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Abstract 
 
Background: It is agreed that high level radon exposure is harmful to humans. 
However, some published literature suggests that low levels of radon show no adverse 
effects or may even be protective. Claims made using traditional methods of analysis on 
observational data often fail to replicate. Here, we use a simple, alternative data-analytic 
strategy for examining effects of low-level indoor radon exposure on lung cancer 
mortality. Our objective will be to demonstrate that local population characteristics can 
alter expected effects. 
Methods: Observational data on indoor radon exposure levels and lung cancer 
mortality for 2,881 US counties were obtained from federal and state governmental 
agencies. A new "statistical thinking" step-by-step analysis strategy called Local Control 
(LC) allows us to perform analyses of observational data that are more objective and 
"fair." LC analytical strategy makes as few and as realistic assumptions as possible. As 
a result, key LC inferences are nonparametric, and estimates of potentially 
heterogeneous treatment effect-sizes are more robust. 
Results: Our LC analyses suggest that lung cancer mortality usually tends to decrease 
as low-level radon exposure increases. Local Rank Correlation (LRC) effect-sizes are 
shown to be predictable from confounding local characteristics like % residents over 65, 
% residents who currently smoke and % obese residents.   
Conclusions: At low indoor radon exposure levels, reverse (negative) LRCs between 
radon exposure level and lung cancer mortality predominate. The strengths of these 
associations vary with local demographics.  
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Introduction 
There is little controversy about whether high radon exposure levels cause lung cancer. In 

support of their conservative indoor radon standards, the U.S. Environmental Protection Agency 

(EPA) cites a pair of 2006 residential radon meta-analysis papers1,2 based on case-control studies 

in Europe and North America, respectively. In sharp contrast, a 2018 meta-analysis3 finds 

protection at low indoor radon levels. Between 1989 and 2007, multiple papers4-10 were 

published on both sides of the "indoor radon causes lung cancer" question. 

Published findings are potentially confusing because interactions are involved. For example, 

Darby et al.1 find very low lung cancer rates for non-smokers at all radon levels but, for smokers, 

lung cancer rates do increase with radon exposure. Thus smoking appears to be a so-called 

"lurking" variable that can either emphasize or obscure causal effects.   

Our indoor radon analyses are based on data amassed from U.S. federal and state sources9-16. 

Table I below gives names and brief descriptions for 11 characteristics of 2,881 U.S. counties or 

parishes, which represent 91.7% of the 3,142 county-like entities contained within the United 
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States. Unfortunately, comparable data from Alaska, Hawaii, New Hampshire, Nevada and the 

District of Columbia were not available. 

We focus here on the possibility that variation in county average level of indoor radon exposure 

is the primary cause of variation in local lung cancer mortality outcomes. However, we also 

investigate the extent to which county characteristics, such as  % residents over 65, % residents 

who currently smoke and % obese residents, have clear-cut interaction effects on exposure-

mortality relationships. 

An initial glance at our lung cancer mortality and indoor radon exposure data, depicted in Figure 

1, suggests that mortality may indeed decrease as radon exposure level increases. 

The (vertical) y-outcome variable plotted in Figure 1 is the county lung cancer mortality rate 

(deaths per 100,000 person-years) while the (horizontal) treatment-exposure measure is the 

natural logarithm of the county average indoor radon level in pCi/L (picocuries per liter). 

Because county average indoor radon levels are reported only to the nearest 0.1 pCi/L in the raw 

data, the 10 counties with exposures reported as 0.0 are Winsorized in Figure 1 to log(0.05), 

which is roughly −3. Figure 1 also shows the ordinary least squares line and a cubic spline fit 

from R-functions lm() and smooth.spline(), respectively. 

 
Figure 1. An Initial "Unadjusted" View 
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Our main objective here will be to conduct what is call a Local Control 17-21 analysis, LC, of the 

radon data set. LC strategy controls for county x-characteristics (potential confounder variables) 

and displays visuals that help researchers locate and quantify interactions. LC first clusters 

counties with most-similar x-characteristics together then measures mortality-exposure 

relationships locally, within each cluster. Each local measure is scalar-valued ...either a local 

average treatment effect (a binary difference between outcomes from two treatments) or else a 

local measure of strength of association (goodness-of-fit in linear regression). Because the indoor 

radon exposure measure is continuous (rather than binary) here, we will definitely need to use 

Local Rank Correlations, LRCs, to quantify exposure-mortality associations. 

The ultimate objective of LC strategy can be to determine whether observed variation in LRC 

estimates across clusters can be reliably predicted using county demographic characteristics. A 

key intermediate LC step is to "confirm" that county demographic characteristics are not 

ignorable variables. Specifically, the observed LRC distribution across clusters of counties that 

are well-matched needs to be clearly different from the "artificial" LRC distribution resulting 

from purely random clusters of counties. 

Quantitative prediction of LRC estimates from clusters of well-matched counties is illustrated 

here using recursive partitioning, a standard data mining method that reveals interactions. The 

overall stability of our LC analyses can be examined using sensitivity analyses that vary LC 

parameter settings, but that final topic is explored only within our Supplemental Materials. 

In summary, Local Control analytical tactics are chosen to be as simple as possible, to make as 

few and as realistic assumptions as possible and, thus, to be nonparametric and/or robust in their 

estimation of potentially heterogeneous treatment effect-sizes. Our intension here is to illustrate 

this innovative and comprehensive "statistical thinking" strategy, which can be effectively 

applied to any sufficiently large data set.  

Methods and Data 
The presented case-study includes demographic and environmental data for 2,881 counties or 

parishes within the continental United States - amassed from various public sources9-16. The most 
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current version of our radon data set is in the public domain; see either https://datadryad.org/ 

or demo(radon) using the LocalControlStrategy21 R-package. 

 

1) FIPS Code   Federal Information Processing Standard code (4 or 5 digits)                        
2) State   Two Character US State ID 
3) County   County Name (character string) 
4) Lung Cancer Mortality Mortality Rate (Deaths per 100,000 Person-Years) 
5) Radon   County Average Indoor Radon Exposure Level  (pCi/L, rounded to 

     a single decimal place.)  
6) log(Radon)  Natural Logarithm of Radon (10 Counties with Indoor Radon  

     rounded to 0.0 are Winsorized here to log(0.05) ≈ -2.996.) 
7) Obesity   Percentage of County Residents who are Obese  
8) Age Over 65  Percentage of County Residents who are Over 65 
9) Currently Smoke  Percentage of County Residents who Currently Smoke 
10) Ever Smoke  Percentage of County Residents who Ever Smoked 
11) Median HH Income Median Household Income in $1,000 (Contains a missing  

     value for Shannon County, SD, FIPS = 46113.) 

Table I.   Eleven Characteristics of 2,881 U.S. Counties or Parishes 

 

Local Control Strategy 
LC analysis strategy17-21 for cross-sectional observational data is easily explained. Non-technical 

audiences with basic understanding of clustering, linear regression, correlation and histograms 

are already familiar with its basic building blocks. LC starts by matching or clustering counties 

on their most important x-characteristics ...while ignoring all information about county mortality 

and indoor radon exposure levels. The point is to assure that experimental units within a cluster 

are as alike as possible on their important baseline x-characteristics (and as different as possible 

from counties within other clusters.) A simple two-variable (mortality vs exposure) analysis is 

then conducted within each x-space cluster. 

To apply LC strategy, we compute a LRC coefficient within each cluster.  These local statistics 

enable “fair treatment comparisons” across clusters because all counties within the same cluster 

are relatively well-matched in x-space. Next, we display the across-cluster distribution of LRC 

estimates in a simple histogram. Really small clusters (containing only 1 or 2 counties) fail to 

provide meaningful measures of exposure-mortality association and have to be discarded. This 

initial calculation of local associations can be thought of as a form of “nonparametric 
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preprocessing” of observational data. Viewing clusters as "Blocks" of similar counties, the 

overall LC model is suggestive of an unbalanced Nested ANOVA (LRC estimates within 

Blocks), where Blocks typically vary in size.  

Initial LC inferences are nonparametric because they use permutation theory (resampling without 

replacement) to test whether the x-characteristics used to form clusters are truly ignorable. 

Specifically, one would compare the Observed distribution of LRC estimates computed from K 

clusters (of sizes N1, N2, ..., NK) containing counties relatively well-matched in x-space with the 

corresponding "Random NULL LRC" distribution formed using many replications, M, where 

each resample (without replacement) forms K purely random clusters of the same given sizes 

(N1, N2, ..., NK) as the clusters of well-matched counties. Inferences based upon random 

assignment of counties to clusters deliberately disregard the numerical values of all 11 county 

characteristics listed in Table I. 

The primary LC analysis that we illustrate below in our results section uses R-package 

LocalControlStrategy21 to form 50 "Ward" clusters of counties most similar on the three 

most important x-characteristics listed in Table I: Obesity, Age Over 65 and Currently Smoke. 

LRC associations between Lung Cancer Mortality and log(Radon) exposure variables are then 

estimated within these 50 "Blocks".  

When the x-characteristics used to form clusters are truly ignorable, the Observed and Random 

NULL distributions of LRCs would be expected to be identical. Thus, whenever the Observed 

across-cluster LRC distribution is found to be clearly different from the Random NULL LRC 

distribution, this provides clear evidence that the assumption that county x-characteristics are 

ignorable is FALSE. Furthermore, if the total number of replications, M, is taken to be large 

enough, the Random NULL distribution of LRCs can usually be computed to any desired level of 

numerical precision. Nonparametric inferences based on M=1,000 random replications are 

presented in our results section. 

Once LRC estimates from 50 clusters of well-matched counties are observed, they can be added, 

as a new variable (column), to the original data. Research attention can then (optionally) shift to 

focus on (supervised)  prediction of across-cluster variation in these LRCs ...again using county 
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x-characteristics. While traditional multiple regression techniques can be used to make such 

predictions, we favor use of the popular data mining method called Recursive Partitioning22-23, 

also known as decision trees24.  These partitioning methods create "tree models" by recursively 

selecting a "best" cut-point on one of the given x-covariate to divide a subgroup of counties into 

two parts. This splitting process continues until some "stopping rule" terminates each evolving 

tree-branch with a final "leaf" node. 

Results 
The initial phase of LC Strategy is clustering. A "sensitivity" analysis of Variance-Bias trade-

offs in estimation of LRC distributions convinced us to use K = 50 "Ward" clusters. Figure 2 

displays the resulting LRC distribution in a histogram with 14 non-empty "bins." Each bin has 

width 0.05 and height that "counts" the number of U.S. counties with an LRC estimate falling 

within that bin. While correlations can range from −1.0 to +1.0, we see that our 50 observed LRC 

estimates range here only between −0.70 and +0.10. In fact, more than half (1,624) of the N = 

2,881 U.S. counties in the available data are members of clusters with LRCs in the five histogram 

bins between −0.45 and −0.20. 

 
Figure 2.  This Histogram shows the Observed LRC Distribution across 50 
clusters. The overall mean LRC = -0.322 is denoted by the red vertical line within 
the modal bin, (-0.35, -0.30]. The blue vertical line at LRC = 0 shows that only two 
bins (containing 90 of 2,881 counties) have positive LRC estimates.  
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Note that observed LRCs are positive, but not significantly greater than zero, within only the two 

right-most bins of Figure 2.  The (0.00, +0.05] bin contains a cluster of 59 counties, while 

(+0.05, +0.10] contains a cluster of 31 counties.  

 

It is also instructive to examine scatter plots (radon exposure vs. mortality) for the counties 

within an individual cluster. Figures 3-5 illustrate such plots for three different clusters. Note that 

all 3 plots cover the very same exposure-mortality range as Figure 1. 

 

Figure 3 plots shows exposure-mortality outcomes for the cluster of 59 counties that falls within 

the (0.0, +0.05] bin of Figure 2. Note that the R smooth.spline() fit shown in Figure 3 

suggests why the local Pearson correlation is negative even though the corresponding LRC 

estimate is positive (+0.035). 

 
Figure 3. An observed LRC of +0.035 comes from a cluster of 59 counties. The 
corresponding local Pearson correlation is negative (-0.164) but not significant. 
 

 

Figure 4 shows the exposure-mortality scatter within the cluster of 73 counties that has the most 

negative LRC = −0.687 (p < 0.0001). This cluster is one of three (totaling 222 counties) that fall 

within the extreme left bin, (−0.70, −0.65], of Figure 2. 
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Figure 4. The most negative LRC = -0.687 estimate for a cluster of 73 Counties. 
 

Finally, Figure 5 shows the scatter within the largest of 50 clusters (153 counties) with LRC = 

−0.3177 (p < 0.0001). This cluster is one of 7 (totaling 552 counties) that fall into the modal bin 

of Figure 2: (−0.35, −0.30]. 

 
Figure 5. The single largest cluster (153 counties) has estimated LRC = -0.318.  
 

In summary, the observed LRC distribution (Figure 2) that results from micro aggregation of US 

counties using their three primary x-confounder characteristics to form 50 clusters of relatively 

well-matched counties is instructive in several ways. First, it shows that Higher levels of Low 

indoor radon exposure are much more likely to be protective against lung cancer mortality 

(negative association) than to possibly cause it (positive association).  
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We also see a wide range of numerical LRC estimates. Is this LRC variation greater than what 

would be expected due to chance? Could this variation be attributable to corresponding variation 

in county x-characteristics? 

 

We will address both of the above questions in two distinct ways. First, we will infer that the 

county x-characteristics used to form clusters are not ignorable. Then we will show that these 

same x-characteristics are useful in actually predicting LRC variation. 

 

County x-characteristics are NOT Ignorable! 
Statistical inference compares an observed LRC distribution to its NULL distribution under the 

falsifiable hypothesis that the given x-characteristics are actually ignorable. This NULL 

distribution is constructed by merging together 2,881 LRC estimates from each of M=1,000 

replications. In each replication, (a) all 2,881 counties are randomly assigned to 1 of 50 pseudo-

clusters of the same sizes, (N1, N2, ..., N50), as the 50 observed clusters of well-matched counties, 

and (b) 2,881 NULL LRC estimates are calculated across each resulting set of 50 random 

pseudo-clusters. 

 
Figure 6. LC Confirm Phase: Empirical CDF Comparison of the Observed LRC 
Distribution with its Random NULL Distribution from M=1,000 replications. 
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It is visually clear from Figure 6 that the observed and random permutation LRC distributions 

have quite different Cumulative Distribution Functions (CDFs). The confirm() function21 

applies a Kolmogorov-Smirnov two-sample test that yields a D-statistic of 0.4539 at roughly 

LRC = −0.35 (dashed vertical line) in Figure 6.   

  

An additional M=1,000 independent, random replications were then generated using the 

KSperm() function21 to compute 1,000 NULL D-statistics ...all of which turned out to be less 

than 0.2147, i.e. much smaller than 0.4539. Thus the true p-value associated with the observed D 

= 0.4539 is estimated to be strictly less (and probably much less) than 0.001. Thus the hypothesis 

that the given x-covariates are ignorable is easily rejected (falsified) here.  

 

This leaves only the final (optional stretch-goal) phase of LC strategy. This final objective is to 

reveal the extent to which LRC estimates within clusters are Heterogeneous (predictable fixed-

effects) rather than Homogeneous (unpredictable random-effects). 

 

Because clusters commonly vary considerably in size, it is essential to attach weights to 

individual LRC (or LTD) estimates when fitting across-cluster models. Our experience is that 

simply using weights directly proportional to cluster sizes is both realistic and robust. All of the 

predictor variables, including radon exposure level itself, can then be used in attempts to predict 

the Observed distribution of LRC associations. 

 

LC strategy imposes no restrictions on choice of the supervised learning method used for 

predictive modeling during this (optional) final LC Reveal phase. Again, we find recursive 

partitioning22-24 particularly helpful in detecting and "displaying" interaction effects. 

 

Our favorite tree model, depicted in Figure 7, is based on (nonparametric) permutation theory 

using the party R-package22. Like other recursive partitioning methods, party searches across 

potential predictor variables to find a best “cut point” for separating data subsets into parts, 

usually two. Each resulting subset of counties is then split using a "stopping rule." In Figure 7, 
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the tree was restricted to have binary splits at only 3-levels, yielding 23 = 8 final "leaf" nodes.

 
Figure 7. party R-package Tree Model for predicting LRC estimates (supervised learning). 

 

Note that Node #4 is quite large (1,252 counties), and its LRC distribution (displayed by a "box-

and-whisker" diagram) is similar to the full LRC distribution for all 2,881 counties. Next, note 

that Node #8 (139 counties) has the LRC sub-distribution with the lowest proportion of 

significantly negative mortality-exposure LRCs. Meanwhile, Node #5 (461 counties) and Node 

#7 (411 counties) have LRC distributions that are only a little less negative than "typical" (Node 

#4). But three of the final four nodes (#11, #12  and #15) have LRC sub-distributions even more 

negative than "typical." Table II summarizes these three major sub-groupings of LRC sub-

distributions.  

 

Counties with LRC 

Distributions Somewhat Less 

Negative than Typical  

Counties with 

Typical (Mostly Negative) 

LRC Distributions  

Counties with LRC 

Distributions Even More 

Negative than Typical 

606 Counties 

(21.0%) 

1,252 Counties 

(43.5%) 

1,023 Counties 

(35.5%) 

Table II. LC Reveal Phase comparison of LRC Sub-Distributions 
 

The party tree of Figure 7 is rather "small" in the sense that it uses only 7 splits (defining only 

8 leaf nodes), but it appears to do a remarkably good job of predicting nonparametric LRC 

estimates using only three x-confounders. This "predictability" claim is, perhaps, better 

illustrated using a more conventional RP method23 that characterizes nodes using their LRC 
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mean values ...with focus upon the splits that are most significant in an ANOVA-like sense. 

These traditional sorts of RP trees rarely correspond to "full" trees like Figure 7, where every 

intermediate node is split into two nodes. RP "unbalanced" trees can maximize overall goodness-

of-fit (R2) for any given total number of splits (7 here.)  

 

On the other hand, we deliberately created Figure 8 using JMP24 by requesting the very same 

splits displayed in the party R-package tree of Figure 8. The LogWorth statistics displayed in 

the seven intermediate nodes of Figure 8 are defined as the negative of the base 10 logarithm of 

the p-value for the split below that node. These statistics further confirm that 6 of the 7 splits are 

indeed highly significant; the split of Node 10 on % elderly residents at 17.5% has the largest 

(least significant) traditional p-value of 0.00014. Furthermore, the overall goodness-of-fit is R2= 

0.472; this quite simple RP Tree model explains just slightly less than half of the total across-

cluster variation in LRC estimates. 

 

 
Figure 8. SAS / JMP representation of the party tree in Figure 7. 

 
All three x-confounders used in the prediction tree shown in Figures 7 and 8 make common 

sense. The denominator of each Lung Cancer Mortality rate (deaths per 100,000 person-years) 
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includes county residents of all ages. Since cancer deaths are more likely to occur in elderly 

residents, it's no wonder that % of residents over 65 is used to make 3 of the 7-splits depicted in 

Figures 7 and 8. However, the distinct surprise here may well be that LRCs are consistently 

predicted to be smaller (more negative) in counties where elderly residents are more prevalent! 

 

Only one highly significant split on % obese residents was among the "best" 7 splits. Note that 

the 139 counties in Final Node #8 with obesity at least 32.7% has a higher (less negative) LRC 

prediction of -0.101 than the LRC prediction of -0.207 for 411 counties in Final Node #7 with 

lower obesity rates. 

 

Given the well-known and strongly-positive association between lung cancer mortality and 

smoking, it could be considered surprising that % residents who currently smoke is used in only 

three of the seven binary splits needed to create the "full" tree with 3 levels (8 final nodes). On 

the other hand, it is quite unfortunate that separate lung cancer mortality statistics for smokers 

and non-smokers were not available for U.S. counties. This unfortunate aggregation of lung 

cancer mortality rates essentially prevents effective use of LC strategy to address the traditional 

question: "Is there evidence that smoking is a primary cause of lung cancer mortality in the U.S. 

county data?" 

 

Finally, note that radon exposure level [specifically, the log(radon) measure of Table I] was not 

selected for use in any of the 7 most predictive splits. In fact, since our simple tree model failed 

to select any measure of radon exposure level as a predictor of LRCs, we conclude that indoor 

radon exposure levels are relatively poor predictors of LRC associations between indoor radon 

exposure and lung cancer mortality. 

 

Thus, roughly half of all across-cluster variation in LRCs appears to be purely random, while the 

other half appears to be predictable simply by the age and life-style characteristics of local 

residents. The effects of indoor radon exposure on lung cancer mortality in the US thus appear to 

be at least partially heterogeneous (predictable). This suggests that % over 65, % obese and % 

current smokers are meaningful "modifiers" of radon exposure effects on lung cancer mortality. 

 



  15  
  

In summary, we have provided both strong visual evidence and sound statistical inferences 

supporting our arguments that low indoor radon exposures can be protective against lung cancer 

mortality rather than be a potential cause of lung cancer mortality. Our LC analyses dividing 

2,881 U.S. counties into 50 clusters (relatively well-matched subgroups) yield covariate 

adjustments with much more meaningful policy implications than the simplistic scatter-plot 

displayed in Figure 1. We have both confirmed that x-matching truly matters in estimation of 

LRC distributions and also revealed that county x-characteristics can literally help predict 

observed variation in LRC estimates. 

Discussion/Summary 
What happens at low indoor radon exposure levels is difficult to evaluate empirically given usual 

sample sizes, variability and analysis perspectives that differ not only across subject-matter areas 

but also with the psychology of individual researchers. Several researchers have noticed low-

dose, nonlinear relationships commonly described as U- or J-shaped. A variety of names have 

been given to this phenomenon: “autoprotection, heteroprotection, adaptive response, 

preconditioning, hormesis, xenohormesis, paradoxical…”25. Thus, the early observations of 

Cohen5-8 appear to fit well into a much larger context whereby stress elicits protective effects, 

Parsons 26. In fact, Parsons asserts that “…hormesis for ionizing radiation becomes an 

evolutionary expectation at exposures substantially exceeding background.” Feinendegen27 

comments on radon hormesis as follows: “It develops with a delay of hours, may last for days to 

months, decreases steadily at doses above about 100 mGy to 200 mGy and is not observed any 

more after acute exposures of more than about 500 mGy.” It is reasonable to consider our LC 

indoor radon exposure findings in this context.  

The reliability of a claim coming from observational data is important. Local Control strategy 

does several things to support reliability. Covariates are controlled via clustering. The single 

question at issue is examined within each cluster. Often the answer to research questions on local 

effects is that “they depend.” 

A unique feature of LC strategy is its initial emphasis on unsupervised, nonparametric inference 

(permutation testing) to determine whether x-characteristics of experimental units (counties) are 

ignorable. One-size-fits-all radon mitigation policies can be fully justified only when all 
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available x-characteristics are indeed ignorable. Otherwise, rigid enforcement of the current low 

EPA threshold (> 4 pCi/L) for requiring radon mitigation might even increase expected lung 

cancer mortality. 

Another unique feature of LC strategy is that within-cluster estimation of LRC (or LTD) 

distributions essentially moves the Exposure (or Treatment choice) variable to the left-hand-side 

of the supervised and possibly parametric models commonly used within the final (optional) LC 

"Reveal" phase for prediction of local outcomes. This left-ward "shift" typically results in 

models with much better fit to the dependent variable (LRC or LTD) than traditional models with 

only the y-outcome (lung cancer mortality) on the left-hand-side. After all, when the Exposure 

measure or Treatment choice indicator is on the right-hand-side of the model equation, it must 

then literally compete with all available x-covariates as potential predictors. Furthermore, right-

hand-side variables are typically somewhat inter-correlated and may even be ill-conditioned 

(nearly multicollinear.) 

The negative LRCs between low levels of indoor radon exposure and lung cancer mortality 

within U.S. counties observed here agree with the results of a cohort study in Ontario uranium 

miners by Navaranjan et al.28 Our Figure 9 is based on these Ontario uranium miner estimates. 

When the Ontario Relative Risk (RR) measure of lung cancer incidence is plotted against 

cumulative exposure to radon, expressed in Working Level Months (WLM), a hormetic J-shaped 

relationship results. Specifically, note that this relationship appears inverse only at low levels of 

occupational exposure to radon (i.e., at radon levels below approximately 10 WLM). Figures 8 

and 9 of Navaranjan et al.28 also show consistently inverse relationships at low levels of 

cumulative WLM exposure for lung cancer mortality and incidence, respectively. 

The Health Physics Society29 provides a conversion from WLM to Bq/m3, assuming 7,000 hours 

spent indoors per year, where 10 WLM would be equivalent to ~2,273 Bq/m3 of indoor radon. 

Our LC analysis results indicate that an increase of county-level lung cancer mortality is not 

observable at indoor radon concentrations below ~16 pCi/L (i.e. ~592 Bq/m3), which would be 

equivalent to ~2.6 WLM exposure (i.e., well within the range of the inverse relationship segment 

of the J-shaped curve in our Figure 9.) 
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Figure 9. Reproduction of Ontario Uranium Miner results28 using R software. 
 

In addition, a linear regression analysis of available data from 26 countries of the Organization 

for Economic Co-operation and Development (OECD), including North America, shows a weak 

inverse (negative) correlation for age-standardized lung cancer mortality vs. mean indoor radon 

concentration, compared to a statistically significant positive correlation of lung cancer with 

smoking prevalence30. These findings are also in agreement with the LC results presented here. 

 

Our Local Control analyses support the claim that lung cancer mortality decreases as low-level 

indoor radon exposure increases, with effect-sizes being largely predictable from confounding 

county characteristics like % residents over 65, % residents who currently smoke and % obese 

residents. 
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Our Key Messages 
 

• Local Control strategy starts by clustering counties that are most similar on resident age, 
smoking and obesity percentages. Within each cluster, LC then measures the Local Rank 
Correlation (LRC) between lung cancer mortality and indoor radon exposure level. 
 

• LC strategy provides strong control over the covariates that identify meaningful 
subgroups of similar counties (experimental units), allowing detection of local effects. 
 

• The across-cluster distribution of LRC estimates can be predicted using recursive 
partitioning or other model-fitting methods. 
 

• Across 2,881 U.S. counties, LRCs between radon exposure and lung cancer mortality 
tend to be predominantly negative, the degree of which depends on county 
characteristics. 
 

• By applying LC analysis strategy to U.S. federal and state data for 2,881 counties, we 
have demonstrated that higher levels of low indoor radon exposure are much more likely 
to be protective against lung cancer mortality than to cause it. 
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