) follows from the fact that « is defined by 7.

(3) If « is symmetric, ¢ respects left and right action of RL, that is, we have the
commutative diagram

RLRL —2  ~ prrr —2"% ~ RLRL

ReL l REL\L RsLi
9 9

RL RL RL.
Now, by regularity of «, ¢ is idempotent and hence the diagram tells us
ReL oYY =190 RelL,
that is, ¥ respects the product on RL. a

For regular a we have the following criterion for symmetry:
2.8. Proposition. Let (L, R, «, 3) be an adjunction context with o regular. Then
the following are equivalent:

(a) « is symmetric (i.e. ¥ =0, see 2.4);

(b) ¥ and ¥ both respect left and right RL-action.

Proof. (a)=(b) is obvious.

(b)=(a) Assume ¥ to respect right RL-action, that is, commutativity of the
rectangle in the diagram

RL RLnNRL
RL ! RLRL ——~ RLRLRL —2EL . RLRL
RsL\L J/RE
RL
RL———" - RLRL fel RL.

Since « is regular, the top sequence yields nRL. Thus the diagram shows the
equality ¥ o = 9.

If ¥ respects left RL-action we obtain a similar diagram leading to @ o ¥ = 4.
Since ¥ and ¥ commute we conclude ¥ = 4. O

2.9. § regular. Let (L, R, a, 3) be an adjunction context (see 2.2).
(1) The following are equivalent:

(a) foaof=p;

(b) e induces commutativity of the diagram

LR———=1Iy

L"Ri T

LRLR — > LR.

If these conditions hold, we say that g is reqular, and then

(i) aoB(Ir)=R 2 RLR P55 R s idempotent.
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(i) v and v (see 2.4) are idempotent and e oy =€ =€ o07.
(2) The following are equivalent:
(a) L._oaofB=pfoaocL__, that is, commutativity of the diagram

Ba,B @a,B

Mors (A4, R(B)) ’ Morg(L(A), B)

La rB) \L

Morg(L(A), LR(B)) Mors (A, RLR(B))
(b) v =1, that is, commutativity of the diagram

Mora (A, R(B))

iLA,R(B)

Morg(L(A), LR(B));

QA R(B) Ba,LR(B)

LnR
LR LRLR
LnR\L \LLRE
LRLR IR LR.

If these conditions hold we say that 3 is symmetric.

(1) If B is regular and symmetric, then vy respects the coproduct of LR (in fact,
is a quasi-comonad morphism, see 4.2).

Proof. (dual to 2.7) (1) (a)<(b) follows from the list in 2.5.

(i) can be seen from the commutative diagram

R €
R—1 > RLR—E. R
J/nRLR

an lnR
RLnR LRLe

RLR — RLRLR —— RLR

\ |

R.

(ii) v = L(k) and hence is idempotent by (i).
The idempotency of v is seen from the commutative diagram

LR I LRLR
Lan LnLRL\L

LRLR LRLRLR \""*
ELR\L ELRLR\L

LR o LRLR ——> LR.

(3) By symmetry of 3, v respects left and right coactions of LR, so we have the
commutative diagram

LR - LR - LR
LnRi Lan Lan
LR~y ~YLR
LRLR LRLR— > LRLR.
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By regularity of (3, v is idempotent and hence we see from the diagram
LnRo~y =~vyo0LnR,
that is, v respects the coproduct of LR. a
If v is regular, we have the following criterion for symmetry:
2.10. Proposition. Let (L, R, «, 3) be an adjunction context with B reqular. Then
the following are equivalent:
(a) B is symmetric (i.e. v =1y, see 2.4);
(b) v and v both respect left ;nd right LR-coaction.
Proof. The statements and the proofs are dual to 2.8. O

2.11. Definition. We call an adjunction context (L, R, a, 8) regular if both o and
B are regular and call it symmetric if they are both symmetric (see 2.7, 2.9).

Any adjunction context with one of the maps regular can be transferred to a
regular context.
2.12. Proposition. Let (L, R,«, 3) be an adjunction context.
(1) If « is regular, then, for 3 = Boao B3, (L,R,«,) is a regular adjunction
context. For A€ A and B € B,
B : Morp(A,R(B)) — Morg(L(A), B),

RI% R — LRYSLRLRYS LR = Iy

(2) If B is regular, then, for o/ = aofBoa, (L,R,d, ) is a reqular adjunction
context. For A € A and B € B,
o/ : Morg(L(A),B) — Mora(A, R(B))
L1 — I, -5 RLE RLRL %5 R

Proof. The assertions are easily verified. The values of the maps 3’ and o’ can
be seen from the list in 2.5. O

For an adjoint pair (L, R) of functors, there are well-known bijections between the
classes of natural transformations Nat(L, L), Nat(R, R), Nat(Is, RL) and Nat(LR, Ip).
The maps providing these connections can also be defined for any adjunction con-
text but they do not lead to bijections. We pick out two pairs of them.

2.13. Related natural transformations. Let (L, R, o, 3) be a regular adjunction
context. Then we get the following pairs of reqular maps:
Re

(i) Nat(L,L) — Nat(R,R), s~ R-"% RLR*8 RLR 5 R,
Nat(R,R) — Nat(L,L), t~— L 2% LRL “5 LRL <& L.

(ii) Nat(lx, RL) — Nat(R,R), h+— R RLR 25 R,
Nat(R, R) — Nat(Is, RL), k— I, -~ RL *% RL.

Proof. The assertions can be shown by straightforward computations. O

2.14. Special cases. Let (L, R, «, 3) be an adjunction context.
(i) If Boa =1, then foaof = and aofoa = «, that is, « and (3 are regular.
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(ii) Similarly, ao 8 = I implies that o and § are regular. This case is considered
in Medvedev [15] and L, R are then called semiadjoint functors.

(iii) In [17, 3.1], (L, R) is said to be a rational pairing if B4 g : Mora (A, R(B)) —
Morg(L(A), B) is injective for all A € A, b € B. If, in addition, f is regular,
then clearly ao 8 = I.

For categories and natural transformations allowing certain constructions, we can
relate regular adjunction contexts with proper adjunctions. Note that the condi-
tions employed are satisfied provided idempotents split in the respective categories.

2.15. Relation to semiadjoint functors. Let (L, R, a, 8) be an adjunction con-
text with quasi-unit n and quasi-counit €.

(1) Let a be regular and suppose that the idempotent natural transformation h :

L LR 5 1 splits, that is, there are a functor L: A — B and natural
transformations

p:L—1L, i:L—L with iop=h and poi=I;.

Then the natural transformations
. R~ A ~_ 4
n:IAi>RL—p>RL, s:LR*R>LRL>IB

as quasi-unit and quasi-counit, define an adjunction context (E, R, a, B) with
fBoa=I;, where for A€ A and B € B, the maps are given by

dap: L(A) LB — A7 RI(4) Y R(B),

Bap: A-SRB) — L(4)“2LR(B) 2 B,

If a is symmetric then so is Q.

(2) Let B be reqular and suppose that the idempotent natural transformation k :

R™ RLR B R splits, that is, there are a functor R: A — B and natural
transformations

p:R—R, i:R—R with iop=kandpoi=Iz.

Then the natural transformations
. n pL ~ ~ ~ Li [
n:In—>RL—>RL, €: LR—>LR——=>1Ip

as quasi-unit and quasi-counit, define an adjunction context (L, E, &,B) with
ao 3 =Ig, where for A€ A and B € B, the maps are given by
Gap: LA LB — a4 Rra) 2 R(B),

Bap: AL RB) — LA LR®B) = B

If B is symmetric then so is E
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Proof. (1) In view of the properties of 7 and P, the commutative diagram

In _. LRp

L LRL LRL

J/ zRLl \L?Rf
Ln LRp ~

L LRL LRL

~ D ~

L L

implies £L o Lij = I;.
An easy computation shows that the symmetry of « implies that of a.

(2) In view of the properties of i and D, the commutative diagram (dual to that

in (1))
R PLR _
RLR RLR

RLzl iéﬁ
nR pLR

R

l p ~

R RLR RLR
R

o, b

R

implies RE o ﬁﬁ =I5
Again it is straightforward to show that § is symmetric provided 3 is so. O

So far we have modified the functors to have new adjunction contexts for the
same categories. We may also modify the categories to relate an adjunction context
with a proper adjunction.

2.16. Related adjoint functors. Let (L,R,«a,[3) be a regular and symmetric
adjunction context. Denote by A, B the full subcategories of A and B, respectively,
with

Obj(A) = {A € Obj(A) | L(4) “ LRL(A) %4 L(A) = I},
Obj(B) = {B € Obj(B) | R(B) " RLR(B) "% R(B) = In(n)}-
Then restriction and corestriction of L and R yield functors
L:A—B, R:B-A,
and (L, R) is an adjoint pair of functors.
Proof. For every A € A, we see that
RL(A) "™ RLRL(A) "% RL(A).

is the identity. By the symmetry of «, this implies L(A) € Obj(B).
Similarly, for B € Obj(B), we derive that

LRSB

LR(B) " LRLR(B) ¥ LR(B)

is the identity map and by symmetry of 3, this implies R(B) € Obj(A).
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From the identities in 2.5 one easily sees that a0 3(I3) = I for any B € B and
Boa(l;)=1I;. This shows that (L, R) is an adjoint pair of functors. O

3. QUASI-MONADS

Monads F' on any category A are characterised by the fact that they induce a free
functor ¢ : A — Ap which is left adjoint to the forgetful functor Up : Ap — A,
where A denotes the category of (unital) F-modules. In this section we consider,
for endofunctors F, a category of quasi-modules which allows for an adjunction
context and we study the interplay between properties of this context and the
monad properties. Throughout A and B denote any categories.

3.1. Quasi-monads. A triple (F,u,n) is called a quasi-monad on A provided
F : A — A is an endofunctor with natural transformations p : FF — F and
n : In — F where p is associative. p is called the product and 7n the quasi-unit of
this quasi-monad. They (always) define natural transformations

I AN ) AN A Y W A iy ) AN o}

3.2. Morphisms of quasi-monads. Given two quasi-monads (F, u,n), (F',u',n')
on A, a natural transformation h : F — F” is called a morphism of quasi-monads
if it induces commutativity of the diagrams

FF s prpr Iy — > F

,Ufl l/l./ \ \Lh
n

J L F

Similar to the situation for monads, quasi-monads are in close relation to ad-
junction contexts. For this we define:

3.3. Quasi-modules. Let F' be an endofunctor on A and p : FF — F an associa-
tive natural transformation. A quasi-F'-module is an object A € A with a morphism
0: F(A) — A inducing commutativity of the left hand diagram

FFA) 22 Fa)  Fa) 29 poay

RN

F(A) —2— A, A—"s A,
F-module morphisms between F-quasi-modules (4, p), (4’,¢') are A-morphisms
f+ A — A for which the right hand diagram is commutative and the set of all
these is denoted by Morg(A, A’). With these morphisms, quasi-F-modules form a
category which we denote by A p.
By the associativity condition on u, for every A € A, F(A) is a quasi-F-module.

The data considered above lead to an adjunction context generalising the Eilenberg-
Moore construction.

3.4. Quasi-monads and adjunction contexts. Let (F,u,n) be a quasi-monad.
Then the free functor
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and the forgetful functor
UF:&FHA7 (A,Q)'—)A7
form an adjunction context (¢pp,Up,ap, Br) with the maps

ap : Morp(F(A),B) — Morg (A, Up(B)), f+ fona,
Br : Mory (A, Ur(B)) — Morp(F(A),B), g+ oo F(g),

where A € A and (B,0) € Ap.
A first example for quasi-monads is given by

3.5. Adjunction contexts and quasi-monads. Let L : A - B, R: B — A
be functors forming an adjunction context (L, R, «, 3) with quasi-unit n and quasi-
counit € (see 2.3).

(i) (RL,ReL,n) is a quasi-monad.

(ii) There is a (comparison) functor
K:B— Ap,, Bw (R(B),Re: RLR(B) — R(B)),

inducing commutativity of the diagram

A B A
Arr
Proof. This follows essentially from 2.3. O

For convenience we record some values of the compositions of ar and (p.

3.6. Composing ar and fr. Let (F, u,n) be a quasi-monad. Then the values of
arp and fF in 3.4 on identity transformations yield, for A € A, (B, ) € Ap:

ar(lpay) = A5 F(A),
Broap(Ipy) = F(A) ™4 FF(A) ™ F(4),
apofroar(Ipwy) = A% F(A) ™4 FF(A) ™ F(4),
Br(Iy.z) = F(B) % B,
apofBr(ly.m) = B2 F(B)-% B,
BroapoBr(lupm) = F(B)™% FF(B) L% F(B) -% B.

3.7. Monads and adjunctions. Let (F,u,n) be a quasi-monad with related ad-
junction context (¢p,Up,ap, Br). The following are equivalent:

(a) Bpoarp =1 and apofr=1;
(b) (F,p,n) is a monad;
(¢) ¢r : A — Ap, Up : Ap — A is an adjunction, where Ap denotes the subcat-

egory of unital F'-modules of Ap.

Proof. These assertions are well-known. O
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3.8. Definitions. Let (F, p,n) be a quasi-monad. Then we call
n reqular if IALF:IALFﬂ»FFL»F;
n symmetric if FﬂFFLF:FU—IiFFLF;
ureqular if FF s F=rr "5 ppp *5 pp 2 p,
u symmetric it FF2E ppp ™ pp = pr 2% prp 25 R
(F, p,m) regular if n and p are regular;
(F, p,m) symmetric if n and p are symmetric.

In [10, Definition 2.3], the quasi-unit 7 is called a preunit provided it is regular
and symmetric. In [4, Definition 2.1], (F, u,n) is called a premonad provided it
is regular and 7 is symmetric. In both papers, under the assumptions that idem-
potent morphisms split, adjoint functors are related to the quasi-monads under

consideration (similar to the constructions in 2.15).
From the observations in 2.7 we obtain:

3.9. Properties of regular quasi-units. Let (F,u,n) be a quasi-monad with
related adjunction context (¢r,Urp,ap, Br) (see 3.4).
(1) n is reqular if and only if ap is regqular.
(2) If n is regular, then
(i) 9: F I pF 2 F and 9 F 5 FF S F are idempotent;
(i) donp=n=12on.
(3) n is symmetric if and only if ap is symmetric.
(4) If n is reqular and symmetric, then 9 is an idempotent quasi-monad mor-

phism.

Notice that in 3.9 no (additional) conditions on the quasi-F-modules are im-
posed. On the other hand, to get an adjunction for a monad F' (see 3.7) we had
to refer to a subcategory (of unital modules) of A r. A similar procedure can be
applied under more general conditions.

3.10. Regular quasi-modules. Let (F,u,n) be a quasi-monad. A quasi-F-
module (B, y) is called

reqular if F(B) -2 B = F(B) 22 FF(B) “Z F(B) % B,
symmetric it F(B) ™2 FF(B) 1% F(B) = F(B) ™2 FF(B) “2 F(B).
With ¥ = o Fn (see 3.1), these conditions can be written as
(p:(po’ﬂB, F(pOF?]B:’l93.

We denote by Ay the full subcategory of A p whose objects are regular quasi-F-
modules.

(i) Clearly, (F(A),pa) is a regular (symmetric) quasi-F-module for all A € A if
and only if the product u is regular (symmetric).

ii) If p is regular, then with ¥ = ponkF (see 3.1),
M won

rr rrp s p—frr *F-rr A rr R
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(iii) If p is regular and 7 is symmetric, then for any (4, ¢) € A,
F(A) 2 A=FA) 5 A" FPA) 5 A
Assertion (iii) follows from the commutative diagram

NF(A) pa
—_—

F(A) FF(A) s F(A)

A F(A) —— 4.

As an easy consequence of the definitions we mention that, for any (proper)
monad (F, u,n), all quasi-F-modules are regular and symmetric (but not unital).

3.11. Regular quasi-monads and adjunction contexts. Let (F,u,n) be a
regular quasi-monad.
(1) The (obvious) free and forgetful functors
¢r:A—Ap, Up:Ap—A,
form a regular adjunction context (¢, Up,ar,OF).
(2) If n is symmetric, then the quasi-monad morphism ¢ : F — F induces the

identity functor on Ap.

Proof. (1) is obvious from the observations in 3.9 and 3.10.

(2) The quasi-monad morphism ¢ transfers any quasi-module ¢ : F(A) — A to
F(A) 2, F(A) =% A which — by regularity — is equal to ¢ : F(A) — A. O
If u or n is regular, the other one can be modified to be also regular.

3.12. Proposition. Let (F,u,n) be a quasi-monad.
(1) If n is regular (see 3.8), then, for

i:FFYE ppp B PR ML R,

(F, f1,m) is a regular quasi-monad.

(2) If u is regular, then, for
RN PRI ARy o Ny )
(F, p,7) is a regular quasi-monad.
(3) If (F,u,m) is a reqular quasi-monad, then for
RN 0 AR of o o IR o o RN o ARG o)
(F, f1,m) is a regular quasi-monad with n symmetric.

Proof. (1) and (2) follow from Proposition 2.12, assertion (3) can be easily
verified. O

As a special case we consider quasi-monads on the category rkM of modules over
a commutative ring R with unit.

3.13. Quasi-algebras. A quasi-algebra (A,m,u) is an R-module A with asso-
ciative multiplication m : A ® g A — A and R-linear map u : R — A. Putting
e:=u(lg) € A we have:
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(1) w is regular if and only if e = u(1g) is an idempotent in A.

(2) w is regular and symmetric if and only if e is a central idempotent (then Ae
is a unital R-subalgebra of A).

(3) w is regular if and only if ab = aeb for all a,b € A.

(4) p is symmetric if and only if A ®r eA = Ae ®p A.

(5) If wis regular, then m(a®b) = aeb, for a,b € A, defines a regular quasi-algebra
(A, m,u).

(6) If u is regular, then Mm(a ® b) = eacbe, for a,b € A, defines a regular quasi-
algebra (A, m,u) with u symmetric.

Clearly, the quasi-algebras (A, m,u) over R correspond to the quasi-monads
(A®r —,m® —,u® —) on gRM and thus we get:
3.14. Quasi-modules. Let (A, m,u) be a regular quasi-algebra over R. For the
category oM of regular quasi-A-modules, the free functor
¢pa:rRM — aM, X — (A®r X,ma® Ix),
together with the forgetful functor Uy : sAM — rM yield a regular adjunction
context (¢a,Ua, aa,B4) with the maps, for X € gM, (M, p) € 4M,
ag:Morp(A®r X, M) — Morg(X, M), f— fo(u®A),
Ba:Morg(X,M) — Morgy(A®r X, M), g+— po(ARyg).
3.15. Quasi-monads acting on functors. Let 7 : A — B be a functor and
(G, 1, 1) a quasi-monad on B. We call T a left quasi-G-module if there exists a
natural transformation ¢ : GT' — T such that
cor s ar L r—car “Lor LT,

and we call it a regular quasi-G-module if in addition
GT % T=61 %5 ger A5 6 -4 T

Note that the quasi-monad G may be seen as quasi-monad on the category of
functors A — B and the (regular) quasi-G-module T is a (regular) quasi-module
for this quasi-monad.

3.16. Proposition. Let T : A — B be a functor and (G,p',n) a regular quasi-
monad on B. Then there is a functor T : A — B, with commutative diagram

Bg

7

A—p=B

if and only if T is a reqular quasi-G-module.
Proof. Given T as a regular quasi-G-module with o : GT' — T the natural
transformation, the functor
T:A—Bg, A (T(A),04:GT(A) — T(A))
has the required property.

Now assume there exists a functor 7' making the diagram commutative. Then
for A € A, the are morphisms pg : GT(A) — T(A) and they define a natural
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transformation p : GI' — T. For this we have to show that, for any morphism
f:A— A, the middle rectangle is commutative in the diagram

GGT(A)

PA
G’I‘]/TA /

GT(A) 22> T(A)

GT(f) T(f) GT(f)
GT(A) ——T(A)

Gn'T3

! pA\
Ho (&) ~

GGT(A) GT(A).

The top and bottom diagrams are commutative by regularity of the quasi-G-
modules, and the right trapezium is commutative since T'(f) is an G-morphism.
Thus the inner diagram is commutative showing naturality of p. a

For an easy example of the notion introduced in Proposition 3.16, observe that
for any regular quasi-monad (G, ¢/, 7'), G is a regular quasi-G-module.

4. QUASI-COMONADS

Having seen how to extend the theory of monads to quasi-monads, it is quite
obvious how a similar step is to be done for quasi-comonads. Recall that a comonad
G on any category A induces a free functor ¢¢ : A — A% which is right adjoint to
the forgetful functor U% : A¢ — A, where A® denotes the category of (counital)
G-comodules. Again A denotes any category.

4.1. Quasi-comonads. A triple (G, J,¢) is called a quasi-comonad on A provided
G : A — A is an endofunctor with natural transformations § : G — GG and
€ : G — Ip where § is co-associative. 9§ is called the coproduct and ¢ the quasi-
counit of this quasi-comonad. They always define natural transformations

v:aLaeEq oy la

4.2. Morphisms of quasi-comonads. Given two quasi-monads (G,d,¢) and
(G',8,¢") on A, a natural transformation k : G — G’ is called a morphism of
quasi-comonads if it induces commutativity of the diagrams

a—t ¢ G——=1I,
5i l(s' kl /
ae 5 g, e -

Similar to the situation for comonads, quasi-comonads are in close relation to
adjunction contexts. For this we define:

4.3. Quasi-comodules. Let G be an endofunctor on A and § : G — GG a co-
associative natural transformation. A quasi-G-comodule is an object A € A with a
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morphism v : A — G(A) such that
A2 G(A) Z% GG(A) = A -5 G(A) -2 GG(A).

G -comodule morphisms between quasi-G-comodules (A, v), (A’,v") are morphisms
g:A— A with

A4 gy = A% aa) 29 aan

and the set of all these is denoted by MorG(A7 A’). With these morphisms, quasi-
G-comodules form a category which we denote by A G,

By the co-associativity condition on ¢, for every A € A, G(A) is a quasi-G-
module.

4.4. Quasi-comonads and adjunction contexts. Let (G, J,¢€) be a quasi-comonad.
Then the (cofree) functor

6% A — AS A~ (G(A),G(A) 2 GG(A)),
and the forgetful functor
Ue . A}G — A, (A,pA) — A,

form an adjunction context (U%,¢% ag,Bc) where, for A € A and (B,v) € &G,

aC : Mor, (US(B), A) — Mor®(B,G(A)), B 24~ 4 — B a(B) Y q),
5Y : Mor® (B, G(A)) — Mors (US(B), A), B % G(A) — G(B) “¥ q(a) 24 A,

Proof. All assertions are easily derived from the definitions (dual to 3.4). O
As an interesting (motivating) example for comonads we obtain:

4.5. Adjunction contexts and quasi-comonads. Let (L, R, «, 3) be an adjunc-
tion context betwen the categories A and B with quasi-unit n and quasi-counit € (see
2.8). Then:

(i) (LR,LnR,¢) is a quasi-comonad.
(ii) There is a (comparison) functor
K:A— B Aw (L(A),Ly: L(A) — LRL(A)),
inducing commutativity of the diagram

R L

B A B
LR
£y
Proof. This follows essentially from 2.3. a

For convenience we record some values of the compositions of ag and (Gg.
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4.6. Composing o“ and 3%. Let (G, 6,¢) be a quasi-comonad. Then the values
of o and 3% in 4.4 on the identity transformations yield, for (B,v) € A}G,

a%(Iye(py) B — G(B),
B%oa(Iycp) = B — G(B) =& B,
a0 3% 0 aC(Iyep) = B-G(B)-22 GG(B) “E G(B),
BO(Ig) = G-Iy,
aCopC(ls) = G-5GG 5 a,
BCoalofl(ls) = G-5GGE G -5,

4.7. Comonads and adjunctions. Let (G,d,¢) be a quasi-comonad with related
adjunction context (UY, ¢, a%, 39). The following are equivalent:

(a) af is invertible with invers B ;

(b) (G,0,¢) is a comonad;

(c) U% : A9 — A, ¢¢ : A — A% is an adjunction, where AY denotes the
subcategory of counital G-comodules of ;A)G.

Proof. These are well-known characterisations of comonads. O

4.8. Definitions. Let (G, 9, €) be a quasi-comonad with related adjunction context
(U%, 9%, a%, 3%). Then we call
€ regular if GﬁIA:GLGGiGﬁfA;
e symmetric if GLGGEGZGLGG‘E—QG;
§ reqular it G -GG =G - 6a 2% qea €4 ag;
o Gs GeG 5G GeqG
6 symmetric if GG — GGG — GG = GG — GGG — GG,
(G,0,¢) regular if ¢ and 0 are regular;
(G,d,¢) symmetric if e and ¢ are symmetric.
In [10, Definition A.3], the quasi-counit ¢ is called a pre-counit provided it is
regular and symmetric.
The observations in 2.9 read here as follows.

4.9. Properties of regular quasi-counits. Let (G, 0,¢) be a quasi-comonad with
related adjunction context (UY, 9%, %, BY) (see 4.4). Then:
(1) € is regular if and only if B€ is regqular.
(2) If € is regular, then
(i) v: G .66 5 G oand 7:G 2,66 25 G are idempotent;
(i) eoy=e=¢€o0n.
(3) € is symmetric if and only if B¢ is symmetric.

(4) If € is regqular and symmetric, then v is an idempotent quasi-comonad mor-
phism.

Similar to the case of quasi-modules (see 3.9), in 4.9 no (additional) conditions
on the quasi-G-comodules are imposed. To get an adjunction context with better
properties we have to select a subcategory of A G,
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4.10. Regular quasi-comodules. Let (G, d,¢) be a quasi-comonad. A quasi-G-
comodule (B,v) is called
regular if B —- G(B) =B — G(B) 25, GG(B) 95 G(B);
symmetric if G(B) <% GG(B) 953 G(B) = G(B) 22 GG(B) %2 G(B).
With v = Ge 0§ (see 4.1) this conditions are written as
v=rgov, GepoGu=ryg.

We denote by A the full subcategory of A & whose objects are regular quasi-G-
comodules.

(i) Clearly, (G(A),d4) is a regular (symmetric) quasi-G-comodule for each A € A
if and only if the product ¢ is regular (symmetric).

(ii) If § is regular, then with v = eG 0 4,

G
G266 25% 66=6-"266=06-"" G663 GG,
(i) If § is regular and ¢ is symmetric, then for any (B,v) € A%,
B - G(B)=B % G(B) = B % G(B).

Similar to the situation for quasi-modules, for any (proper) comonad (G, 4,¢),
all quasi-comodules are regular and symmetric.

4.11. Regular quasi-comonads and adjunction contexts. Let (G,d,¢) be a

regular quasi-comonad.
(1) The (obvious) cofree and forgetful functors

¢% A — A% U AY — A,
form a regular adjunction context (U, ¢%,a%, 3%).

(2) If € is symmetric, then the quasi-comonad morphism v : G — G induces the
identity functor on AC.

Proof. In view of 4.9 and 4.10, the proof is dual to that of 3.11. O
If 6 or e is regular, the other one can be modified to be regular, too.
4.12. Proposition. Let (G,d,¢) be a quasi-comonad with related adjunction con-
text (UY, 0%, a%, 39).
(1) If € is reqular (see 4.9), then, for

5.6 % aa C qaa %S aa,

(G,6,¢) is a reqular quasi-comonad.

(2) If § is regular, then, for

- b
&G —

GG 55 G = 1y,
(G,6,€) is a regular quasi-comonad.
(3) If (G,6,¢) be a regular quasi-comonad, then, for

PN RN el B -iNIelelel-ilelelelchiielel

(G, 0,¢) is a regular quasi-comonad with € symmetric.
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Proof. (dual to Proposition 3.12) (1) and (2) follow from Proposition 2.12, and
assertion (3) can be directly verified. O

As a special case we consider quasi-comonads on the category zrM of modules
over a commutative ring R with unit.

4.13. Quasi-coalgebras. A quasi-coalgebra (C, A, ¢) is an R-module C with R-
linear maps A : C — C ®r C and € : C — R, where the comultiplication A is
coassociative. Writing for ¢ € C, A(c) =Y ¢1 ® ¢ we have:

1) ¢ is regular if and only if for any c € C, e(c) = >_ e(c1)e(ca).

2) e is symmetric if and only if > c1e(ca) = Y e(e1)ca.

3) A is regular if and only if A(c) = ¢1 ® ce(cs).

4) A is symmetric if and only if Y~ c® e(dy)dz = > c1e(c2) ® d.

5) If ¢ is regular, then A(c) := 3 ¢; ® e(cg)cz defines a regular quasi-coalgebra
(C,Ae).

(6) If (C,A,¢) is a regular quasi-comonad, then A(c) := Y e(c))co @ cze(cq)

defines a regular quasi-coalgebra (C, A, e) with & symmetric.

(
(
(
(
(

Clearly, the quasi-coalgebras (C, A, €) over R correspond to the quasi-comonads
(C®r — A®—,e®—) on gpM and thus we get:

4.14. Quasi-comodules. Let (C,A,¢) be a regular quasi-coalgebra over R. For
the category “M of regular left quasi-C-comodules, the cofree functor

¢ RM— M, X — (CorX,A® Ix),

together with the forgetful functor U : “M — RM yield a regular adjunction
context (U, ¢%, %, 8¢) with the maps, for X € gpM, (M, v) € M,

a€ : Morg(M, X) — Mor® (M, C ®@r X), f— (C® f)ow,

BC : Mor® (M, C ®g X) — Morg(M, X), g— (e®1Ix)o(C®g).
4.15. Weak corings and pre-A-corings. Let A be a ring with unit 14 and C a
quasi-(A, A)-bimodule which is unital as right A-module. Assume there are given
(A, A)-bilinear maps

A:C—>C®aC, e:C— A,
where A is coassociative.
(C,A,¢) is called a right unital weak A-coring in [19], provided for all ¢ € C,
(@ Ic) o AW) = 1a-c = (Ie @) 0 A(0)

which reads in (obvious) Sweedler notation as

ZE(C;)Cg =lg-c= ch(cz).

From the equations
(Ie®@e®Ic)o(Ie®@A)oAle) = Ya®@lacp = Ya®c = A,
(Ie®we®lc)o(A®Ic)oAlc) = Y la-c1®cz = 1a-Ale),
it follows by coassociativity that 14 - A(¢) = A(¢). Summarising we see that, in
this case, (C,A,¢g) is a regular and symmetric quasi-comonad on the category AM
of left quasi-A-modules (=4M since A has a unit).
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(C,A,¢) is called an A-pre-coring in [7, Section 6], if
(®I)oAl) =c, (Ie®e)oAlc)=1a"c

which reads in Sweedler notation as

c= ele)ep, la-e=) cele).
Similar to the computation above we obtain that 14 - A(c) = A(c¢). Now (C,A,¢g)
is a regular quasi-comonad on 4M but neither ¢ nor A are symmetric.
Notice that in both cases considered above, restriction and corestriction of A

and g yield an A-coring (AC, A, ¢) (e.g. [19, Proposition 1.3], compare also 2.16).

Dual to 3.15, the notion of comodule functors (as considered in [16, 3.3]) can be
extended to

4.16. Quasi-comonads acting on functors. Let T : A — B be a functor and
(G, d,¢) a quasi-comonad on B. We call T' a left quasi-G-comodule if there exists a
natural transformation v : T'— GT such that

T 6T 2% gor =T % 6T -2 GGT,

and we call it a reqular quasi-G-comodule if in addition
T % GT =T -5 GT - GGT 55 GT.

A quasi-comonad G may be seen as quasi-comonad on the category of functors
A — B and the (regular) quasi-G-comodule T is a (regular) quasi-comodule for this
quasi-monad.

4.17. Proposition. Let T : A — B be a functor and (G,0,¢) a regular quasi-
comonad on B. Then there is a functor T : A — BY with commutative diagram

]BG

e

A== B

if and only if T is a regular quasi-G-comodule.

Proof. The proof is dual to that of 3.15. O

5. ENTWININGS WITH QUASI-MONADS

5.1. Lifting of functors to quasi-modules. Let (F, u,n) and (G, ¢/, n') be quasi-
monads on the categories A and B, respectively. Denote by é} F, B¢ the categories
of the corresponding quasi-modules and by A, B, the categories of the regular
quasi-modules provided the quasi-monads are regular (see 3.3). Given functors

N _
T:A— B, TZA)FHE)G, T:Ar — B,
we say that TorTisa lifting of T provided the corresponding diagram

—

(5.1) Ar—T. Bg or Ap T, B,

UFi ) lUG UFl ) lUc

A——TPB A——B
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is commutative, where the U’s denote the forgetful functors (see 3.4).
The natural transformations 9 = po Fn: F — Fand ¢ = /' oGn' : G — G are
quasi-module morphism (see 3.1) and we put

k:=T9:TF — TF.

5.2. Proposition. With the data given in 5.1, consider the pair of functors
TF, GT : A — B and a natural transformation X\ : GT — TF. The quasi-F-module
(F, p) induces a G-action on TF,

v:GTF X e T TR,
(1) If (TF,x) is a quasi-G-module, then we get the commutative diagram

(5.2) GGT —> GTF "> GTF 2> TFF
/L,Ti iT}z
GT A TF —"~TF
(2) If G is regular and (T'F, x) is a regular quasi-G-module, then we have
(5.3) or - g1 2> TF —>TF = GT —>TF —*>TF.

(3) If F is regular and (A, ) is a reqular F-module, then in the diagram

(5.4) GTF(A) M TrRA) 222 TR(4)

GT??AT TFUHT;LA \LT@

Ty

GT(A) —22 = TF(A) T(A).
the outer paths commute and
(5.5) Toods =TpodaoGTpoGTna.

Proof. (1) To make T a left quasi-G-module, associativity of the G-action is
required, that is, commutativity of the inner rectangle in the diagram

GGT g GTF

GGTF W‘ GTFF TTZ GTF

w'T i)\F

WTF TEFF

:

or — arF s 7rp - s TF
TF

The other inner diagrams are commutative by functoriality of composition or defi-
nition and hence the outer paths yields commutativity of the diagram (5.2).
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(2) The regularity condition for the quasi-G-module structure (see 3.10) is com-
mutativity of the inner rectangle in the diagram

w'T A
GGT GT TF
S el
GTn TFn
\F
GGTF — GTF TFF
w'TF
Gn'T Gn'TFT \LT;J,
T
GTF 2> TFF —t>TF
g | A
TFn #

GT A TF ;

while the other subdiagrams are commutative by naturality or definition. Now, by
the definition of ¢, the outer commutative diagram is just equation (5.3).

(3) Commutativity of the partial diagrams in (5.4) is clear by naturality and the
definition of quasi-F-modules. Commutativity of the outer diagram follows from
regularity of ¢, that is, ¢ = po s o Fnsa. Now the final equation is a consequence
of the equality Aa o GT'p = TFp o Ap(a). O

5.3. Proposition. Let (F,pu,n) and (G,u',n') be reqular quasi-monads on the
categories A and B, respectively, and T : A — B any functor. Then a natural
transformation A : GT — TF induces a lifting

T:hp—Bg (Aw)— (T(A),Tpors: GT(4) - T(4))

to the regqular modules if and only if the diagram (5.2) is commutative and equation
(5.3) holds.

Proof. The necessity of the conditions follows from Proposition 5.2.

Now assume the diagrams addressed to be commutative. Let ¢ : FI(A) — A be
a regular quasi-F-module, that is, p o4 = p and Tpo kg = Tp.

Attaching F' to the commutative diagram (5.2) and applying regularity of u
yields the commutative diagram

GAF GTIYF AFF

GeTF 2% arrr L orrr 225 TREF
arn \LGT,U, \LT/,LF
AF
W' TF GTF TFF
TIF \LT/»L
GTF AF TFF TF.

T
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From this we get commutativity of the heptagon in the diagram

GGT(A) G GTF(4) —~ aTF(4) 2% a(A)
W; GTFnl “Ty \LAF \LA
GGTF(A) ——= GTFF(4) TFF(A) 2% TR(A)
w'T ;/TF(A)i J/Tp, \LT(p
GTF(A) 2~ TFR(A) 2 ~ TF(A) ¢~ T(A)
GTy TF y
n T

GT(A)

3 TF(A) ;
in which all the other subdiagrams are commutative by naturality or definition.
This shows that T'p o A4 defines a quasi-G-module structure on T'(A).

Regularity of the quasi-G-module T(A) means commutativity of the outer paths
in the diagram

GaT(A) 2L aT(A) 2= TF(A)

w2 TN

GT(A) —— TF(A) —— TF(A) ——T(4)

)

this holds since the pentagon is just equation (5.3) (hence commutative by assump-
tion) and (A4, ¢) is regular. O

These observations allow us to extend Applegate’s lifting theorem for monads
(e.g. [12, Lemma 1]) to quasi-monads and quasi-modules with regularity conditions.

5.4. Theorem. Let (F,u,n) and (G,u',n') be reqular quasi-monads on A and B,
and Ap and By the categories of the regular quasi-modules, respectively. For any
functor T : A — B, there are bijective correspondences between
(i) liftings of T to T : Ap — B, such that for any (A, ) € Ap, the reqular
quasi-G-module structure map ¢ : GTUp — TUp induces commutativity of
the diagram

QF(A)
_—

(5.6) GTF(A) TF(A)

GTWAT lTw

GT(A) —*—T(A);

(ii) regular quasi-G-module structures o on TUp : Ap — B inducing commutativ-
ity of the diagram corresponding to (5.6);

(iii) natural transformations A : GT — T'F with

AoWT =X=KoA
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and commutative diagram

(5.7) GaT > arF 25> TFF
;/TJ/ iT#
GT A TF.

Proof. (i)<(ii) This follows from the right hand diagram in (5.1) and Pro-
position 3.16.

(ii)=-(iii) With o (as in (i)), put
A= oF o GTy: GT ™ arr 25 TR,

By regularity of n and naturality, we get the commutative diagram

GTn
GT —GTF TF

lGTFn lTFn

oF F
ery\ GTFF ——>TFF

lGTﬂ lT}L

oF

GTF ——TF
from which we obtain
kooF =pF oGk and KoAl= A\

2N

In the diagram

GGT W GGTF 4> GTF
Gn TT Gn TFT lgF
GT o GTF oF TF,

the right square is commutative by regularity of ¢ while the other partial diagrams
are commutative by naturality. This shows that Ao d'T = .
Consider the diagram

GGTn GoF GTnF
GGT — GGTF GTF GTFF
/L,Tl p,’TFl gFl lgFF
GT TTU> GTF oF TF Tn TFF,

in which the left two squares are commutative by naturality and associativity,
respectively, while the right square is commutative as a special case of the diagram
(5.6). Reading the diagram in terms of A we see that (5.7) is commutative.

(iii)=-(i) By Proposition 5.3 and 3.16, o4 := Ty o A4 may be considered as
regular quasi-G-module structure on TUpr. Commutativity of (5.6) can be written
as

oa=TpopFoGTns =0p0GTpoGIn,.
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Now the equation (5.5) implies commutativity of (5.6).

To show uniqueness of the correspondence, let o : GTUr — TUFg be a quasi-G-
module structure morphism with commutative diagram (5.6) (in (ii)). With the A
defined in the proof (ii)=-(iii), we obtain a quasi-G-module structure on TF (see
5.2),

o:arF I arrr Y rrr I TR

This fits into the (obviously) commutative diagram

GTn oF
GI — GTF TF

G’Tnl iGTFn iTFn
GTnF

GTF —5 GITFF ——= TFF
oF F

GTp,i iTp,
oF

GTF ——TF

which shows that go GTn = ko oF o GTn = A. Now commutativity of (5.6) just
means o4 =T @ o A4. O

Clearly the morphism k = TW (see 5.1) shows the deviation of the quasi-unit
from unitality. We list some properties and relations for this entity.

5.5. Lemma. Let (F,u,n), (G,1',n') be quasi-monads and T : A — B a functor
with (any) natural transformation A : GT — TF and consider

~ 'TF T
R: TF 4> arF 25 7FF —t>TF

(1) Kok =kKoR.

(2) If \on/T =Tn, then K = T9.

(3) If the diagram (5.7) is commutative, then Ao 9'T =Ko .
(4)

4) If (5.7) is commutative and 7' is reqular, then K is idempotent.

Proof. (1) follows by commutativity of the diagram

'TF T
TF ! GTF AF TFF — S 7TF
TFU\L \LGTTn lTTFn \LTFU
'"TFF T F
TFF —" GTFF —2Y ~rppp—"" SRR
TM\L \L GTpu lTFp, \LTU
_ >
TF e~ GIF — TFF ——m TF,

in which the top and the bottom row both yield ¥ and the left and right vertical
morphisms are k = T.
(2) is obvious, for (3) see lower part of the diagram in the proof of (4).
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(4) The diagram

T
ﬁ/Tl T
n'GT
GT GGT GT

w'T
)\l G)\l \L)\
nTF T

TF GTF 2~ TFF > TF,

is commutative by assumption and naturality. Applying the outer morphisms to F'
yields the upper part commutative in the diagram

n'TF

TF GTF
n’TF\L l)\F
aTF 2> 1rF s TRR
TH\L J(Tu

TF—* ~TF

while the lower part is commutative by associativity of p. This shows that & is
idempotent. a

As a special case of Theorem 5.4 we consider regular quasi-algebras.

5.6. Regular quasi-modules of quasi-algebras. Let A be an R-module with
multiplication m : A g A — A and idempotents e, f. Then (A,m.,e) and
(A, my, f) are regular quasi-algebras with multiplications

me(a®b) :=m(a@m(e®b)) and mys(a®@b):=m(a@m(f®Db)),
for a,b € A (see 3.13).

For any R-module T', the twist map tw: AQrT — T ®p A satisfies the equality
mo (tw® A) o (A®tw) = tw o m but this does no longer hold when replacing m by
me and my, respectively.

Composing tw with — - f ® T and T'® — - e from the left and right hand side,
respectively, we define

AN ART - T®rA, a®t—tQafe,

and the diagram

AQN AQA
A®RA®RT;®>A®RT®RA£>T®RA®RA

\Lme(@T

T®RA,

mf@Ti

ARprT

is commutative, provided for a,b € A and t € T,
tafbfe=t®afebfe.

This obviously holds, for example, if fe = f or also if e is a central element. In this
case the functor T ®@p — : Mg — Mg can be lifted to T": M4 ,,, o) = M4, -
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Indeed, for a regular (A, m.,e)-module A ®g M — M we have am = aem for
anya € A,m € M. On T ®p M, X induces the left A-module structure

AQRTRr M —TQRr M, a®tmme—tRafem =tQafm,

which clearly is (A, my, f)-regular.
This example shows that centrality of e (that is, symmetry of n in Theorem 5.4)
simplifies the situation but is not necessary for the lifting.

6. ENTWININGS WITH COMONADS
6.1. Lifting of functors to quasi-comodules. Let (F,d,¢) and (G,d’ ') be
quasi-comonads on the categories A and B, respectively. Denote by ;A} F E}G the

categories of the corresponding quasi-comodules and by AY B the categories of
the regular quasi-comodules provided the quasi-comonads are regular (see 4.3).
Given functors

T:A— B, ?:;A)FﬁE)G, T:A" - BC,

we say that TorTisa lifting of T if the corresponding diagram

AT 2-BY o A" —>BC
UFJ/ lUG UFl lUC
A—L o B A—>B

is commutative, where the U’s denote the forgetful functors (see 3.4).
The natural transformations v = Fe o ¢ and v = Ge’ o §’ are quasi-comodule
morphism (see 4.1) and we put

T:=Ty:TF — TF.

6.2. Proposition. With the data given in 6.1, consider the pair of functors
TF,GT : A — B and a natural transformation ¢ : TF — GT. The quasi-F-
comodule (F, ) induces a G-coaction on TF,

c:TF 2 rrr Y5 orF.
(1) If (TF,Q) is a quasi-G-comodule, then we get the commutative diagram

T b

6.1) TF TF GT
Tﬁl J/(;/
F - el
rrF - arr -S> arF Y GoT.

(2) If G is regular and (T'F, () is a reqular quasi-G-module, then

T P ¥'T T P
(6.2) TF TF GT GT = TF ——=TF — GT.

Proof. The proof is dual to that of Proposition 6.2. To illustrate the situation
and for convenient reference we write out some of the diagrams involved.
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(1) Coassociativity of the coaction means commutativity of the inner rectangle
in the diagram

TF
TFe
TFT>TFF oF GTF oTe GT
ni
TFF §'TF
wFi 8'T
GyF
aTF <% arrr - caTF
\ l ﬁs
h GTFe
Gy

GTF GGT,

and all the other inner diagrams are commutative by definition or naturality. Thus
the outer path is commutative and yields (6.1).

(2) Regularity of (T'F,() means commutativity of the inner rectangle in the
diagram

TP —Y a7 T GGT

GGTe
TFe GTe
bF S'TF

TFF — GTF — GGTF

TaT
F
7F 2 rpp Y GrR

\ J/ GTe
TFe
r
P

J/GE/TF Ge'T

TF GT,
where all the other inner diagrams are commutative by definition or naturality. The
outer path now gives commutativity of (6.2). O

6.3. Proposition. Let (F,d,e) and (G,d',¢") be regular quasi-comonads on the
categories A and B, respectively, and T : A — B any functor. Then a natural
transformation ¢ : TF — GT induces a lifting

T:A" B9 (Fv)— (T(A),¢oTv: T(A) — GT(A))
to the regular quasi-comodules if and only if the diagrams (6.1) and (6.2) are com-
mutative.

Proof. The proof is dual to that of Proposition 5.3. O

Dualising Theorem 5.4, Applegate’s lifting theorem for comonads extends to
quasi-monads and quasi-modules.

6.4. Theorem. Let (F,d,¢) and (G, ") be regular quasi-comonads on A and B,
and AT and BY the categories of the reqular quasi-comodules, respectively. For any
functor T : A — B, there are bijective correspondences between
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(i) lftings of T to T : A" — B®, such that for any (A,v) € A, the regular
quasi-G-comodule structure map v : TUY — GTUY induces commutativity
of the diagram

vFa

TF(A) 4% GTF(A)
TUT iGT&
T(A) —2> GT(A);

(i) reqular quasi-G-comodule structures v : TUY — GTUY inducing commuta-
tivity of the diagram corresponding to that in (i);
(iii) natural transformations ¢ : TF — GT with
Ypor=1p=9Toy

and commutative diagram

TF v GT
T(Sl lﬁ,T
YF Gy
TFF "> grF -~ ger.

Proof. In view of 6.2 and 6.3 the proof is dual to that of Theorem 5.4. Here
we take 1 as the composition 9 o 7 (with ¥ from 6.2). O

7. LIFTING OF ENDOFUNCTORS TO QUASI-MODULES

In this section we consider the

7.1. Liftings of endofunctors to quasi-modules. Let (F,u,ane a regular
quasi-monad and T' any endofunctor on the category A. A functor 7' : Ap — Ap
and T : AY — A% is a lifting of T provided it induces commutativity of the diagram

Ap LAF

UFl ) iUF

A——A.
As an application of Theorem 5.4 we get

7.2. Proposition. Let (F,u,n) be a regular quasi-monad, Ap the category of
reqular quasi-modules, and T : A — A any endofunctor on A. There are bijective
correspondences between
(i) tliftings of T to T : Ap — Ap, such that for any (A,p) € A, the reqular
quasi-F-module o : FTUp — TUp satisfies

oa=TpopFoFIngs=9p0FTpoFTn,.

(ii) regular quasi-F-module structures o : FTUpr — TUp satisfying the equalities
in (i);
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(i) natural transformations A : FT — TF with
Ao T =A=TP90 A

and commutative diagram

(7.1) FFT 2> prr 25 TFF
MT\L lTu
FT A TF.

From Lemma 5.5 we get the

7.3. Lemma. Let (F,pu,n) be a quasi-monad and T : A — B a functor with (any)
natural transformation \ : F'T' — TF and consider

~ TF T
7. TF 5% prr s rprp o TR

(1) Kok =KoR.

(2) If N\onT =Tn, then kK = T9.

(3) If the diagram (7.1) is commutative, then A o 9T =Ko \.

(4) If (7.1) is commutative and n is reqular, then K is idempotent.

Besides the questions considered in the general case (e.g. 5.4), we may now ask
when the liftings are quasi-monads.

7.4. Proposition. Let (F,u,n) and (T, i1,7) be reqular quasi-monads and assume

T can be lifted to T : Ap — Ap by \: FT — TF (see 7.2). Then, on TF, product
and quasi-unit are defined by

7:TFTF 2 rrrp ™ prp Morp, 5.1, 5 F 20 pr 2 TR,

(1) If fF : TTF — TF is a quasi-F-module, then we get the commutative dia-

gram

(7.2) FTT 25> 7P 22> TTF
Fﬂl iﬁF
FT A TF.

(2) If (7.2) is commutative, then (TF,i,7) is a quasi-monad with 7 reqular.
(3) In (2), @ is regular if and only if, in addition,

F9 A JIF A IF
(7.3) FT FT TF TF = FT ——TF —TF,

where 0 = o iT. In this case (TF, @) is a regular quasi-monad.
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Proof. (1) The condition on gF : TTF — TF means commutativity of the
large inner rectangle in the diagram

AT TX

FTT TFT TTF
FTTF = TFTF ~ = TTFF 0= TTF
Fit FﬂFl \L;lF
T
FTF AF TFF —Y s TF
FTn TFn
FT A TF

Since all the other subdiagrams are commutative by naturality or definition, and
Ko X =\ (see 7.2), the outer path yields commutativity of (7.2).

(2) Associativity of the product & is obtained by standard diagram manipula-
tions. It is a special case of the corresponding part of the proof of 7.7.

The condition for regularity of the quasi-unit 77 is commutativity of the outer
path of the diagram

L,—" > pr—2 >TF
i ,\l / TFn
FT TF<~—"—TFF
A / lTFﬁ TF
TF TFT < TFFT
AF % TFX

TTF ~TTh TTFF < TFTF,

where the inner quadrangle is commutative by naturality, the pentagon on the
bottom is so by commutativity of (7.1) where

~ TFmn nF
F:TF—LTFT 2> 717F 225 TR

Recalling that ¥ = i o T (see 3.1), commutativity of the diagram

FT —>>TF

FTﬁ\L \LTFY;

FTT 2L 77 -2 7TF

o

FT TF

implies

(7.4) FT 2% pT 2 TF = FT 25 TF 2 TF,
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and thus
L per X Forp = 1, P pr B2 pr X 1
- 1, " FT A TF

where the last equality follows by regularity of 77 (see 3.9). This means that the left
hand pentagon - and hence the whole diagram - is commutative.

(3) To show that the product 7 is regular, consider the commutative diagram

TFn TFnT
TF —> 7T — > 7T 222 7P7F 222 7R R
T \LTMT \LTTM o
TFT 2 TTF > TF.

Since AodT = X (see 7.2) we see that oT F'7j = K. Thus the condition for regularity
of = means commutativity of the diagram

TFT 2~ TTF
T nF
rRT
P\ aF
TFT TTF TF.

The upper path in this fits in the commutative diagram

TFnT o FT
TFT —> TFTT 225 77RT 2“5 TFT

D lTFﬂ \LTT)\ \LT)\
TF9 -
nTF
TFT TTTF —=TTF
S
TTF ——TF
nF

and hence the regularity condition reads as commutativity of the bottom rectangle
in the diagram

FT —>~TF
Fd J/ i
nET nTF
TF9
FT = TFT TFT —>TTF
Al lm iw
nTF o F
TF -5 TTF a TF,

while the other subdiagrams are commutative by naturality. This yields (7.3).
On the other hand, equality (7.3) implies

T 22 rEr 2N R Mo = TET IN TR B TR PE TR

= 1r7 2 1R 2 TR
where the last equality follows by regularity of i (see 3.10). This shows that [ is
regular. a
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7.5. Weak distributive laws. Note that Proposition 7.4 generalises the weak
distributive laws as considered by Street in [18], where a lifting of a (proper) monad
(T, f1,7m) to (regular) quasi-modules over a monad (F, u,n) is considered. The con-
dition (3) in [18, Definition 2.1] means k = K. For regular quasi-monads F, T, this
implies (see Lemma 7.3, (7.4))
AodT =FoAl=FKo\=AoF4y.

Since Ao dT = X (see 7.2), imposing the symmetry condition 9 = ¢ implies that all
these expressions are equal to .
7.6. Quasi-monad entwinings. For reqular monads F, T, and a natural trans-
formation X\ : FT — TF, the following are equivalent:

(a) (TF,m, Aonn) is a reqular quasi-monad on A;

(b) X satisfies
(7.5) A=XodT =TYol=XoFij)=90Fo\

and induces commutativity of the diagram (7.1) and the diagram

.
(7.6) FTT - FT
ATi i,\

i F
TFT 22> 77F —2> TF;

(¢) X satisfies the equations (7.5), induces commutativity of the diagram (7.1),
and we have natural transformations

LF :TTF —-TF and AolFn:F —TF
where i F is (F, F)-bilinear and X o F1j is left F-linear.
If these conditions hold, we call (T, F, \) a regular quasi-monad entwining, and
E=AoFn: F—-TF and Aonl:T—TF
are quasi-monad morphisms.
_ Proof. (b)=(a) follows from Proposition 7.4 by taking for A the composition
UF o\ (with A from 7.4).
(c)=(a) is a special case of 7.7 (see below).
To show that £ is a monad morphism observe that the diagram

FFn FnTF

FF—2L prr 22 prr =S prrr 225 TRTR

/\F\L \ \LF[LF
FJF

" uT TFF FTF TAF
g

F—pp 2 7P TFF <~——TTFF

Tu iFF

is commutative: the rectangles are commutative by naturality and commutativity
of (7.6) and (7.1), and the pentagon is commutative since Fd o A = \ (see (7.5)).
This shows that £ respects the product of the quasi-monads. The condition 77 = £on
is clear by the definition of 77 and hence £ is a quasi-monad morphism.

Similar arguments show that A o T is also a quasi-monad morphism. a
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Given (F, pu,n) and T : A — A, the composition T'F may have a (regular) quasi-
module structure without requiring such a structure on 7. For this some other
morphisms and conditions are needed.

7.7. Liftings as quasi-monads. Let (F, 1,m) be a regular quasi-monad, T any
endofunctor on A that can be lifted toT : Ap — Ap by the entwining A : FT' — TF
(see 7.2). Assume there are natural transformations

v:TTF —-TF, ¢:F—TF

such that v is (F, F)-bilinear and & is left F-linear. The lifting T induces a multi-
plication and a quasi-unit on TF,

i:TFTF 2L rrpp ™ rre Yo 1R, 7.1, L F S TR

(1) (TF,1,m) is a quasi-monad if and only if the data induce commutativity of
the diagrams

(7.7) TTFT 2 TFT 2> TTF
TT)\\L l”
TTTF —% TTF —“ > TF

(2) 77 is reqular provided ko £ = & and £ induces commutativity of the diagram

n 3

(7.8) Iy F TF
{
F—sTp<"_7TF

(3) 1 is regular if we have commutativity of the diagram

TET y
(7.9) 1r7 2% prEr YT TRT

ml im

TTF —~—=TF <~*—TTF

Proof. (1) Left F-linearity of v is equivalent to commutativity of the diagram

TT i
(7.10) FTTF 25 rpre 25 rrpp —2 71F
FVJ/ il’
T
FTF Al TFF —-~TF,

whereas right F-linearity of v corresponds to commutativity of the diagram

(7.11) TTFF 5% TFF

TTM\L lTﬂ

TTF —~—TF.
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To prove associativity of the product pz on T'F'| consider the diagram

TTUTF y
TFTFTF 2 rrppT R " TTFTF Y5 TFTF
TFT\F TTFNF (1) TTMF TAF

@)
TTAFF TTTpF
TFTTFF ——= TTFTFF —= TTTFFF —>TTTFF TTFF
TFvF (**) TvF vF
TAFF TTuF UF
TFTFF TTFFF —~~1T7FF £~ TFF
TFTp TTFM\L TT ®) T
T y
TFTF TAF TTFF —Y ~TTF TF.

Diagram (1) is commutative by (7.1), diagram (xx) is commutative by (7.10) (added
T from the left and F' from the right), diagram (2) is commutative by assumption
(7.7) (applied to F'), and commutativity of diagram (3) follows from (7.11). The
remaining inner diagrams are commutative by naturality or associativity of multi-
plication of F'. Thus the outer diagram is commutative and this shows associativity
of the multiplication .

(2) Regularity of 77 means commutativity of the outer paths in the diagram

Eon TFn TF¢
Iy ——TF ——TFF ——TFTF

\ im

§on T¢ TF TAF
|
TF <———1TTF <T7TM TTFEF.

Herein the trapezium is just the diagram (7.8) and hence commutative by assump-
tion, the rectangle is commutative since ¢ is left F-linear, the upper triangle is com-
mutative by definition, and commutativity of the lower triangle is a consequence of
the condition kKo { = ¢ in (2).

(3) Referring to (7.7) we can follow the proof of Proposition 7.4(3). Notice that
K corresponds to v o T¢ from there. O

Note that under the conditions of section 7.6, the maps v := F and & := Ao F'
satisfy the conditions required in 7.7. Hence the proof of (c)=-(a) in 7.6 follows
from 7.7.

7.8. Weak crossed products. Given the morphisms v : TTF — TF and € :
F — TF in 7.7, we may form

B TT v _ 3
7: TT —>=TTF —>TF, 7: Ig—>F—>TF
From the commutative diagrams

TTnF vF nF §F
TTF —TTFF ——TFF F——FF —TFF

NN

TTFT>TF, F——1TF,
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we obtain
volTY9=TpuovF and &Eod=TuonkF.
If n is regular (see 3.9), we obtain { o on = £ on and v o TTY defines the same
product on TF as v.
Thus 7 and 77 may be used to define a (regular) quasi-monad structure on TF.
This gives another version for the wreath product of a regular quasi-monad with
an endofunctor. In this context the conditions for a weak monad structure on T'F

come out as cocycle and twisted conditions. For more details we refer, e.g., to [1],
[10, Section 3].

8. LIFTING OF ENDOFUNCTORS TO QUASI-COMODULES

Dual to the material in the preceding section we sketch the lifting of endofunctors
to the category to quasi-comodules.

8.1. Lifting of endofunctors to quasi-comodules. Let (G, d,¢) be a regular
quasi-comonad and 7" any endofunctor on the category A. We now consider liftings
T: AY — AY to the category of regular quasi-G-comodules, that is, functors which
induce commutativity of the diagram

T

AC AC
UGJ/ i e
A—T s A

As a special case of Theorem 6.4 we have the

8.2. Proposition. Let (G,d,¢) be a regular quasi-comonad on A and AC the
category of regular quasi-G-comodules. For any endofunctor T : A — A, there are
bijective correspondences between
(i) liftings of T to T :A® — A%, such that for any (A,v) € AY, the regular
quasi-G-comodule structure map v : TUY — GTUC induces commutativity
of the diagram

VG (4)

(8.1) TG(A) 24 a6 (A)

TUAT J/GTEA

T(A) —== GT(A);

(i) regular quasi-G-comodule structures v : TUY — GTUS inducing commuta-
tivity of the diagram corresponding to that in (i);
(iii) natural transformations ¢ : TG — GT with
YoTy=v=7To%

and commutative diagram

(8.2) TG GT

Y Y

G G
TGG — GTG — GGT.
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Now one may ask under which conditions the lifting is again a comonad.

8.3. Proposition. Let (G,d,¢) and (T, 6, €) be reqular quasi-comonads and assume
that T can be lifted to T : A® — A® by ¢ : TG — GT (see 8.2). Then, on TG,
coproduct and quasi-counit are defined by

26 rra ™8 rrae ™S Tara, £TG - 6T G5 G = I,

5: TG
(1) If 0G : TG — TTG is G-colinear, then we get the commutative diagram

(8.3) e i aT

SGJ/ ics
T T
76 —2- 7T > GTT;

(2) If (8.1) is commutative, then (TG,S, €) is a quasi-comonad with € regular.
(3) In (2), 5 is reqular if and only if, in addition,

G G% YG
(8.4) 16 216 L0 26T = TG 2> TG —V>GT,

where 7 = €T o 5. In this case (TG,S, £) is a reqular quasi-comonad.

Proof. The situation is dual to that of Proposition 7.4. O

8.4. Quasi-comonad entwinings. For regular comonads (F,6,¢), (T,6,¢), and
a natural transformation ¥ : TG — GT, the following are equivalent:

(a) (TG, 3\, g€ o)) is a reqular quasi-comonad on A;
(b) v satisfies
(8.5) Y=tor=yToy=Giop = oG
and induces commutativity of the diagrams (8.2) and (8.3);
(¢c) ¥ satisfies the equations (8.5), induces commutativity of the diagram (8.2),
and we have natural transformations
0G TG — TTG, Géoy:TG — G,
where 0G is (G, G)-bicolinear and GE o 1 is left G-colinear.
If these conditions hold, we call (T, G, ) a regular quasi-comonad entwining and
Géop: TG—G and eToyp: TG —T

are quasi-comonad morphisms.

Proof. The proof is dual to 7.6. O

8.5. Weak crossed coproduct. Similar to the situation for monads, in 8.4 the
coproduct on T'G can also be expressed by replacing the natural transformations
0G and G¢€ o ¢ by any natural transformations

v:TG—-TTG and (:TG — G.



40 ROBERT WISBAUER

These have to be subject to certain conditions to make the coprocuct on T'G coas-
sociative and regular and € o ( : TG — I, a regular quasi-counit on T'G (dual to
the case considered in 7.7).

Given v and ( as above, we may form

v TTe

v: TG TTG T, Z: TG;G48>IA,

and (dual to 7.8) one can see that these may also be used to define the coproduct
and quasi-counit on T'G. This leads to the weak crossed coproduct as considered
(for coalgebras) in [10] and [11], for example.

9. MIXED ENTWININGS AND LIFTINGS

Throughout this section let (F, u,n) denote a regular quasi-monad and (G, 4, ¢)
a regular quasi-comonad on any category A.

9.1. Liftings of monads and comonads. In the diagrams in 7.1 and 8.1, we
may consider T'= G or T = I yielding the diagrams

AF AF AG LAG
Upl iUF UG\L \LUG
A—CF A, P —'

In both cases the lifting properties are related to a natural transformation
w: FG — GF.

The lifting in the left hand case requires commutativity of the diagrams (see Propo-
sition 5.3)

Fw wF

(9.1) FFG FGF GFF FG——=GF
ucl \LGM ﬁal \ lcm
FG ud GF, FG —%>GF,

whereas the lifting to A® needs commutativity of the diagrams (see Proposition
6.3)

(9.2) FG GF FG—>GF

FGG %> arG —S“~ GGF,  FG—“>GF.

To make G a quasi-comonad with coproduct &, the latter has to be a quasi-F-
module morphism, in particular, F : GF — GGF has to be F-linear and this
follows by commutativity of the rectangle in (9.2) provided the square in (9.1) is
commutative. R

To make the lifting F' a quasi-monad with multiplication u, the latter has to be a
quasi-G-comodule morphism, in particular, uG : FFG — FG has to be G-colinear
and this follows by commutativity of the rectangle in (9.1) provided the square in
(9.2) is commutative.
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9.2. Natural transformations. The data given in 9.1 allow for natural transfor-
mations

G w €
¢ G—C>FG GF L5 F,
~ nGF wF Gu
k: GF FGF GFF GF,
7. FG 2% PG~ aFG <E4- Fa,

with the properties
GuoRF =KoGu, TGoF§=FdoT,
pollF =cFok, £God=TonG.

(i) If the rectangle in (9.1) is commutative, then ® is idempotent.

(i) If the rectangle in (9.2) is commutative, then 7 is idempotent.

Note that (i) is a special case of Lemma 7.3(4) and the proof of (ii) is dual to
that for (i).

To make the liftings (regular) quasi-comonads or quasi-monads, respectively, we
have to find (regular) quasi-units and quasi-counits. In what follows we consider

these questions.
9.3. Quasi-counits for G. Assume the diagrams in (9.1) to be commutative.
Then the following are equivalent:

(a) For any (A,¢) € Ap, €4 : G(A) — A is a quasi-F-module morphism;

(b) eF : GF — F is F-linear;

(¢) ¥ = po Fn induces commutativity of the diagram

(9.3) FGEsp

If these conditions are satisfied, then (with ¥ and ~ from 3.1, 4.1)
pGoFT=TopuG and 7T =17.

Proof. (a)=(b) is obvious.
(b)=(c) Condition (b) requires commutativity of the right rectangle in the dia-
gram

FG
FG —2 rar Z5 P

)y 1

GF —L GFF "

Gu
G9Y
el

GF

F,

in which the square and the triangle are obviously. By the properties of w the outer
paths show commutativity of the diagram (9.3).
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(¢c)=>(a) Since ¢ is regular, F-linearity of ¢ means commutativity of the outer
paths in the diagram

FG—2~ GF(A) 22+ ¢(4)

F(A) —2~ F(lA) — - /ll;

herein the right hand square is commutative by naturality and the left hand square
is commutative by assumption. a

9.4. Lifting to regular quasi-comonads. Let ¢ be symmetric (see i8) and
assume the diagrams in (9.1), (9.2) and (9.3) to be commutative. Then (G,0,€) is
a reqular quasi-comonad on Ap.

Proof. As mentioned in 9.1, G exists and is a quasi-monad. Now consider the
diagrams

oF =~ aer -5 caer 6P "> GoF S5 GF
Gy F leGF R \LEGF \LSF
GGF, GF —"—~F.
Since Gyod =6 and € oy = ¢ (see 4.10, (4.9)), these diagrams show that ¢ and ¢
are regular. a

Similar to the quasi-counits for G’ we can ask for quasi-units for F.

9.5. Quasi-units for F. Assume the diagrams in (9.2) to be commutative. Then
the following are equivalent:

(a) for any (A,v) € A%, na: A — F(A) is a quasi-G-comodule morphism;
(b) nG : G — FG is G-colinear;
(¢) v = Ge o induces commutativity of the diagram

G
(9.4) G —>FG
|
Gn
G — GF.
If these conditions are satisfied, then
GRodF =0Fok and &K=~0.

Proof. The proof is dual to that of 9.3. Let us just mention that the crucial
diagram here is of the form

G
G —=>FG
|
Fo
5 FGG —— FG

FGe

GnG GFe

GG —— GFG—GF.
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O

9.6. Lifting to regular quasi-monads. Letn be symmetric (see 3.8) and assume
the diagrams in (9.1), (9.2) and (9.4) to be commutative. Then (F, p,n) is a reqular
quasi-monad on AY.

Proof. This is dual to 9.4. O

One may consider other choices for a counit for G or a unit for F.

9.7. Alternative quasi-counits for G. Assume 1 to be symmetric (see 5.8) and
the diagrams in (9.1) to be commutative. With the notations from 9.2, the following
are equivalent:

(a) for any (A, @) € A,

g4: G(A)

L pa) -

is a quasi-F'-module morphism;

F
¢F : GFg—>FFL>F (=

GF—E>GF$F) is F-linear;

) commutativity of the diagram

Fw FeF

FFG FGF FF

F'r]GT lﬂ
w eF

FG GF F.

If these conditions are satisfied, then

Proof.

7T=uGo F7ToFnG.

(a)=(Db) is obvious.

(b)=(c) Condition (b) on ZF means commutativity of the big rectangle in the

diagram

FFG — Y~ poF 2L~ FF
FnG i
FFGn FFn
FnGF
FG = FGF FFGF ——= FGFF ——> FFF
W\L \LwF H
GFn
GF ——GFF Fpu
% lG" or
GF s por —2E s grr s Lt S F

where the bottom line can be written as GF —— GF <% F. From Lemma 7.3(3)
we know that K ow = wo¥G. By symmetry of 7, that is, © = o, the left outer path

reads

KOKOW=KOW=wWokKk = w.

Moreover, the right hand triangle is commutative since here o F9 = p (see 3.10).
This means commutativity of the diagram (9.5).
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(¢)=>(a) The assertion requires commutativity of the outer paths in the diagram

FG(A) 2% praA) 24 ParA) BEA FR(A)

GF(A) GF(A) —4 s p(A)
Gwi . / J{G@ ) ltp
G(A) FG(A) G(A) ——— A.

By regularity (see 3.10) the lower path reads as
eaoGpowgonGypoGpowy =ecgo0Gpowy =poegowy

and - by commutativity of (9.5) - this is equal to the upper path. This shows
commutativity of the diagram as claimed. a

Notice that commutativity of (9.3) implies commutativity of (9.5).

9.8. Alternative quasi-units for F. Assume ¢ to be symmetric (see 4.8) and
the diagrams in (9.2) to be commutative. Then the following are equivalent:

(a) For any (A,v) € A,

&a

T A—YsG(A) 2 F(A)

is a quasi-G-comodule morphism;
(b) G : G4>77G FG—— FG (= G —>qaa =<, FQG) is G-colinear;
(¢) commutativity of the diagram

nG w

(9.6) G FG GF
El TGEF
GnG Gw
GG —— GFG — GGF.

If these conditions are satisfied, then

k=GeFoGKolF.
Proof. The situation is dual to 9.7. a
Notice that commutativity of (9.4) implies commutativity of (9.6).

9.9. Theorem. With the data given in 9.1, assume € to be symmetric and the
diagrams in (9.1), (9.2) and (9.5) to be commutative.
(1) If (9.6) is commutative, then € in 9.7 is a regular quasi-counit for §, and for
6:G — GG with

5F: aF 5 qar <5~ GG,

(G, 0,%) is a reqular quasi-comonad.
(2) If (9.4) is commutative, then
(i) 0 = GRodF = 0F ok and E is symmetric;

(ii) if v and ¥ are the identities, then (G,9,%) is a comonad on Ag.
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Proof. (1) Recall that €F = eF oK and consider the diagram

GGF -5~ GGF
5FT leF
GF —F > qgFr —>qgr L F

in which the square is commutative (see 9.8). Now regularity of € follows by the
fact that % is idempotent (see 9.2).

Since € is a regular quasi-counit, by Proposition 4.12, a regular quasi-coproduct
can be defined by 6 = GEG o G§ o §. Writing this out we obtain the commutative
diagram

cac " araa GuG aerc %S ara
G(ST GF&T \LGGUJ le
GnG w e GG
G —2> a6 —"5 gra -S> qaF 2% caor EEE qor 25 Ga,

where ¢ : FI(—) — — stands for any F-module structure map. By the symmetry of
€, w=¢eGF o dF ow and we obtain

50— 00 -5 ara %> gor £ qa.
This yields 0F as given in (1).
(2)(i) In the diagram
GF FGF —*T > gFF —" > GF
\LF&F
oF FGGF oF SF

le’F

car P arar 25 aorr Y 6o,
the first rectangle is commutative by commutativity of (9.4) (see 9.5), the second
one by commutativity of (9.2) and the third one by naturality. This shows the first
equality in (i). The second one is shown in 9.5.

Symmetry of & requires GE 0§ = G o 6. The left side means (see diagram in the

proof of (1))

GeFoGRoGRo0F = GeF o GRo dF =R.

The right hand side is the upper path in the diagram

GGF 5
. GGoF 25 PaoF 295 grar ECE FaF

PN

FGF — 5> GFF —e GGFF o GFF — > GF,

where the left triangle and the right square are commutative by naturality and the
pentagon is commutative since so is (9.2). Since vF o w = w, the lower path reads
as GuowF onGF =K. This proves the symmetry of 2.
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(ii) Since kK = v0 = I (see 9.5), the computations in the proof of (ii) show that
GEod =8G o6 = Ig, that is, £ is indeed a counit for 4. a

9.10. Theorem. With the data given in 9.1, assume n to be symmetric and the
diagrams in (9.1), (9.2), and (9.6) to be commutative.
(1) If (9.5) is commutative, then 7 in 9.8 is a reqular quasi-unit for w, and for
i: FF — F with

R = G
iG: FFG —= FFG -~ FG,

(13,/7, ) is a regular quasi-monad.
(2) If (9.83) is commutative, then
(i) p=uGo FT =7TouG;
(i1) 7 is symmetric;
(iii) of ¥ and v are the identities, then (F,7i,7) is a monad on A
Proof. This is dual to Theorem 9.9. O

As mentioned after Definition 3.8, a regular quasi-monad (F, px,n) with 7 sym-
metric is called a premonad by Bohm in [4] and the preceding theorems may be
compared with results there. Here we have shown that regularity of 7 and € together
with commutativity of (9.1), (9.2), (9.3), and (9.4) imply that (G,4,2) is a regu-
lar quasi-comonad on A whereas (ﬁ, 1,m) is a regular quasi-monad on A®. For
this, the given conditions are sufficient but not necessary. Equivalent conditions for
these assertions are considered in the Corollaries 5.1 and 5.6 in [4] for the case that
(G,6,¢) is a comonad and (F,u,n) is a monad and the liftings are to the counital
G-comodules and unital F-modules A g, respectively. The latter conditions are also
assumed in a recent paper on the subject by Bohm, Lack and Street [5].

Specialising the situation considered in 9.1 to the case F' = G suggests the
definition of weak bimonads and eventually of weak Hopf monads on arbitrary cat-
egories generalising the notions studied in [16]. Details should be worked out in a
subsequent article.
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