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ABSTRACT

Distributed systems span a wide spectrum in the design space. In this paper we will look at
the various kinds and discuss some of the reliability issues involved. In the first half of the
paper we will concentrate on the causes of unreliability, illustrating these with some general
solutions and examples. Among the issues treated are interprocess communication, machine
crashes, server redundancy, and data integrity. In the second half of the paper, we will exam-
ine one distributed operating system, Amoeba, to see how reliability issues have been han-
dled in at least one real system, and how the pieces fit together.

1. INTRODUCTION
It is difficult to get two computer scientists to agree on what a distributed system is.

Rather than attempt to formulate a watertight definition, which is probably impossible any-
way, we will divide these systems into three broad categories:

- Closely coupled systems
- Loosely coupled systems
- Barely coupled systems

The key issue that distinguishes these systems is the grain of computation, which can be
roughly expressed as the computation time divided by the communication time. If this ratio
is below 10, we have a closely coupled system. If it is between 10 and 100 we have a loosely
coupled system. Above 100 the system is barely coupled.

In practice, the amount of time required for communication is determined by the com-
munication hardware and the operating system. In a system consisting on a large number of
CPU boards on a single backplane with shared memory, it may be possible for one processor
to write a word in another processor’s memory in microseconds. On the other hand, proces-
sors that communicate over a local area network by message passing typically require mil-
liseconds to send a message and get a reply. Finally, when a wide-area network is being
used, communication times of hundreds of milliseconds or more are normal.

These hardware parameters tend to give rise to three kinds of distributed systems, each
with their own properties. These systems differ in terms of how the users view the system,
how much autonomy the individual processors have, how problems are partitioned among the
processors, how work migrates among the processors, how the load is balanced, how
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interprocess communication is done, whether the system is homogeneous or heterogeneous,
and finally how reliable the total system is and what the failure modes are.

At one extreme we have closely-coupled multiprocessors with shared memory commun-
icating over a backplane type bus with short bursts of computation interleaved with short
bursts of communication. This is fine-grained parallelism.

Usually all the processors used in this kind of system are identical and fairly close
together (same room). Frequently, all the processors are working together on a single prob-
lem. Although the system designers may try to make the presence of multiple processors
transparent, with hundreds or thousands of CPUs it may be difficult to keep all the processors
busy unless the parallelism is programmed explicitly.

The second kind of system is the loosely coupled system, typically consisting of a
number of workstations or personal computers communicating over a local area network. In
some systems a rack of processors is present, any or all of which can be dynamically allo-
cated as the need arises. In some cases, the user perceives of the system as a collection of
autonomous computers that share a common file server or printer. In other cases, the system
looks like a virtual uniprocessor. In other words, to the user, the whole system looks like a
traditional multiuser time sharing system, rather than a network of independent machines.

There are two general approaches that can be used in such systems. In the first one, all
the machines run the same operating system. In the second one, different machines can run
different native operating systems, with a layer of software on top to make them look (more)
homogeneous. A general survey on distributed systems is given by Tanenbaum and van
Renesse1.

The third kind of system consists of (typically large) computers or local area networks
connected by a low-bandwidth, wide-area network. These machines are barely connected in
the sense that communication costs normally dominate the computation costs. Still, for some
applications, such as doing joins in a database system, the amount of computing is so large
that the system can be made to appear to the user as a single system, despite the low-
bandwidth connection between the pieces.

A key point that is common to all these systems, however, is the question of whether the
parallelism provided by the multiple processors is implicit or explicit. This point has impor-
tant implications for reliability aspects of the system. If the system looks to the user like a
virtual uniprocessor, there is relatively little that can be done about reliability at the user
level. The reliability must be handled by the system. On the other hand, if users can expli-
citly control the parallelism, it is possible for them to use the redundancy to enhance the reli-
ability.

A simple example may make this point clear. Some distributed file systems offer
atomic transactions2 as a primitive operation. The user can specify that a transaction be
started, issue commands to read and write files, and then commit the transaction. The system
then either runs the entire transaction to completion, or fails, leaving all the files in their ori-
ginal state. Such a file system may well use multiple processors and multiple disks inter-
nally, but there is nothing the users can do to influence the reliability behavior.

Now consider a different example, a system with a rack of processors that can be
dynamically allocated to processes upon request. A process can request n processors, set all
of them working on the same problem (possibly with different algorithms), and then accept
the majority answer when all have reported back. In this system the parallelism is explicit, so
the user can decide how much redundancy is required for the problem at hand. The conclu-
sion is that systems with explicit parallelism tend to be more flexible, but require more work
on the part of the user.



2. CAUSES OF UNRELIABILITY
Space limitations prevent us from examining the reliability aspects of all three kinds of

systems in detail, so we will focus primarily on the middle category—loosely coupled sys-
tems. In particular, in this section we will look at some problems that cause systems to be
unreliable and on some of the solutions that have been proposed for these problems. In the
next section we will look at one distributed system, Amoeba, to see how these problems have
been attacked and how the various components fit together to make a more reliable system.

2.1. Interprocess Communication
When the processors in a distributed system are connected by a thin wire local network,

interprocess communication primitives that explicitly or implicitly require shared memory
(such as semaphores), are not desirable.

Instead some form of message passing is needed. One widely discussed framework for
message-passing in computer networks is the ISO-OSI model3. To make a long story short,
the various protocols that go with this model are so complex and cumbersome, that their use
in a high performance local-area network is unattractive at best.

The model favored by most researchers in this area is the client-server model, in which
a client wanting some service (e.g., a block from a file) sends a message to the server, which
then sends a reply. The basic primitives in the simplest form of client-server model are
SEND and RECEIVE, each specifying an address (destination or source), and a buffer.

These primitives come in several varieties. First of all, there is the question of whether
transmission is reliable or not. On some systems, SEND means put the message out onto the
network and hope for the best. Processes needing better reliability than that must arrange for
it themselves. Other systems use low-level protocols that do automatic timeout and
retransmission. Here we see a clear tradeoff between performance and reliability.

A second question is blocking vs. nonblocking primitives. With a blocking SEND, the
sender is suspended until the message has been transmitted (unreliable transmission) or
transmitted and acknowledged (reliable transmission). With a nonblocking SEND, the
sender continues immediately. If the sender modifies the buffer, these changes may or may
not be transmitted, depending on whether transmission has taken place or not. Similarly, a
blocking RECEIVE waits until a message arrives, but a nonblocking RECEIVE merely pro-
vides a buffer. When a message arrives, the receiver gets an interrupt. Nonblocking primi-
tives are harder to use (hence less reliable) but provide more parallelism and higher perfor-
mance.

Based on experience, many system designer have decided to favor reliability over per-
formance, which has led to the remote procedure call4-6. In this scheme, the client makes
what looks like a call to a procedure running on the server’s machine, but it actually makes a
call to a stub procedure running on its own machine, as shown in Fig. 1. The stub procedure
packages all the parameters in a message, which it then reliably sends to a stub on the
server’s machine. The server stub then indeed makes a local procedure call on the server.

Fig. 1. Client-Server model.

This model is attractive in many ways. For one thing, the client need not know anything



about the fact that the server is remote. It just makes an ordinary procedure call, with the
parameters passed in the usual way (e.g., on the stack). Similarly, the server is called by a
local procedure according to the local calling and parameter passing conventions. For
another thing, the semantics are straightforward and familiar. Programmers understand the
procedure call model much better than the message model.

For all its elegance, however, a number of problems lurk under the surface. Many of
these have important implications for the system’s reliability. Most of them are directly
related to the goal of the remote procedure call—transparency, that is, making it look like a
local procedure call.

To begin with, when a program makes a local procedure call, the procedure is executed
exactly once, no more and no less. With remote procedure calls, this ideal is unachievable in
general. The problem is that the remote server may crash just before or after performing the
remote operation, but before sending back the acknowledgement. If the client repeats the
request, and it was already carried out, then it will be carried out a second time.

Operations that can be carried out multiple times without harm, such as overwriting a
specific disk block are said to be idempotent. Unfortunately, most operations that involve
communication or I/O are not idempotent. For example, if the request was to a bank server
to transfer a large amount of money to a numbered Swiss bank account, one would prefer that
operation not be executed by accident a second time.

At first glance you might think that the problem could be solved by having the server
record the fact that it was about to perform the operation in a secure way, for example, on
stable storage2. However, this idea does not work for nonidempotent operations because
after recording its intentions the server has to carry out the operation and then send the ack-
nowledgement. In the best case, each of these steps can be done in a single instruction, for
example, by setting one bit somewhere. If the server crashes between the two instructions,
when it reboots it cannot determine if the crash occurred just before, between, or just after the
two instructions.

This observation leads to three classes of remote procedure call systems: those that have
‘‘at least once’’ semantics, those that have ‘‘at most once semantics’’ and those that have
‘‘don’t know’’ semantics. In the former class, if the client stub does not get a reply within a
specified interval, it just keeps repeating the request until it gets one. The call may be
repeated several times, however.

The second kind of semantics is ‘‘at most once.’’ One way to implement this is to sim-
ply avoid all retransmissions, but then a simple lost message results in a failed execution. A
better way is to have the server log all actions before performing them, so that if a repeated
request comes in, it can be recognized as such and rejected. With this model, the client
knows that the call has been performed either 0 or 1 times, but no more.

The third category consists of systems that give no guarantee at all. These have the
advantage of being easy to implement.

Transparency also brings other problems with it. Suppose a server is overloaded. A
client that does not realize that the lack of response is due to overload may think it is due to
lost messages and keep retransmitting, thus making the problem worse.

2.2. Server Crashes
Another source of unreliable behavior is machine failures, either due to hardware or

software. These can be split into two categories: server crashes and client crashes. These
have different consequences for the system and must be attacked differently. In this section
we will look at the problems associated with server crashes and in the next one client crashes.

In general, servers can crash. Obviously one should try to make the servers as reliable
as possible, but even perfect software will not act properly if the hardware refuses to work.



Furthermore, making the software perfect is easier said than done. This problem can be
approached two ways. One way is to try to get crashed servers back on the air as fast as pos-
sible. The other way is to provide multiple servers for redundancy.

Getting crashed servers back up again requires some mechanism to detect when a server
has gone done and some way to get it back. Ideally there should also be some mechanism to
adjudicate disputes. If the server claims to be up but its clients claim that it is not doing any-
thing, what then? Whatever mechanism is chosen to monitor servers should itself be highly
reliable of course.

When the problem of unreliable servers is tackled by having several of each kind, the
issue of client-server binding arises. In a system with multiple identical servers (e.g., 3 file
servers), at some point a choice must be made about which one a client will use. One can
easily imagine a system in which the servers share a common address or mailbox, with each
server taking new work out of the mailbox whenever the server is idle. Suppose server 1
takes a request out of the mailbox, carries it out, and then sends an acknowledgement that is
subsequently lost.

At this point server 1 crashes. The client times out and retransmits the request, only to
have it be taken by server 2 this time, which knows nothing about what server 1 has done
recently, because server 1 is currently down and cannot tell it. Server 2 now repeats the
request. If the semantics are ‘‘at most once’’ we have a problem. This problem occurs even
if server 1 has carefully logged the request and reply in order to filter out repeats.

The difficulty is that the binding between the client and server was automatically broken
and reset when the first server went down. Many systems regard automatic rebinding as a
step towards fault-tolerant, reliable systems, but we see here that one must be careful.

Another issue related to automatic rebinding of servers is that of state. Some servers
may have a long term state that is maintained even after a remote procedure call has ter-
minated successfully. For example, some file servers have an operation OPEN on a file that
returns a file descriptor for use in subsequent READs and WRITEs. If multiple instances of
such a server exist, problems will arise if the server holding a particular client’s open file
table crashes between two remote procedure calls so that subsequent calls go to a new server
not having the necessary state.

Of course the system can have a rule that odd-numbered clients always use server 1 and
even-numbered clients always use server 2, but such a scheme completely defeats one of the
goals of a distributed system, namely, to use redundancy to improve reliability.

Yet another reliability problem associated with binding is authentication. How can the
server tell which client sent the message, and how can the client be sure he is sending his data
to the real server and not to an imposter? Going through a full authentication protocol, com-
plete with passwords, on every call is not feasible. On the other hand, solutions such as that
of Birrell7 effectively require setting up a long-term encrypted session, thus moving away
from the idea of transparency, since now remote procedure calls need to first set up sessions
between client and server, but local ones do not.

2.3. Client Crashes
So far we have only looked at the reliability problems caused by server crashes. Client

crashes also cause plenty of headaches. When a client starts up a computation on a server
and then crashes, the computation continues even though nobody is interested in it any more.
Such a computation is called an orphan. Having a lot of orphans lying around making ran-
dom computations does not enhance the reliability of a system. Orphans are most serious
when the computation being done by the server takes a substantial amount of time.

Various methods, some fairly draconian, have been proposed for dealing with orphans.
One method is to kill off all processes in the whole system every T seconds. This will



certainly kill off all the orphans, but it is something of a nuisance to normal computations.
Another possibility is to have each server periodically check to see if the client that

started the current computation is still interested. A variation on this idea is the dead man’s
handle. A client is expected to poll a server working for it periodically. If a poll fails to
come in on schedule, the server just kills the computation.

A different approach is to program all clients to log all remote procedure calls on stable
storage before making them. When a client reboots after a crash, it checks to see if there
were any servers working for it, and if so, tells them to stop. This solution is expensive
because writing to disk to log each call doubles the cost of each remote procedure call.

No matter which of these methods is chosen for killing off orphans, there is always the
danger than an orphan will be in the middle of a critical section at the instant that it is killed,
or that it holds many locks on resources. In this case, killing the orphan can lead to race con-
ditions and deadlocks.

Even if a method can be found to kill off all orphans, it may well be that an orphan has
created some long term state that will cause other actions to happen later. For example, a file
may have been put in a queue for subsequent processing elsewhere in the system. Thus even
after an orphan has been killed off, some other processor may examine the queue, find the
work, and start up another orphan.

Let us now briefly look at some systems that have attempted to deal with server and
client crashes. Borg et al.8 have described a system in which each process has a backup pro-
cess running on a different processor. Whenever a client sends a message to a server, it also
sends the same message to the server’s backup, as shown in Fig. 2. Similarly, replies are sent
to both the client and its backup. The operating system takes care of coordinating and syn-
chronizing all the messages.

Fig. 2. Each process has its own backup.

The idea behind this technique is that if a process crashes, its backup, on another proces-
sor, will be available to take over. Of course this scheme requires doubling the number of
processors. Powell and Presotto9 have proposed a simpler scheme that only requires one
extra process, instead of doubling the number of processes. In their scheme, shown in Fig. 3,
there is a single recorder process that logs all messages sent on the network.

Fig. 3. A recorder process logs all message traffic.

If a process crashes, a new processor can be allocated, and the code of the crashed pro-
cess loaded into it. Then the recorder carefully spoon feeds the new process all the messages



it has saved, in order to get the new process into the same state as the old one was when it
went down. Messages sent by the process while it is getting to the point where the old one
was are intercepted just before they are sent, to prevent their recipients from being confused.
When the new process gets to the point that the old one was, it switches into normal mode, so
that messages really are sent.

Processes can also make checkpoints of themselves from time to time if they wish.
Doing so means that if a process crashes, the checkpoint can be started up and only messages
logged after the checkpoint was made have to be replayed.

Powell and Presotto’s technique has the advantage of not requiring any overhead during
normal operation. However, it does implicitly presume that all messages are correctly
received and logged by the recorder.

A different approach to reliability is Cooper’s10 replicated procedure call. In Cooper’s
model, each client process is in reality n processes running in parallel and executing the same
code. Similarly, each server consists of m parallel processes. When a client calls a server,
each client process sends a message to each server process.

When the replies come back to the client, they are compared. One possible comparison
algorithm is to vote. Whichever answer occurs the most times is declared the winner, and
given to each client. The clients then continue their work. In this manner, an occasional
error is simply voted down, thus giving a degree of fault tolerance.

2.4. Data Integrity
Another key reliability issue is data availability and integrity. If data are frequently

inaccessible because some key server is down, users will perceive the system as unreliable.
This problem can be dealt with to some extent by having multiple servers of each type, each
holding its own private copy of the data. As long as the data are never changed (or very
rarely changed), this solution works well. However, if updates are frequent, the redundancy
itself introduces problems.

The main problem, of course, is that having multiple copies of the data introduces the
possibility of the various copies becoming different over the course of time. Before looking
at the replication problem, let us first take a look at the good old days of magnetic tape. In
those days, it was common for companies to have a master tape with their current inventory
of products. Each day tapes containing the day’s purchases and sales would be brought to the
computer center. The master tape, an update tape, and a blank tape would be mounted, and a
job run making an updated master on the blank tape. Then the next update tape would be run
with the new master, and so on.

The nice thing about this system was that if the computer crashed at any instant, it was
always possible to go back to the original or any other master tape and start everything again.
When magnetic disks were introduced, systems began updating records in place, losing the
idempotency of the tape scheme. Furthermore, when multiple update runs were allowed at
the same time, sophisticated concurrency control algorithms had to be introduced to make the
updates serializable while avoiding deadlock. In this view, the very concept of updating files
in place on the disk is seen as a major source of unreliability. When the situation is further
complicated by having the work distributed over multiple machines, the potential reliability
problems become even worse.

Assuming the problems of concurrency control and serializability on a single machine
can be dealt with by conventional means, the issue of replication can be dealt with in several
ways. The first way is to have a master copy with multiple backups. This scheme closely
resembles the old tape system. After the master copy has been updated, the changes have to
be propagated to the backups.

The second way is to update all the copies in parallel, but when inconsistencies arise, to



vote11-12. In this way minority viewpoints can be stamped out.
A third scheme is regeneration13. When an update is done, the server doing the update

arranges for multiple copies to be made. If one of those subsequently becomes disconnected
or unavailable, the server just abandons the missing copy and generates a new one.

3. RELIABILITY IN AMOEBA
In this section we will look at the Amoeba distributed operating system14-17 to see how

reliability issues have been dealt with in a real system. First we give a brief introduction to
Amoeba.

Amoeba is a distributed operating system that has been designed and implemented at the
Vrije Universiteit and the Centrum voor Wiskunde en Informatica. It runs on a collection of
40 Motorola 68000s, 68010s, and 68020s connected by a 10 Mbps local area network. The
conceptual model behind the system is the abstract data type. Client processes can perform
operations on objects managed by servers. These operations are implemented by having the
clients send messages to the servers, with the servers sending the results of the operations
back to the clients. This is a simple form of remote procedure call.

Both client and server processes, called clusters , can consist of multiple tasks that con-
ceptually run in parallel within the same address space. While one task is blocked waiting
for a message, another one can be running. Many servers are implemented as a collection of
tasks, each of which starts out waiting for a message. When a request to perform an opera-
tion arrives, it is given to one of the tasks at random. If that task should later block (e.g.,
waiting for a disk), another task in the cluster can run on behalf of a different client. Syn-
chronization is achieved by never switching from one task to a different task in the same
cluster except when the current task is logically blocked. The scheduler can switch between
clusters at will, however.

The Amoeba system consists of four basic components, as shown in Fig. 4. The works-
tations are used to provide a multi-window interface to the user, as well as some local com-
puting such as editing. The pool processors can be dynamically allocated as needed for com-
pilations, text formatting, or doing any other work. An n-pass compiler, for example, can be
arranged to allocate, use, and then return n pool processors, one per pass.

Fig. 4. An Amoeba system has four components.

The system also contains specialized servers with dedicated functions, such file servers,
bank servers, and boot servers. Finally, the fourth component is the gateway to other
Amoeba systems. Soon Amoeba will be running at five sites in three countries, all intercon-
nected by a wide-area network.

Identical Amoeba kernels run on all the machines. The kernels are intentionally small,
basically handling only communication and low level memory management. Files, process
management, and even protection and accounting are all handled at the user level.



Objects are protected by capabilities, as shown in Fig. 5. Each capability contains a
port field that is used to identify the server or client being addressed and an object field, used
to identify the specific object to be manipulated. Object numbers are analogous to i-node
numbers in UNIX.† Next comes a rights field, telling which operations the holder of the
capability may perform on the object. Finally, there is a random number that prevents users
from forging capabilities. Capabilities are directly handled by user processes, outside the
kernel.

Fig. 5. An Amoeba capability.

The random number field is crucial to the protection scheme, hence to the reliability of
the system. When an object is created, the creating server allocates an ‘‘i-node’’ for it and
puts a random number in it. It then EXCLUSIVE ORs the rights bits (initially all 1s) with
the random number and runs the result through a one-way function18. used for all objects.
The output of the one way function is put into the random field of the capability. The rights
bits are included in the capability in plaintext.

When a client performs an operation on an object, the capability for the object is sent to
the server to identify the object. The server then uses the object number contained in the
capability as an index into its tables to find the random number. The random number thus
found is EXCLUSIVE ORed with the plaintext rights field and run through the one-way
function. If the output is the same as the capability’s random number, the capability (includ-
ing the plaintext rights bits) is accepted as valid. This protection system and several varia-
tions on it are described in more detail in Tanenbaum et al.17.

3.1. Interprocess Communication
The form of remote procedure call used by Amoeba has ‘‘at most once’’ semantics. For

most applications this is preferable to ‘‘at least once’’ and certainly better than ‘‘don’t
know.’’ We will now describe how these semantics are implemented.

When a remote procedure call is made, the client calls a stub procedure that locates a
server based on the port number present in the capability belonging to the object to be
operated upon. The location is done by first looking in a cache. If that fails, a broadcast is
done. If multiple servers handle the object class in question, the stub selects one of them, and
gets its process identifier (pid).

Then a message is sent to the selected server process. Normally, the server will perform
the operation and send back a reply. If the server’s reply is not forthcoming within a certain
time interval, the server’s stub times out and acknowledges receipt of the request so the client
will know that it arrived safely and that the server is hard at work on it. When the server’s
reply finally gets back to the client, the client’s stub sends an acknowledgement back to the
server, which terminates the call.

If it has received an acknowledgement but no reply to the request itself, at a certain
point the client gets nervous and sends an ‘‘Are you alive?’’ query to the server, which is
answered immediately. On the other hand, if the client has heard nothing at all from the
server, not even the acknowledgement of the request, it eventually times out and retransmits
333333333333333333
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the request. When the server sees the retransmitted request, which bears the same source and
request number as the original, it can recognize the request as a retransmission and just send
the reply again or at least just acknowledge receipt of the request if the result is not yet avail-
able.

Now consider what happens if the server crashes. The client stub eventually detects that
the server process is down when it fails to get answers to its ‘‘Are you alive?’’ messages. If
the client stub has enough knowledge of the specific operation to be sure that it is idempo-
tent, it can locate another server and repeat the operation. In this case it does not matter that
the operation was executed more than once.

On the other hand, if the stub does not know whether or not the operation is idempotent,
it simply reports back failure to the client, meaning that that the operation has been per-
formed either 0 or 1 times, but not more.

3.2. Server Crashes
The communication mechanism is not the only part of Amoeba that was designed with

reliability in mind. There is also a boot server whose job is to make sure that processes (typ-
ically servers) that are supposed to be alive are in fact alive. It does this by periodically
probing the registered servers to see if they are still functioning.

All the long-lived servers, such as the file servers, normally register with the boot server
when the system comes up. This registration consists of providing the boot server with the
message to be sent to the server and the reply that the server is supposed to send back, the
frequency at which these probes are to take place, the number of probes to make before
declaring the server dead, and the procedure for creating a new server to replace one that has
crashed.

The procedure used to reincarnate a crashed server depends on the nature of the crash.
If the server is dead but the kernel on its machine is still working, then the boot server
instructs the kernel to create a new server process to replace the old one.

If the entire machine has crashed, then the boot server sends a special packet on the net-
work that is detected by the interface card, and which results in the interface asserting a
RESET signal on the crashed machine’s bus. This signal causes the machine to reboot itself
by jumping to a program in a ROM. The ROM program and the boot server together down-
load a new kernel into the machine, at which time the server can be restarted. If the machine
cannot be started up at all, the boot server gets another processor and starts the server there.
This whole procedure is fully automated; it happens without human intervention.

The only other issue concerning the boot server is the reliability of the boot server itself.
Multiple copies of the boot server run, each one communicating with all the other ones. If
one of the boot servers crashes, the remaining ones regenerate it using the procedure just
described.

3.3. Client Crashes
Orphans are prevented in Amoeba by using the ‘‘Are you alive’’ messages as a dead

man’s handle. If a server is making a long computation, it expects to get ‘‘Are you alive
messages’’ periodically. If these messages cease to arrive, the server concludes that the
client is dead and kills the orphan itself.

Although the orphan detection mechanism is useful for ridding the system of unwanted
computations, in many circumstances it is desirable that clients be fully fault tolerant, mean-
ing that a client, especially one running in parallel on multiple pool processors, itself notices
crashes of some of its processors and recovers from them in a transparent way. Several
applications have been programmed in this way. Below we will briefly sketch two of these,
the traveling salesman problem and parallel alpha-beta search.



The traveling salesman problem consists of finding the shortest route that a salesman
can use to visit all the cities in his territory exactly once. Roughly speaking, the Amoeba
approach is to have a procedure, traverse , that takes as input a partial path, the set of cities as
yet unvisited, and the length of the best total path found so far19. This procedure forks off a
process for each unvisited city to investigate all paths with that city as the next step. Each
process simply runs traverse , with a partial path one city longer and the set of unvisited cities
one smaller. The recursive forking of parallel processes continues until a certain depth in the
tree has been attained, at which point the residual tree is searched completely by one process.
Variations of this search strategy have also been tried.

The reliability comes from the fact that if a process fails to report back its findings
within a certain time, and also fails to respond to the ‘‘Are you alive’’ messages, the process
that invoked it just asks for another pool processor and starts the work all over again. Higher
levels in the tree do not even know that a fault has been detected and corrected. In this way
the program will be executed correctly even in the face of repeated multiple processor
crashes.

The other reliable application that has been tested is heuristic search for the game
reversi (Othello) using the alpha-beta algorithm. At each board position a process is gen-
erated for each legal move. Although the details of alpha-beta make this application some-
what different than the branch and bound algorithm used for the traveling salesman, again if
a process crashes, its parent just finds someone else to do the work. As we mentioned in the
introduction, the fact that the parallelism is visible to the application makes it possible to
exploit it for better reliability.

3.4. Data Integrity
File servers in Amoeba are user-level processes, so there can be several of them running

at once, providing different services and serving different clients. Some of the file servers
have been designed to provide UNIX-file service, others have been designed for high perfor-
mance, but there is also one whose goal is high reliability. This one, called FUSS (Free
University Storage System) is described by Tanenbaum and Mullender15 and is sketched
below.

The technique used by FUSS to provide high reliability is the immutable file . When a
process wants to update a file, it asks FUSS to create a new version of the file and return a
capability for the copy. (Actually the file is not copied. Shadow pages are used, but this is
really just an optimization.) The process can then modify the copy as it wishes. When it is
done, the process tells FUSS to commit the file, making the copy the new file. Thus a file is
really a sequence of versions, none of which is ever modified once it has been committed.
Modifying a file consists of atomically replacing a file with a new version.

This design is more reliable than the traditional update-in-place file system because
updating a file consists of preparing the new file and then at the last minute switching one
pointer. If the file server crashes, either the old file or the new file will be present when it
comes up again, but never a mixture of the two. By appropriate logging of intentions on a
disk, the server can be made to eventually complete the update no matter how often it
crashes. The atomic update property is especially important if two or more processes are
simultaneously updating the same file. FUSS offers a choice between locking and optimistic
currency control, but in both cases, an update to a file (or even a set of files) is atomic.

Work is currently in progress to extend these ideas to general objects. The idea is that
any object should be representable as a sequence of versions, with the update from the old
version to the new one being done atomically. This can be achieved by having a directory
server that maps ASCII strings onto capabilities, or more generally, onto sets of capabilities.
In effect, a directory is an unordered collection of lines, each containing a ASCII object name



followed by set of capabilities. The capabilities are for replicas of the same object.
A directory is thus simply a mapping of ASCII names onto sets of objects. A directory

is itself an object, so directories can contain capabilities for other directories, giving rise to a
directory hierarchy, or even a general graph, if that is desired.

The principal operation on a directory object is to present the directory server with a
capability for a directory and an ASCII string to be looked up in that directory. The server
then looks up the given string in the directory and returns the full set of capabilities that
correspond to that string, if any. The client can then choose one of them at random to use. If
that one is not available, it can choose another one.

The idea of having the directory entry contain multiple capabilities has been done to
enhance the reliability. Because files (and objects generally) are immutable, once a new ver-
sion of an object has been created, the directory server can arrange for backup copies of the
object to be made at its leisure (lazy backup). There is no problem with race conditions
because the object cannot change. The worst that can happen is that the version being backed
up becomes obsolete before all the backups have been created, in which case some extra
work may have been done for nothing, but the file system integrity is never affected.

Updating a directory entry is done by sending the directory server a capability for a
directory, an ASCII string, the capability for the object being replaced, the capability for the
new object, and a count specifying how many backup copies should be made and maintained.
The directory entry is updated atomically—either it happens or it fails, but there is never half
an update. Notice that the replication effort is managed by the directory server, so it need not
be duplicated in each object server. This is possible because objects are immutable. Once an
object has been committed, it never changes; it can only be replaced in its entirety by a new
object.

The update operation requires the old capability as a parameter so the directory server
can verify that the object being replaced is still the current object. If the old capability is not
present in the set of capabilities for the given string, the directory server can see that another
update has transpired in the meantime, so the update operation fails. This scheme is a form
of optimistic concurrency control. Put in other terms, if two clients each look up a given
string in a given directory, and then both try updating the corresponding object, only the first
update will succeed. Objects can also be locked, to allow a more conventional update stra-
tegy.

3.5. Other Reliability Features of Amoeba
Another area that affects system reliability is resource management. If one user or pro-

cess consumes too many resources, the rest of the users and processes will suffer the conse-
quences. For this reason Amoeba has a bank server that can be used as a general tool for
resource management.

The bank server manages bank accounts in various currencies. As an example of its
use, consider a file server that wished to implement a quota system to give each user at most
1000 disk blocks. Each user would be given a bank account containing, say, 1000 zlotys,
each good for one disk block. Every time a user wanted another disk block, he would first
have to transfer 1 zloty to the file server’s account to pay for it in advance. When the block
was freed, the user would get his zloty back.

Other currencies can be used for other resources. CPU time could be charged in yen,
phototypesetter pages in guilders, etc. The policies (e.g., who gets how much money,
whether currencies are convertible) are decided by the servers, but the basic mechanism
(managing the accounts, logging transactions, transferring money between accounts atomi-
cally, maintaining caches for efficiency, etc.) is done by the bank server, so that each indivi-
dual server need not run its own administration.



Try as we may to build a reliable system, there are going to be bugs in it. For this rea-
son, Amoeba has been designed in such a way to be able to catch faults and handle them. To
see how this mechanism works, we have to take a look at how processes are managed in
Amoeba. When a user types a command to the shell, the shell creates a mother process to
oversee the execution of the command. The mother process allocates a processor from the
processor pool, asks the Amoeba kernel on that machine to allocate sufficient memory for the
new process, and then downloads the program to be executed to the processor for execution.

Normally, the mother process does not intervene in the execution of the program on the
pool processor. It simply waits until the program terminates to clean it up and report back its
status. However, it is possible to tell the pool processor’s kernel to catch all system calls and
other kernel traps, and send them to the mother process for processing.

In this way, for example, it is possible to take a binary program compiled to run on
68000 UNIX (i.e., not on Amoeba) and run it on a pool processor, even though the Amoeba
kernel knows nothing at all about UNIX. The UNIX system calls are effectively all passed to
the mother process for execution. If the mother process happens to be running on a 68000
UNIX system (which is easy to arrange), it can just execute the system calls locally and send
back the results.

This same mechanism is used for debugging. When a process on a pool processor gets a
memory fault, illegal instruction, or other kernel trap, the pool processor’s kernel does a
remote procedure call with the mother process telling it what happened. The mother process
contains a debugger that can print a message on the user’s terminal and then wait for input
instructing it what to do. There are commands to examine and print memory and so on.
These are handled by messages between the mother process and the kernel on the pool pro-
cessor.

3.6. Summary
Reliability considerations have influenced the Amoeba design in a number of ways.

These include the scheme for protecting objects with cryptographically secure capabilities,
the communication mechanism with ‘‘at most once’’ semantics and orphan extermination,
the boot server for automatically rebooting dead processes, the file server with immutable
files, the directory sever with atomic update on replicated objects, the bank server for limit-
ing resource usage, and the hooks for debugging. In addition, Amoeba has been used for
explicitly programming fault tolerant applications such as the traveling salesman and heuris-
tic search.
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