Robert M. G. Reinhart

Robert M. G. Reinhart
  • PhD
  • Professor (Associate) at Boston University

About

60
Publications
13,958
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,509
Citations
Current institution
Boston University
Current position
  • Professor (Associate)

Publications

Publications (60)
Article
Full-text available
Significance We show that the timing of alternating-current stimulation can couple or decouple low-frequency brain rhythms between segregated frontal cortical areas in a highly selective fashion without changing other neural frequencies, synchronization across the opposite cerebral hemisphere, or local neural activity. The up- and down-regulation o...
Article
Full-text available
Understanding normal brain aging and developing methods to maintain or improve cognition in older adults are major goals of fundamental and translational neuroscience. Here we show a core feature of cognitive decline—working-memory deficits—emerges from disconnected local and long-range circuits instantiated by theta–gamma phase–amplitude coupling...
Article
Full-text available
Nearly one billion people worldwide suffer from obsessive–compulsive behaviors1,2, yet our mechanistic understanding of these behaviors is incomplete, and effective therapeutics are unavailable. An emerging perspective characterizes obsessive–compulsive behaviors as maladaptive habit learning3,4, which may be associated with abnormal beta–gamma neu...
Article
Significance Neuroscience of the everyday world requires continuous mobile brain imaging in real time and in ecologically valid environments, which aids in directly translating research for human benefit. Combined functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) studies have increased in demand, as the combined systems...
Article
Full-text available
Maintaining and removing information in mind are 2 fundamental cognitive processes that decline sharply with age. Using a combination of beta-band neural oscillations, which have been implicated in the regulation of working memory contents, and cross-trial neural variability, an undervalued property of brain dynamics theorized to govern adaptive co...
Article
Transcranial electric stimulation (tES) may improve cognition in psychosis spectrum disorders. However, few studies have used novel tES approaches, such as high definition tES (HD-tES) to target specific brain circuits. Recently, the extrastriate visual cortex (V5/MT) has been causally linked to visual hallucinations through lesion network mapping...
Article
Background: Transcranial electrical stimulation (tES) may improve psychosis symptoms, but few investigations have targeted brain regions causally linked to psychosis symptoms. We implemented a novel montage targeting the extrastriate visual cortex (eVC) previously identified by lesion network mapping in the manifestation of visual hallucinations....
Article
Transcranial alternating current stimulation (tACS) has attracted interest as a technique for causal investigations into how rhythmic fluctuations in brain neural activity influence cognition and for promoting cognitive rehabilitation. We conducted a systematic review and meta-analysis of the effects of tACS on cognitive function across 102 publish...
Preprint
Full-text available
Importance: Transcranial electrical stimulation (tES) may improve psychosis symptoms, but few investigations have targeted brain regions causally linked to psychosis symptoms. We implemented a novel montage targeting the extrastriate visual cortex (eVC) previously identified by lesion network mapping in the manifestation of visual hallucinations. O...
Article
Full-text available
Understanding the neural mechanisms of conscious and unconscious experience is a major goal of fundamental and translational neuroscience. Here, we target the early visual cortex with a novel protocol of noninvasive, high-resolution alternating current stimulation while participants performed a delayed target-probe discrimination task, and reveal d...
Article
Full-text available
The development of technologies to protect or enhance memory in older people is an enduring goal of translational medicine. Here we describe repetitive (4-day) transcranial alternating current stimulation (tACS) protocols for the selective, sustainable enhancement of auditory–verbal working memory and long-term memory in 65–88-year-old people. Modu...
Article
Personalized, noninvasive network-based neuromodulation aids impaired cognition.
Article
For decades, noninvasive brain stimulation (NIBS), such as transcranial electrical stimulation (tES), has been used to directly modulate human brain mechanisms of visual perception, setting the groundwork for the development of novel circuit-based therapies. While the field of NIBS has grown considerably over recent years, few studies have used the...
Article
Although researchers have been recording the human electroencephalogram (EEG) for almost a century, we still do not completely understand what cognitive processes are measured by the activity of different frequency bands. The 8- to 12-Hz activity in the alpha band has long been a focus of this research, but our understanding of its links to cogniti...
Article
Full-text available
Impaired cognition is common in many neuropsychiatric disorders and severely compromises quality of life. Synchronous electrophysiological rhythms represent a core mechanism for sculpting communication dynamics among large-scale brain networks that underpin cognition and its breakdown in neuropsychiatric disorders. Here, we review an emerging neuro...
Article
Full-text available
Both visual and auditory spatial selective attention result in lateralized alpha (8-14 Hz) oscillatory power in parietal cortex: alpha increases in the hemisphere ipsilateral to attentional focus. Brain stimulation studies suggest a causal relationship between parietal alpha and suppression of the representation of contralateral visual space. Howev...
Preprint
Full-text available
Both visual and auditory spatial selective attention result in lateralized alpha (8-14 Hz) oscillatory power in parietal cortex: alpha increases in the hemisphere ipsilateral to attentional focus. Brain stimulation studies suggest a causal relationship between parietal alpha and suppression of the representation of contralateral visual space. Howev...
Chapter
Full-text available
How attention is used during visual search is intricately associated with memory. A considerable body of work has demonstrated that representations in both working memory and long-term memory can guide attention in a variety of different circumstances. Neural evidence of such memory-mediated attentional guidance has been elegantly shown using nonin...
Article
Full-text available
Background Schizophrenia is the most debilitating health problem that exists, and its cognitive impairments are the greatest predictor of disability. Since the earliest clinical descriptions of the illness, abnormalities of attention have been at the core of the cognitive symptoms of schizophrenia. Theories of attentional dysfunction in schizophren...
Article
Theories of the locus of visual selective attention dysfunction in schizophrenia propose that the deficits arise from either an inability to maintain working memory representations that guide attention, or difficulty focusing lower-level visual attention mechanisms. However, these theoretical accounts neglect the role of long-term memory representa...
Article
Full-text available
Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based...
Article
Background: Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses...
Article
Full-text available
We can improve human vision by correcting the optics of our lenses [1-3]. However, after the eye transduces the light, visual cortex has its own limitations that are challenging to correct [4]. Overcoming these limitations has typically involved innovative training regimes that improve vision across many days [5, 6]. In the present study, we wanted...
Article
How do people get attention to operate at peak efficiency in high-pressure situations? We tested the hypothesis that the general mechanism that allows this is the maintenance of multiple target representations in working and long-term memory. We recorded subjects' event-related potentials (ERPs) indexing the working memory and long-term memory repr...
Article
Full-text available
Unlabelled: Posterror learning, associated with medial-frontal cortical recruitment in healthy subjects, is compromised in neuropsychiatric disorders. Here we report novel evidence for the mechanisms underlying learning dysfunctions in schizophrenia. We show that, by noninvasively passing direct current through human medial-frontal cortex, we coul...
Article
As studies increasingly use transcranial direct-current stimulation (tDCS) to manipulate brain activity, surprising results are emerging. Specifically, research combining tDCS with electrophysiology is showing that the long-lasting effects of tDCS can counter-intuitively influence specific neural mechanisms active for as little as 100ms during the...
Article
Full-text available
Significance The ability to exert control over our behavior is fundamental to human cognition, and is impaired in many neuropsychiatric disorders. Here, we show evidence for the neural mechanisms of adaptive control that distinguish healthy people from people who have schizophrenia. We found that the noninvasive electrical stimulation phase aligns...
Article
Full-text available
Mental imagery can have powerful training effects on behavior, but how this occurs is not well understood. Here we show that even a single instance of mental imagery can improve attentional selection of a target more effectively than actually practicing visual search. By recording subjects' brain activity, we found that these imagery-induced traini...
Article
Full-text available
Significance Theories of attention propose that we rely on working memory to control attention by maintaining target presentations in this active store as our visual systems are used to search for certain objects. Here, we show that the tuning of perceptual attention can be sharply accelerated by noninvasive brain stimulation. Our electrophysiologi...
Article
New evidence indicates that noninvasive brain stimulation can induce safe and reversible improvements in learning during the performance of visual tasks. However, the cognitive mechanisms underlying these learning effects are unknown. Here we show that the improvements in learning are due to changes in how rapidly long-term memory representations r...
Article
Current research suggests that we can watch visual working memory surrender the control of attention early in the process of learning to search for a specific object. This inference is based on the observation that the contralateral delay activity (CDA) rapidly decreases in amplitude across trials when subjects search for the same target object. He...
Article
Full-text available
Adaptive human behavior depends on the capacity to adjust cognitive processing after an error. Here we show that transcranial direct current stimulation of medial-frontal cortex provides causal control over the electrophysiological responses of the human brain to errors and feedback. Using one direction of current flow, we eliminated performance-mo...
Article
Full-text available
Cognitive operations are thought to emerge from dynamic interactions between spatially distinct brain areas. Synchronization of oscillations has been proposed to regulate these interactions, but we do not know whether this large-scale synchronization can respond rapidly to changing cognitive demands. Here we show that, as task demands change during...
Article
It is unclear how the brain dynamically forms and reforms different large-scale networks underlying specific cognitive operations across different phases of a given task. Here we show that when subjects were given the opportunity to earn a large reward, theta and beta oscillations over prefrontal regions formed a distributed network defined by the...
Article
Full-text available
We can more precisely tune attention to highly rewarding objects than other objects in our environment, but how our brains do this is unknown. After a few trials of searching for the same object, subjects' electrical brain activity indicated that they handed off the memory representations used to control attention from working memory to long-term m...
Article
Full-text available
During the last decade one of the most contentious and heavily studied topics in the attention literature has been the role that working memory representations play in controlling perceptual selection. The hypothesis has been advanced that to have attention select a certain perceptual input from the environment, we only need to represent that item...
Article
Full-text available
Although areas of frontal cortex are thought to be critical for maintaining information in visuospatial working memory, the event-related potential (ERP) index of maintenance is found over posterior cortex in humans. In the present study, we reconcile these seemingly contradictory findings. Here, we show that macaque monkeys and humans exhibit the...
Article
Impaired cortical plasticity may be part of the core pathophysiology of schizophrenia (SZ). Long-term potentiation is a form of neuroplasticity that has been recently demonstrated in humans by showing that repetitive visual stimulation produces lasting enhancement of visual evoked potentials (VEP). Using this paradigm, we examined whether visual co...
Article
Full-text available
Although previous research with human and nonhuman primates has examined the neural correlates of performance monitoring, discrepancies in methodology have limited our ability to make cross-species generalizations. One major obstacle arises from the use of different behavioral responses and tasks across different primate species. Specifically, it i...
Article
Auditory mismatch negativity (MMN) and P300 event-related potentials (ERPs) are reduced in schizophrenia patients and healthy volunteers administered the N-methyl-D-aspartate glutamate receptor antagonist, ketamine. In rodents, N-acetylcysteine (NAC), a stimulator of the cystine-glutamate exchanger, attenuates the cognitive and behavioral effects o...
Article
Little is known about the relationship between gamma-band oscillations prior to the arrival of a target stimulus and subsequent sensory processing and response execution. Although schizophrenia has been associated with abnormalities in gamma-band oscillations, P300, and reaction time (RT), few studies have examined the possible correspondence betwe...

Network

Cited By